US20060214115A1 - Phosphor film, imaging assembly and inspection method - Google Patents

Phosphor film, imaging assembly and inspection method Download PDF

Info

Publication number
US20060214115A1
US20060214115A1 US11/088,039 US8803905A US2006214115A1 US 20060214115 A1 US20060214115 A1 US 20060214115A1 US 8803905 A US8803905 A US 8803905A US 2006214115 A1 US2006214115 A1 US 2006214115A1
Authority
US
United States
Prior art keywords
free
phosphor film
standing
phosphor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/088,039
Inventor
Venkatesan Manivannan
Clifford Bueno
Steven Duclos
Stanley Stoklosa
Douglas Albagli
Paul Mc Connelee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/088,039 priority Critical patent/US20060214115A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUENO, CLIFFORD, ALBAGLI, DOUGLAS, DUCLOS, STEVEN JUDE, MANIVANNAN, VENKATESAN, MC CONNELEE, PAUL ALAN, STOKLOSA, STANLEY JOHN
Priority to DE602006008682T priority patent/DE602006008682D1/en
Priority to EP06251230A priority patent/EP1705478B1/en
Priority to JP2006063558A priority patent/JP5450920B2/en
Priority to CN2012104255091A priority patent/CN102915785A/en
Priority to CNA2006100718898A priority patent/CN1837954A/en
Publication of US20060214115A1 publication Critical patent/US20060214115A1/en
Priority to US11/846,990 priority patent/US7547895B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20185Coupling means between the photodiode and the scintillator, e.g. optical couplings using adhesives with wavelength-shifting fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/674Halogenides
    • C09K11/675Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • C09K11/684Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7732Halogenides
    • C09K11/7733Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/7771Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the invention relates generally to an imaging assembly and inspection method. More particularly, the invention relates to a digital radiographic imaging assembly incorporating removable and replaceable layers.
  • X-ray phosphors are high-density luminescent materials that emit visible or near visible radiation when stimulated by x-rays or other high-energy electromagnetic photons, and hence are widely employed in various industrial and medical radiographic equipment. Coupling x-ray phosphors to photo diodes, charge coupled devices (CCDs), Complementary metal oxide semiconductors (CMOS devices), and photomultiplier tubes (PMTs) is an efficient way to convert x-rays to electrical signals. This development requires not only advanced x-ray phosphors with enhanced properties, such as high x-ray conversion efficiency, faster luminescence decay times, lower afterglow and greater stability in the radiation field, but also better coupling between the x-ray converter screen and the electronic detector.
  • CCDs charge coupled devices
  • CMOS devices Complementary metal oxide semiconductors
  • PMTs photomultiplier tubes
  • X-ray phosphors must be efficient converters of x-ray radiation into optical radiation in those regions of the electromagnetic spectrum (visible and near visible), which are most efficiently detected by photosensors, such as photomultipliers or photodiodes. It is also desirable that the x-ray phosphors have a high optical clarity, i.e., transmit the optical radiation efficiently to avoid optical trapping, as optical radiation originating deep in the x-ray phosphor body escapes for detection by externally situated photodetectors. This is particularly important in medical diagnostic applications, where it is desirable that x-ray dosage be as small as possible to minimize patient exposure, while maintaining adequate quantum detection efficiency and a high signal-to-noise ratio.
  • Afterglow is the tendency of the x-ray phosphor to continue emitting optical radiation for a time after termination of x-ray excitation, resulting in blurring, with time, of the information-bearing signal. Short afterglow is highly desirable in applications requiring rapid sequential scanning such as, for example, in imaging moving bodily organs.
  • Hysteresis is the x-ray phosphor material property whereby the optical output varies for identical x-ray excitation based on the radiation history of the x-ray phosphor.
  • Hysteresis is undesirable due to the requirement in computerized tomography for repeated precise measurements of optical output from each x-ray phosphor cell and where the optical output must be substantially identical for identical x-ray radiation exposure impinging on the x-ray phosphor body.
