CN104221157A - 具有增强的伽玛辐射灵敏度的固态辐射探测器 - Google Patents

具有增强的伽玛辐射灵敏度的固态辐射探测器 Download PDF

Info

Publication number
CN104221157A
CN104221157A CN201380019497.5A CN201380019497A CN104221157A CN 104221157 A CN104221157 A CN 104221157A CN 201380019497 A CN201380019497 A CN 201380019497A CN 104221157 A CN104221157 A CN 104221157A
Authority
CN
China
Prior art keywords
compton
solid
detector
radiation detector
source material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380019497.5A
Other languages
English (en)
Other versions
CN104221157B (zh
Inventor
M·D·海尔贝尔
M·M·瓦尔特
R·W·弗拉曼宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Co LLC
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of CN104221157A publication Critical patent/CN104221157A/zh
Application granted granted Critical
Publication of CN104221157B publication Critical patent/CN104221157B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/118Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the surface barrier or shallow PN junction detector type, e.g. surface barrier alpha-particle detectors

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

—种碳化硅肖特基二极管固态辐射探测器,其具有放置在肖特基接触部上并与其间隔开的例如铂的电子施主层,以贡献从铂层到探测器有源区域的高能量的康普顿和光电电子,从而增强来自入射伽玛辐射的带电粒子的聚集。