  • Typical detecting accuracies are on the order of one part in one thousand for a number of successive measurements taken at relatively high rate.
  • hysteresis can result in image ghosting, where prior imaging history is overlaid on the current radiographic imagery. This can lead to an erroneous diagnosis or interpretation.
  • High x-ray stopping power is desirable for efficient x-ray detection.
  • the phosphor screen utilized should stop the x-rays, at the same time should not hinder the subsequent light emission for capture by the photodetecting device.
  • radiographic imaging systems known in the art suffer from one or more of these drawbacks. It would therefore be desirable to design a radiographic imaging system with enhanced sensitivity and better performance.
  • an adaptable imaging assembly includes a free-standing phosphor film configured to receive incident radiation and to emit corresponding optical signals.
  • An electronic device coupled to the free-standing phosphor film is provided. The electronic device is configured to receive the optical signals from the free-standing phosphor film and to generate an imaging signal.
  • a method for inspecting a component includes exposing the component and a free-standing phosphor film to radiation, generating corresponding optical signals with the free standing phosphor film, receiving the optical signals with an electronic device coupled to the free-standing phosphor film, and generating an imaging signal using the electronic device.
  • a free-standing phosphor film comprising x-ray phosphor particles dispersed in a silicone binder is provided.
  • a method of forming a free-standing phosphor film includes the steps of preparing a phosphor powder, where the phosphor comprises a x-ray phosphor; preparing a binder solution comprising a silicone binder and a curing agent; preparing a slurry by mixing the binder solution and the phosphor powder; forming a phosphor layer on a substrate by applying the slurry on the substrate; curing the phosphor layer to obtain a phosphor film; and removing the phosphor film from the substrate to obtain a free-standing phosphor film.
  • FIG. 1 schematically depicts an adaptable imaging assembly embodiment of the invention
  • FIG. 2 is a flow diagram for an inspection method embodiment of the invention
  • FIG. 3 further illustrates the inspection method of FIG. 2 ;
  • FIG. 4 illustrates a particular embodiment of the adaptable imaging assembly with multiple free-standing phosphor films
  • FIG. 5 is a flow diagram for preparing a free-standing phosphor film according to one embodiment of the present invention.
  • FIG. 6 is an exemplary flexible free-standing phosphor film of Lu 2 O 3 :Eu 3+ ;
  • FIG. 7 is an exemplary flexible free-standing phosphor film of Lu 2 O 3 :Eu 3+ placed between a metal plate and a Si wafer;
  • FIG. 8 schematically depicts an adaptable imaging assembly embodiment of the invention that employs a fiber optic plate.
  • adaptable imaging assembly 20 includes a free-standing phosphor film 10 configured to receive incident radiation and to emit corresponding optical signals. Free-standing phosphor film 10 and methods of making film 10 are described in greater detail below.
  • the radiation source varies based on the application, and examples include x-rays, gamma rays, thermal neutrons and high-energy elemental particle radiation sources.
  • a supporting substrate such as a mylar support would greatly attenuate the incoming thermal neutron imaging beam pattern and reduce signal to noise.
  • Thermal neutrons are highly absorbed in hydrogen containing materials such as mylar.
  • Adaptable imaging assembly 20 further includes an electronic device 12 coupled to the free-standing phosphor film 10 .
  • the electronic device 12 is configured to receive the optical signals from the free-standing phosphor film 10 and to generate an imaging signal.
  • the electronic device 12 may be coupled to the free-standing phosphor film 10 in several ways, including optical coupling (for example using a fiber optic plate), direct coupling and lens coupling.
  • Exemplary electronic devices 12 include CCD, CMOS, photodiode arrays, photo-avalanche arrays, and ⁇ -Si (amorphous silicon) arrays.
  • the electronic device 12 includes a number of light sensitive pixels arranged in an array.
  • the array may be linear or an area array.
  • single pixel devices may be employed, such as photomultiplier tubes (PMTs).
  • PMTs photomultiplier tubes
  • optical coupling fluids (not shown) or optical cement (not shown) are used between the free-standing phosphor film 10 and the electronic device 12 to offer improved matching of the respective indices of refraction of each element.
  • This embodiment will thereby improve optical coupling efficiency and light collection.
  • Example optical cements include, without limitation, UV-cured cement and optical epoxies.
  • the free-standing phosphor film 10 comprises x-ray phosphor particles dispersed in a silicone binder, and FIG. 6 shows an example of such a film.
  • x-ray phosphors suitable for these applications include, but are not limited to, Gd 2 O 2 S:Tb, Gd 2 O 2 S:Eu, CaWO 4 , Y 2 O 2 S:Tb, (YSr)TaO 4 , (YSr)TaO 4 :Gd, (YSr)TaO 4 :Nb, BaFCI:Eu, Lu 2 O 3 :Eu, CsI:Tl, and combinations of these phosphors, or combinations of mentioned activators such as terbium and europium.
  • the choice of a particular material or combinations of materials depends on the specific application.
  • the free-standing film 10 is discussed in greater detail below with reference to FIGS. 5, 6 , and 7 .
  • the free-standing phosphor film 10 includes at least two phosphor powders.
  • This blended phosphor is desirable for certain applications, including amorphous silicon panels. Because amorphous silicon panels are more sensitive to green light, a blend of Lu 2 O 3 :Eu and GOS:Tb may be useful.
  • the Lu 2 O 3 :Eu offers x-ray stopping power and good x-ray-to-light conversion efficiency, but emits in the red area of the spectrum.
  • GOS:Tb provides moderate stopping power, has good conversion efficiency, but offers a better match with amorphous silicon photodetectors. provides moderate stopping power, has good conversion efficiency, but offers a better match with amorphous silicon photodetectors.
  • the adaptable imaging assembly 20 further includes an electron intensification layer 14 coupled to the free-standing phosphor film 10 and that is configured to receive the incident radiation prior to incidence on the free-standing phosphor film 10 .
  • Exemplary electron intensification layers 14 include metallic layers formed of metals with high atomic number, such as lead. Beneficially, electron intensification layers 14 reduce x-ray scatter.
  • electron intensification layer 14 is directly coupled to the free-standing phosphor film 10 . This direct coupling is facilitated by virtue of the fact that the free-standing film 10 does not have a substrate, such as a Mylar® backing.
  • Mylar® is a registered trademark of DuPont-Teijin Films. This allows direct coupling on both sides of the film 10 .
  • Another advantage of the free standing phosphor film 10 is the fact that the low energy electrons emitted from the metal screen at low x-ray energies ( ⁇ 400 kV) are not stopped, as typically happens for conventional phosphor screens with Mylar® backings.
  • the electron intensification layer 14 is removable and replaceable. Beneficially, by configuring the electron intensification layer to be removable, it can be included for high-energy (>1 MeV) applications and removed for lower energy ( ⁇ 150 kV) applications. Similarly, by configuring the electron intensification layer 14 to be replaceable, different electron intensification layers 14 (either with respect to composition, thickness or both) may be employed for different imaging applications.
  • the thickness of the free-standing phosphor film 10 is adjustable.
  • a single 100 micron phosphor layer may be employed for certain imaging applications, and one or more additional layers of 100 micron thick phosphors may be added to build up the thickness of the free-standing phosphor film 10 for other imaging applications.
  • the additional phosphor layers may include the same or different phosphors relative to the initial phosphor layer.
  • the free-standing phosphor film 10 is replaceable.
  • different phosphors and/or different film thicknesses may be employed for different imaging applications.
  • a 50-100 micron free standing phosphor composed of GOS:Tb may be employed directly attached to an amorphous silicon photodetector and may be used to perform nondestructive testing.
  • a heavier phosphor may be used, again with the appropriate thickness for optimum x-ray capture.
  • the latter can also be configured with a metal screen such as 500 microns of lead or tungsten to further improve x-ray image quality.
  • replacement operations may be performed for repair purposes.