Description

具有增强的伽玛辐射灵敏度的固态辐射探测器
相关申请的交叉引用
本申请按照35U.S.C.§119(e)要求于2012年4月25日提交的、名称为“具有增强的伽玛辐射的碳化硅辐射探测器”的临时申请序列号No.61/637,994的优先权。
技术领域
本发明涉及辐射探测器,以及更具体来说,涉及具有改进的伽玛辐射灵敏度的固态辐射探测器。
背景技术
传统中子探测器典型地包含作为电离室(ionization chambers)或比例计数器(proportional counters)工作的器件,这两种器件都使用中子活性气体如BF3或He。一旦吸收中子,这样的气体就释放高能反应粒子。这些粒子在周围气体中产生电离,该电离被适当偏置的电极探测到。其他的探测器用例如6Li、10B或235U的固态中子活性材料涂覆电离室的壁。这些材料也会吸收中子并释放产生电离的粒子。
最近以来,已经应用探测横跨半导体结的电子-空穴对的固态中子探测器。电子-空穴对由膜内的作为中子吸收的结果而形成的反应粒子或结合到探测器内的中子活性材料的掺杂物产生。也已知使用碳化硅(SiC)肖特基二极管作为固态辐射探测器来测量带电粒子的电离辐射可以提供优于其他类型辐射探测器(例如离子室GeLi探测器等)的优点,特别是在高温环境和高伽玛辐射环境中。由于碳化硅探测器非常小,因此它们能够安装或插入到其他探测器类型不能配置的地方。虽然目前的碳化硅探测器的实施例会产生与入射伽玛辐射成比例的信号,但是相对于对带电粒子撞击到器件有源区域上的响应,这个信号响应非常小。
存在这样的应用,在该应用中,伽玛辐射场的强度和能量谱在高温或限制访问区域中很重要。这种情形的示例是表征在福岛现场(Fukushima site)的被损坏的反应堆周围和内部的辐射场所需要的辐射监控(surveillance)。本发明提供改进的碳化硅辐射探测器设计,能够实现与肖特基二极管固态辐射探测器相关的当前所有优点,这包含增强探测器的探测能力的修正,并且表征来自核能发电中最重要的放射性同位素的入射伽玛辐射的能量。
发明内容
伽玛辐射灵敏度的改善是通过利用具有有源半导体区域和位于有源半导体区域的至少一部分上的肖特基接触部的肖特基二极管来实现。与入射伽玛辐射反应的康普顿(Compton)与光电子源材料层与源材料的源原子周围的电子相互作用来产生高能量的康普顿(Compton)和光电电子以贯穿有源区,康普顿(Compton)和光电子源材料层以距离可控可变的间隔而被支撑在肖特基接触部上,该间隔通过具有可忽略的电导率的低的有效原子序数的流体(如空气)来填充,该间隔介于源材料和肖特基接触部表面之间。根据需要调整流体间隔的组成和从肖特基接触部表面起的源层的距离,以实现用于所寻求探测的特殊伽玛辐射能量的探测器有源区域内的最大电荷沉积速率。辐射探测器和测量领域的技术人员使用的这个探测器将使得用户能够确定特殊放射性同位素的分配和相对量,如核反应堆中裂变份额(fission fragment)所特有的同位素。
优选地,康普顿(Compton)和光电子源材料选自铂或原子序数类似于或高于铂的其他源材料,这些材料将产生会贯穿进探测器的有源区域并产生电离的电子。希望的是:肖特基接触部位于包含碳化硅的有源区域上,以及康普顿(Compton)和光电子源材料层以及在间隔中使用的材料的厚度通过使用伽玛辐射传输方法来确定,,以最大化导向将在探测器的有源区域累积能量的肖特基接触部的光电子数,关于该伽玛辐射传输方法,例如有那些可用于代码封装MCNP(Los Alamos国家安全局(Los Alamos National Security)、LLC、Los Alamos国家实验室(Los Alamos National Laboratory))。
在一个实施例中,固态辐射探测器具有在给定时间内沉积在有源半导体区域上的电荷,该电荷与入射到康普顿(Compton)和电子源材料层上的伽玛辐射能量成比例,并且探测器的输出表示入射到探测器上的伽玛辐射的能量和强度这两者。优选地,源层之间的间隔和间隔层的厚度控制探测器对所探测的入射辐射能量的灵敏度。优选地,间隔层的厚度可调节以改变探测器的灵敏度。
附图说明
当结合附图来阅读下面优选实施例的说明时,能够获得对本发明的更进一步理解,其中:
图1是现有技术的碳化硅肖特基二极管辐射探测器的示意性表示;以及
图2是将铂层添加到肖特基接触部之上以增强探测器的耗尽层区域中伽玛辐射生成的电子沉积的碳化硅肖特基二极管辐射探测器的示意性表示。
具体实施方式
如前面提到的,很久以来就知道使用碳化硅肖特基二极管作为固态辐射探测器来测量带电粒子的电离辐射可以提供优于其他类型辐射探测器的优点,特别是在高温下和高伽玛辐射环境中。此外,由于碳化硅探测器非常小,它们能够安装在或插入在其他探测器类型不能配置的地方。虽然目前的碳化硅探测器的实施例会产生与入射伽玛辐射成比例的信号,但是相对于对带电粒子撞击到器件有源区域上的响应,这个信号响应非常小。
示范性的现有技术的肖特基辐射探测器10在图1中示意性示出。背面欧姆接触部12形成在碳化硅导电衬底14的一侧。碳化硅导电衬底14大约300微米厚,并在其相反端部由大约3-100微米厚的碳化硅外延层16覆盖。碳化硅外延层16形成探测器的有源区域,并在其相反端部由肖特基接触部18覆盖,肖特基接触部18可由例如铂或金的任意的高导电金属形成。反向偏压在有源区域16耗尽n,并且电离辐射在耗尽区域产生电子-空穴对。电荷在横跨接触部而施加的电压的影响下聚集。
根据本发明的一个实施例,伽玛辐射灵敏度的增强可以通过熟练地利用在图1中示出的现有技术的肖特基二极管辐射探测器上而获得,通过施加例如铂或其它合适的高原子施主材料的康普顿(Compton)和光电子源材料薄层,该康普顿(Compton)和光电子源材料薄层将响应于入射的伽玛辐射,释放会贯穿有源区域的电子并且有助于有源区域14中带电粒子的聚集。如图2中示出,康普顿(Compton)和光电子源材料20薄层(例如铂)被放置在肖特基接触部18上的有源区域的外表面上。肖特基接触部和所添加的源层20间的距离可调节,并且在电子施主层20和肖特基接触部18间优选包含具有低的有效原子序数和可忽略导电率的流体24,如在1个大气压下、相对湿度在70°F(21℃)下小于或等于20%的性质的空气。肖特基接触部18和所添加的源层20间的距离可调节,并且可基于用户想探测的伽玛辐射的能量范围来选择源层所用的材料和厚度。增加可调节的电子施主层(由围绕层24的套叠套筒(telescoping sleeve)象征性地表示),例如可调节厚度和与肖特基接触部的距离,这使得伽玛辐射与施主材料中源原子周围的电子相互反应,从而在施主层内产生贯穿进碳化硅器件的有源区域的高能量康普顿(Compton)和光电电子。介于铂层和肖特基接触部间的流体24的厚度控制施主电子的能量,以使得它们在有源区域中聚集。这些特征将在探测器的有源区域产生高得多的带电沉积,而没有施主层20所贡献的高能量康普顿(Compton)和光电电子是可能的。在固定时间量内沉积的电荷将与入射在层20上的伽玛辐射的能量成比例,这样伽玛辐射的能量和伽玛辐射的强度这两者就能够根据对来自碳化硅器件的电输出的合适分析来确定。
这样,下面要求保护的器件(根据图2所描述的一个实施例22)将具有标准碳化硅辐射探测器所有的优点,并且对被用户定义的伽玛辐射的光谱和能量更加地灵敏。相对于目前的设计,这将使得这个装置的使用范围增加。这个器件在以下方面将更加有用,即对在核能量设备中在正常操作期间和在意外事故情形之后引起最大关注的辐射的探测。这个探测器将使得用户将所感兴趣的或所关注的特殊同位素释放的伽玛能量设为目标。这些器件可能具有的小尺寸使得它们对于其中探测器必须通过小空间被插入到环境不友好或身体不友好的环境中的应用来说是理想的。这个探测器设计通过在燃料处于乏燃料池或其他更持久的保存位置的同时使得特殊裂变产物同位素伽玛辐射的强度可被测量,将增强执行乏燃料监控以及对乏燃料的其他后续操作监控的能力。这将使得能够确定包含在燃料内和事故后的环境周围的特殊核材料的量。
虽然已经详细描述了本发明的具体实施例,但是本领域技术人员将理解的是:可以根据说明书的整个教导而进行对于这些细节的各种变形和替换。相应地,所公开的具体实施方式仅意在说明而并非意在作为对本发明范围的限制,本发明范围由所附权利要求的所有范围及它的任意等价物和所有等价物给出。