  • the free-standing phosphor film 10 is attached to the electronic device 12 .
  • This may be accomplished in many ways, including pressure fitting the free-standing phosphor film 10 to the electronic device 12 .
  • the phosphors may be pressed onto the device using the front cover plate.
  • a frame may also be used. More particularly, the film is pressure fit to a frame.
  • FIG. 8 illustrates another exemplary set of embodiments of adaptable imaging assembly 20 .
  • adaptable imaging assembly 20 further includes a fiber optic plate (FOP) 52 disposed between the free-standing phosphor film 10 and the electronic device 12 .
  • the FOP may be non-scintillating or scintillating.
  • the numerical aperture of the FOP may be adjusted to accept a shallower angle of incident light, in order to improve resolution of the adaptable imaging assembly 20 . This permits improved tuning of spatial resolution and contrast.
  • the electronic device 12 is an amorphous-silicon panel.
  • the FOP may be beneficially combined with optical coupling fluids or optical cement.
  • an optical coupling fluid or optical cement (not shown) may be disposed between the free-standing phosphor film 10 and the FOP 52 .
  • an optical coupling fluid or optical cement may be disposed between the FOP 52 and the electronic device 12 .
  • FIGS. 2 and 3 illustrate another embodiment of the invention, which is directed to a method for inspecting a component 30 .
  • the method includes at step 22 exposing the component 30 and a free-standing phosphor film 10 to radiation, generating corresponding optical signals with the free standing phosphor film 10 at step 24 , and at step 26 receiving the optical signals with an electronic device 12 , which is coupled to the free-standing phosphor film 10 .
  • the inspection method further includes, at step 28 , generating an imaging signal using the electronic device 12 .
  • FIG. 1 For the exemplary embodiment of FIG.
  • the imaging signal is subjected to a number of processing steps (not shown) in a processor 18 , and an image of the component 30 is generated based on one or more imaging signals.
  • the image is displayed on a display 16 , as indicated in FIG. 3 .
  • the method further includes performing at least one of the following operations: adjusting a thickness of the free-standing phosphor film 10 , adding at least one layer of another free-standing phosphor film 10 ′ (which may have the same or a different phosphor(s) as the original film 10 ) to the original free-standing phosphor film 10 , as indicated for example, in FIG. 4 , and replacing the free-standing phosphor film 10 with another free-standing phosphor film (for example, which differs in composition and/or thickness).
  • the latter replacement operation may be employed either to modify or repair the free-standing phosphor film 10 .
  • the method further includes reducing radiation scatter by coupling a high atomic number electron intensification layer 14 to the free-standing phosphor film 10 .
  • the phrase “high atomic number” indicates an atomic number of at least 26.
  • the metallic screen can offer not only scatter rejection, but will also offer further capture of photoelectrons emitted from the metal screen and therefore improved intensification from said metal layer.
  • Metal layers are commonly used in industrial film imaging, where metals such as lead are placed in intimate contact with industrial x-ray film. This results in the primary capture medium for moderate energy x-rays above about 100 kV.
  • the free-standing phosphor film offers direct contact for both the front surface with the photodetector array and for the back surface, with a metal “intensifying” screen.
  • the method further includes performing at least one of the following operations: adjusting a thickness of the electron intensification layer 14 , replacing the electron intensification layer 14 , and removing the electron intensification layer 14 .
  • Another aspect of the invention is to provide a free-standing phosphor film 10 comprising x-ray phosphor particles dispersed in a silicone binder.
  • x-ray phosphors suitable for these applications include, but are not limited to, Gd 2 O 2 S:Tb, Gd 2 O 2 S:Eu, CaWO 4 , Y 2 O 2 S:Tb, (YSr)TaO 4 , (YSr)TaO 4 :Gd, (YSr)TaO 4 :Nb, BaFCl:Eu, Lu 2 O 3 :Eu, CsI:Tl, and combinations of these phosphors.
  • the choice of a particular material or combinations of materials depends on the specific application.
  • the x-ray phosphor is Lu 2 O 3 :Eu.
  • Lu 2 O 3 :Eu has the distinct advantages of high density and hence better x-ray stoppage, and narrow band emission at 610 nm, which matches the spectral response of CCDs.
  • the free-standing phosphor film comprises a blended phosphor comprising at least two different phosphors.
  • blended phosphor comprises GOS:Tb 3+ and Lu 2 O 3 :Eu 3 .
  • Blended phosphors may comprise a combination of phosphors suitable for specific applications. For example, for amorphous Si panels which are more sensitive towards green, a blend of Lu 2 O 3 :Eu and GOS:Tb may be useful. These different phosphors may be combined to form a blend or may be used in different layers.
  • the removable and replaceable layers allow for easy handling. They may be repeatedly reused. Phosphor films may be changed in accordance with the associated electronics. For example, PMTs are sensitive to blue radiation and hence BaFCl:Eu 2+ phosphors are useful. On the other hand, CCDs are more sensitive to red, and hence Lu 2 O 3 :Eu may be useful in those cases.
  • the thickness of the free-standing phosphor film may vary depending on the specific requirement.
  • the sensitivity of the imager assembly is determined by the chemical composition of the phosphor film, its crystal structure, particle shape, the weight amount of phosphor content in the film, and the thickness of the phosphor film.
  • the thickness of the free-standing phosphor film is less than 1 millimeter.
  • the phosphor film has a thickness in a range from about 100 microns to about 500 microns.
  • the term “about” should be understood to mean within ten percent of the stated thickness. Accordingly, “about 100 microns” should be understood to mean 100 +/ ⁇ 10 microns, etc.
  • FIG. 5 shows a flow diagram of a method (indicated generally by reference numeral 32 ) for preparing a free-standing phosphor film according to one embodiment of the present invention.
  • the method includes the steps of preparing a phosphor powder at step 34 , where the phosphor includes an x-ray phosphor.
  • the method includes preparing a binder solution including a silicone binder and a curing agent at step 36 .
  • a slurry is prepared by mixing the binder solution and the phosphor powder.
  • Step 40 includes forming a phosphor layer on a substrate by applying the slurry on the substrate.
  • the phosphor layer is cured to obtain a phosphor film.
  • Step 44 includes removing the phosphor film from the substrate to obtain a free-standing phosphor film 10 .
  • a phosphor powder comprising an x-ray phosphor powder is prepared.
  • the phosphor powder may be prepared by any synthesis method known in the art.
  • Useful synthesis methods include solid state synthesis, co-precipitation, sol-gel synthesis, colloidal methods, flame spray pyrolysis, inverse-microemulsion technique, combustion method, oxalate precipitation method, and microwave synthesis.
  • a co-precipitation method with urea as the precipitant is used. This technique is particularly useful for the preparation of Lu 2 O 3 :Eu phosphor powders with precise particle size and morphology.
  • ammonium carbonate is used as the precipitant.
  • the mean particle size of the phosphor particles varies from about 1 micron to about 25 microns. In some specific embodiments, the mean particle size ranges from about 4 microns to about 5 microns.
  • the co-precipitation method proves useful in yielding phosphor particles with extremely narrow size distribution and uniform spherical morphology.
  • Particle size and shape have significant influence on the rheological properties of the slurry.
  • Particle size and morphology influence the packing density in the film.
  • sharper images are obtained with phosphor particles of smaller mean particle size.
  • light emission efficiency declines with decreasing particle size.
  • the optimum mean particle size for a given application is a compromise between imaging speed and image sharpness desired.
  • a binder solution comprising a binder and a curing agent is prepared.
  • the binder may be any binder compatible with the phosphor system.
  • a silicone binder is used. Silicone binders provide good refractive index matching characteristics with the phosphor particles, and allow light to emit from deep layers and hence enable the use of thick phosphor plates.
  • a slurry is prepared by mixing the binder solution and the phosphor powder. The amount of phosphor powder in the slurry is generally adjusted to have the best rheological character.