Claims (10)

1.一种固态辐射探测器(22),包含:
肖特基二极管(10),具有有源半导体区域(16)和位于所述有源半导体区域的至少一部分上的肖特基接触部(18);
康普顿和光电子源材料层(20),与入射伽玛射线反应,以与源材料的源原子周围的电子相互作用而产生贯穿进入肖特基二极管的有源区域(16)的高能量康普顿和光电电子,所述康普顿和光电子源材料层被支撑在肖特基接触部(18)上;以及
流体层(24),介于所述肖特基接触部(18)与所述康普顿和光电子源材料层(20)之间。
2.权利要求1的固态辐射探测器(22),其中康普顿和光电子源材料(20)选自铂或原子序数基本上等于或大于铂的其他材料。
3.权利要求2的固态辐射探测器(22),其中所述康普顿和光电子源材料是铂。
4.权利要求1的固态辐射探测器(22),其中所述肖特基接触部(18)是放置在包含碳化硅的所述有源区域(16)顶部上的层。
5.权利要求1的固态辐射探测器(22),其中所述康普顿和光电子源材料层(20)的厚度用伽玛辐射传输方法来确定,以增强来自所需的入射伽玛辐射能量的光电子数,来将它们的能量沉积在所述肖特基二级管(10)的有源区域(16)中。
6.权利要求1的固态辐射探测器(22),其中所述流体层(24)的厚度是用户可调的。
7.权利要求1的固态辐射探测器(22),其中在给定时间内沉积在所述有源半导体区域(16)上的电荷与入射在所述康普顿和光电子源材料层(20)上的伽玛辐射能量成比例,并且包含表示伽玛辐射能量和伽玛辐射强度这两者的电输出。
8.权利要求1的固态辐射探测器(22),其中位于光电子施主层(20)和肖特基接触部(18)间的间隔内的流体(24)包含空气或有效原子序数和导电率基本上等于或小于空气的其他材料。
9.权利要求1的固态辐射探测器(22),其中间隔内的流体(24)的厚度控制探测器对所探测的辐射能量的灵敏度。
10.权利要求9的固态辐射探测器(22),其中位于光电子施主层(20)和肖特基接触部(18)间的间隔内的流体(24)的厚度可调节,以改变探测器的灵敏度。
CN201380019497.5A 2012-04-25 2013-04-05 具有增强的伽玛辐射灵敏度的固态辐射探测器 Expired - Fee Related CN104221157B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261637994P 2012-04-25 2012-04-25
US61/637,994 2012-04-25
US13/769,401 US9831375B2 (en) 2012-04-25 2013-02-18 Solid state radiation detector with enhanced gamma radiation sensitivity
US13/769,401 2013-02-18
PCT/US2013/035353 WO2014014528A2 (en) 2012-04-25 2013-04-05 A solid state radiation detector with enhanced gamma radiation sensitivity