  • Step 40 includes forming a phosphor layer on a substrate by applying the slurry on the substrate. Any technique known in the art for preparing layers may be used for forming a phosphor layer.
  • Non-limiting examples of useful formation techniques include, but are not limited to, spraying, screen printing, ink-jet printing, casting, wire-bar coating, extrusion coating, gravure coating, roll coating, and combinations thereof.
  • a casting technique such as tape casting
  • Tape casting proves useful for making large area thin ceramic sheets with controlled thickness and microstructure.
  • substrates may be used for making the film, including, but not limited to plastic, glass, mica, metal substrates, and ceramic substrates.
  • Step 42 includes curing the phosphor layer to obtain a phosphor film. Exemplary curing techniques may involve heating at a specified temperature for a specified duration, or microwave irradiation, or electron beam irradiation, or UV light exposure, or a combination of those.
  • the phosphor film is removed from the substrate to obtain a free-standing phosphor film 10 .
  • the phosphor film may be peeled off by hand.
  • the following example describes the preparation method for a free-standing phosphor film of Lu 2 O 3 :Eu.
  • Lu 2 O 3 :Eu phosphor particles with a mean particle size of 5 microns and with spherical morphology were prepared by a urea assisted coprecipitation method.
  • 2.5 ml of the phosphor powder was weighed and sieved through 100 mesh.
  • 7.02 g of Dow coming Sylgard 184 base was mixed with 7 gm of curing agent in a 50 ml beaker to form a binder solution.
  • the phosphor powder was added to the binder solution in the beaker and mixed vigorously for 5 minutes to remove agglomerates.
  • the beaker was placed in a vacuum dessicator and cycled from vacuum to 1 atmosphere a few times to deair the suspension.
  • a glass substrate of desired size was cleaned, and the suspension is formed into a phosphor layer of desired thickness by standard doctor blade technique.
  • the tape was heated at 80° C. for 15 hrs.
  • the phosphor film was peeled from the glass substrate to obtain a free standing Lu 2 O 3 :Eu film.
  • FIG. 6 illustrates a flexible free-standing phosphor film of Lu 2 O 3 :Eu 3+ ( 46 ), prepared by method 32 .
  • These flexible free-standing films may be used in the imager assembly as described above. These free-standing films are flexible allowing intimate contact with the panels.
  • FIG. 7 shows a free-standing film of Lu 2 O 3 :Eu 3+ ( 46 ) placed in intimate contact between a metal plate ( 50 ) and a Si wafer ( 48 ).
  • the imager assembly described herein may have a wide variety of uses. For example, it may be useful in any system where conversion of high-energy radiation to electric signals is involved. Specifically, it may be useful in a variety of industrial and medical imaging applications, including x-ray radiography, mammography, intra-oral radiography (in dentistry), fluoroscopy, x-ray computed tomography, radionuclide imaging such as positron emission tomography, industrial and non-destructive testing; passive and active screening of baggage and containers.
  • industrial and medical imaging applications including x-ray radiography, mammography, intra-oral radiography (in dentistry), fluoroscopy, x-ray computed tomography, radionuclide imaging such as positron emission tomography, industrial and non-destructive testing; passive and active screening of baggage and containers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of Radiation (AREA)

Abstract

An adaptable imaging assembly is provided. The adaptable imaging assembly includes a free-standing phosphor film configured to receive incident radiation and to emit corresponding optical signals. An electronic device is coupled to the free-standing phosphor film. The electronic device is configured to receive the optical signals from the free-standing phosphor film and to generate an imaging signal. A free-standing phosphor film is also provided and includes x-ray phosphor particles dispersed in a silicone binder. A method for inspecting a component is also provided and includes exposing the component and a free-standing phosphor film to radiation, generating corresponding optical signals with the free standing phosphor film, receiving the optical signals with an electronic device coupled to the free-standing phosphor film and generating an imaging signal using the electronic device.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates generally to an imaging assembly and inspection method. More particularly, the invention relates to a digital radiographic imaging assembly incorporating removable and replaceable layers.
  • X-ray phosphors are high-density luminescent materials that emit visible or near visible radiation when stimulated by x-rays or other high-energy electromagnetic photons, and hence are widely employed in various industrial and medical radiographic equipment. Coupling x-ray phosphors to photo diodes, charge coupled devices (CCDs), Complementary metal oxide semiconductors (CMOS devices), and photomultiplier tubes (PMTs) is an efficient way to convert x-rays to electrical signals. This development requires not only advanced x-ray phosphors with enhanced properties, such as high x-ray conversion efficiency, faster luminescence decay times, lower afterglow and greater stability in the radiation field, but also better coupling between the x-ray converter screen and the electronic detector. X-ray phosphors must be efficient converters of x-ray radiation into optical radiation in those regions of the electromagnetic spectrum (visible and near visible), which are most efficiently detected by photosensors, such as photomultipliers or photodiodes. It is also desirable that the x-ray phosphors have a high optical clarity, i.e., transmit the optical radiation efficiently to avoid optical trapping, as optical radiation originating deep in the x-ray phosphor body escapes for detection by externally situated photodetectors. This is particularly important in medical diagnostic applications, where it is desirable that x-ray dosage be as small as possible to minimize patient exposure, while maintaining adequate quantum detection efficiency and a high signal-to-noise ratio.
  • Afterglow is the tendency of the x-ray phosphor to continue emitting optical radiation for a time after termination of x-ray excitation, resulting in blurring, with time, of the information-bearing signal. Short afterglow is highly desirable in applications requiring rapid sequential scanning such as, for example, in imaging moving bodily organs. Hysteresis is the x-ray phosphor material property whereby the optical output varies for identical x-ray excitation based on the radiation history of the x-ray phosphor. Hysteresis is undesirable due to the requirement in computerized tomography for repeated precise measurements of optical output from each x-ray phosphor cell and where the optical output must be substantially identical for identical x-ray radiation exposure impinging on the x-ray phosphor body. Typical detecting accuracies are on the order of one part in one thousand for a number of successive measurements taken at relatively high rate. In real-time radioscopy, hysteresis can result in image ghosting, where prior imaging history is overlaid on the current radiographic imagery. This can lead to an erroneous diagnosis or interpretation. High x-ray stopping power is desirable for efficient x-ray detection. The phosphor screen utilized should stop the x-rays, at the same time should not hinder the subsequent light emission for capture by the photodetecting device.
  • The radiographic imaging systems known in the art suffer from one or more of these drawbacks. It would therefore be desirable to design a radiographic imaging system with enhanced sensitivity and better performance.
  • SUMMARY OF THE INVENTION
  • The present invention meets these and other needs. Briefly, in accordance with one embodiment of the present invention, an adaptable imaging assembly is provided. The adaptable imaging assembly includes a free-standing phosphor film configured to receive incident radiation and to emit corresponding optical signals. An electronic device coupled to the free-standing phosphor film is provided. The electronic device is configured to receive the optical signals from the free-standing phosphor film and to generate an imaging signal.
  • In accordance with another embodiment, a method for inspecting a component is provided. The method includes exposing the component and a free-standing phosphor film to radiation, generating corresponding optical signals with the free standing phosphor film, receiving the optical signals with an electronic device coupled to the free-standing phosphor film, and generating an imaging signal using the electronic device.
  • In another embodiment, a free-standing phosphor film comprising x-ray phosphor particles dispersed in a silicone binder is provided.
  • In yet another embodiment, a method of forming a free-standing phosphor film is provided. The method includes the steps of preparing a phosphor powder, where the phosphor comprises a x-ray phosphor; preparing a binder solution comprising a silicone binder and a curing agent; preparing a slurry by mixing the binder solution and the phosphor powder; forming a phosphor layer on a substrate by applying the slurry on the substrate; curing the phosphor layer to obtain a phosphor film; and removing the phosphor film from the substrate to obtain a free-standing phosphor film.