Publications (2)

Publication Number Publication Date
CN104221157A true CN104221157A (zh) 2014-12-17
CN104221157B CN104221157B (zh) 2016-10-19

Family

ID=49476518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380019497.5A Expired - Fee Related CN104221157B (zh) 2012-04-25 2013-04-05 具有增强的伽玛辐射灵敏度的固态辐射探测器

Country Status (6)

Country Link
US (1) US9831375B2 (zh)
EP (1) EP2842167B1 (zh)
JP (1) JP6148329B2 (zh)
KR (1) KR102068371B1 (zh)
CN (1) CN104221157B (zh)
WO (1) WO2014014528A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868568A (zh) * 2018-03-22 2020-10-30 米兰理工大学 有源中子谱仪

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081163A1 (en) * 2013-11-27 2015-06-04 Cornell University Device for prevention of integrated circuit chip counterfeiting
US9528952B1 (en) * 2016-05-17 2016-12-27 Westinghouse Electric Company Llc Pulsed neutron generated prompt gamma emission measurement system for surface defect detection and analysis
US11170903B2 (en) * 2019-06-12 2021-11-09 Westinghouse Electric Company Llc Method and system to detect and locate the in-core position of fuel bundles with cladding perforations in candu-style nuclear reactors
JP2022550438A (ja) * 2019-10-04 2022-12-01 ウェスティングハウス エレクトリック カンパニー エルエルシー インコア測定を強化するためのショットキーダイオードによる放射線検出のためのデバイス、システム、および方法
KR20230004587A (ko) * 2020-04-22 2023-01-06 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 축방향 및 반경방향 고밀도 센서와 향상된 분열 감마 측정 감도로 구성된 sic 쇼트키 다이오드를 사용하는 고정형 인-코어 검출기 설계
CN115407387A (zh) * 2022-08-19 2022-11-29 西北核技术研究所 碳化硅自给能半导体探测器及中子束流反角监测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969359A (en) * 1996-09-30 1999-10-19 Westinghouse Electric Company Monitoring of neutron and gamma radiation
WO2002014904A1 (en) * 2000-08-11 2002-02-21 Smt Hb Position-sensitive gamma radiation detector
WO2010087844A1 (en) * 2009-01-30 2010-08-05 Alliance For Sustainable Energy, Llc High sensitivity, solid state neutron detector
US20100219385A1 (en) * 2005-04-04 2010-09-02 Carbon Labs, Inc. Fusion fuel container and reactant spin-enhancement

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745538A (en) 1995-10-05 1998-04-28 Westinghouse Electric Corporation Self-powered fixed incore detector
US6061412A (en) 1995-10-05 2000-05-09 Westinghouse Electric Company Llc Nuclear reaction protection system
US5726453A (en) 1996-09-30 1998-03-10 Westinghouse Electric Corporation Radiation resistant solid state neutron detector
US5940460A (en) 1997-09-15 1999-08-17 The United States Of America As Represented By The United States Department Of Energy Solid state neutron detector array
IL143852A0 (en) 2001-06-19 2002-04-21 Real Time Radiography Ltd Laminated semiconductor radiation detector
US6840480B2 (en) * 2001-09-27 2005-01-11 Ernest A. Carroll Miniature, unmanned aircraft with interchangeable data module
US20060214115A1 (en) 2005-03-23 2006-09-28 General Electric Company Phosphor film, imaging assembly and inspection method
US7439518B2 (en) 2006-04-07 2008-10-21 Raytheon Company Multi-layer pixellated gamma-ray detector
JP4452838B2 (ja) * 2006-11-01 2010-04-21 国立大学法人東北大学 半導体検出器ブロック及びこれを用いた陽電子断層撮影装置
WO2009130782A1 (ja) 2008-04-24 2009-10-29 住友重機械工業株式会社 半導体検出器ブロック及びこれを用いた陽電子断層撮影装置
JP2010272577A (ja) * 2009-05-19 2010-12-02 Takehisa Sasaki 放射線検出素子、及び、放射線検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969359A (en) * 1996-09-30 1999-10-19 Westinghouse Electric Company Monitoring of neutron and gamma radiation
WO2002014904A1 (en) * 2000-08-11 2002-02-21 Smt Hb Position-sensitive gamma radiation detector
US20100219385A1 (en) * 2005-04-04 2010-09-02 Carbon Labs, Inc. Fusion fuel container and reactant spin-enhancement
WO2010087844A1 (en) * 2009-01-30 2010-08-05 Alliance For Sustainable Energy, Llc High sensitivity, solid state neutron detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868568A (zh) * 2018-03-22 2020-10-30 米兰理工大学 有源中子谱仪

Also Published As

Publication number Publication date
JP2015521372A (ja) 2015-07-27
KR20150004325A (ko) 2015-01-12
EP2842167A4 (en) 2016-01-06
KR102068371B1 (ko) 2020-02-11
EP2842167B1 (en) 2016-07-27
CN104221157B (zh) 2016-10-19
US9831375B2 (en) 2017-11-28
EP2842167A2 (en) 2015-03-04
WO2014014528A2 (en) 2014-01-23
WO2014014528A3 (en) 2014-04-17
JP6148329B2 (ja) 2017-06-14
US20130285068A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
CN104221157B (zh) 具有增强的伽玛辐射灵敏度的固态辐射探测器
JP3140052B2 (ja) 中性子検出装置
Galbiati et al. Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact
US20160209518A1 (en) Ionizing radiation sensor
JPS63193088A (ja) 半導体放射線検出器
US11255986B2 (en) Micro cavity fission chamber radiation detection system
US9638813B2 (en) Thermal neutron detector and gamma-ray spectrometer utilizing a single material
McGregor et al. Micro-pocket fission detectors (MPFD) for in-core neutron flux monitoring
US8044358B2 (en) Spectroscopic fast neutron detection and discrimination using Li-Based semiconductors
US9086490B2 (en) Red boron solid state detector
JP3358617B2 (ja) 中性子線量率計
WO2015102517A1 (en) Matrix sensor of ionizing radiation
Venkataraman Semiconductor detectors
US20100123084A1 (en) Betavoltaic radiation detector
WO2000033106A1 (en) Boron-carbide solid state neutron detector and method of using same
Bolotnikov et al. CdZnTe position-sensitive drift detectors for spectroscopy and imaging of gamma-ray sources
Bos et al. Some developments in neutron and charged particle dosimetry
Acerbi et al. Proton and X-rays radiation effects on Silicon Photomultipliers
Wang et al. Study on the performance of high rating MRPC
Ogasawara et al. Avalanche photodiode arrays enable large-area measurements of medium-energy electrons
Bolotnikov et al. Array of virtual Frisch-grid detectors with common cathode and reduced length of shielding electrodes
Singh Development and Performance Studies of Silicon Radiation Detectors
Karrevula et al. Effect of reverse voltage on alpha spectra of pre-conditioned Si PIN diodes deployed in vacuum/ambient environment
RU2469355C1 (ru) Нейтронный детектор
CN117607934A (zh) 辐射剂量检测装置和辐射剂量检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161019

Termination date: 20210405

CF01 Termination of patent right due to non-payment of annual fee