  • BRIEF DESCRIPTION OF DRAWINGS
  • These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
  • FIG. 1 schematically depicts an adaptable imaging assembly embodiment of the invention;
  • FIG. 2 is a flow diagram for an inspection method embodiment of the invention;
  • FIG. 3 further illustrates the inspection method of FIG. 2;
  • FIG. 4 illustrates a particular embodiment of the adaptable imaging assembly with multiple free-standing phosphor films;
  • FIG. 5 is a flow diagram for preparing a free-standing phosphor film according to one embodiment of the present invention;
  • FIG. 6 is an exemplary flexible free-standing phosphor film of Lu2O3:Eu3+;
  • FIG. 7 is an exemplary flexible free-standing phosphor film of Lu2O3:Eu3+ placed between a metal plate and a Si wafer; and
  • FIG. 8 schematically depicts an adaptable imaging assembly embodiment of the invention that employs a fiber optic plate.
  • DETAILED DESCRIPTION
  • An adaptable imaging assembly 20 is described with reference to FIG. 1. As shown for example in FIG. 1, adaptable imaging assembly 20 includes a free-standing phosphor film 10 configured to receive incident radiation and to emit corresponding optical signals. Free-standing phosphor film 10 and methods of making film 10 are described in greater detail below. The radiation source varies based on the application, and examples include x-rays, gamma rays, thermal neutrons and high-energy elemental particle radiation sources. For thermal neutrons, a supporting substrate such as a mylar support would greatly attenuate the incoming thermal neutron imaging beam pattern and reduce signal to noise. Thermal neutrons are highly absorbed in hydrogen containing materials such as mylar. These are merely examples and should not be interpreted to restrict the types of radiation that may be used. As used herein, the phrase “optical signals” should be understood to mean light. The wavelength of the light emitted by the phosphor film 10 is determined by the type of phosphor(s) used. Adaptable imaging assembly 20 further includes an electronic device 12 coupled to the free-standing phosphor film 10. The electronic device 12 is configured to receive the optical signals from the free-standing phosphor film 10 and to generate an imaging signal. The electronic device 12 may be coupled to the free-standing phosphor film 10 in several ways, including optical coupling (for example using a fiber optic plate), direct coupling and lens coupling. Exemplary electronic devices 12 include CCD, CMOS, photodiode arrays, photo-avalanche arrays, and α-Si (amorphous silicon) arrays. Typically, the electronic device 12 includes a number of light sensitive pixels arranged in an array. The array may be linear or an area array. In other embodiments, single pixel devices may be employed, such as photomultiplier tubes (PMTs).
  • In accordance with a particular embodiment, optical coupling fluids (not shown) or optical cement (not shown) are used between the free-standing phosphor film 10 and the electronic device 12 to offer improved matching of the respective indices of refraction of each element. This embodiment will thereby improve optical coupling efficiency and light collection. Example optical cements include, without limitation, UV-cured cement and optical epoxies.
  • According to exemplary embodiments, the free-standing phosphor film 10 comprises x-ray phosphor particles dispersed in a silicone binder, and FIG. 6 shows an example of such a film. Non-limiting examples of x-ray phosphors suitable for these applications include, but are not limited to, Gd2O2S:Tb, Gd2O2S:Eu, CaWO4, Y2O2S:Tb, (YSr)TaO4, (YSr)TaO4:Gd, (YSr)TaO4:Nb, BaFCI:Eu, Lu2O3:Eu, CsI:Tl, and combinations of these phosphors, or combinations of mentioned activators such as terbium and europium. The choice of a particular material or combinations of materials depends on the specific application. The free-standing film 10 is discussed in greater detail below with reference to FIGS. 5, 6, and 7.
  • For a blended phosphor embodiment, the free-standing phosphor film 10 includes at least two phosphor powders. This blended phosphor is desirable for certain applications, including amorphous silicon panels. Because amorphous silicon panels are more sensitive to green light, a blend of Lu2O3:Eu and GOS:Tb may be useful. In this configuration, the Lu2O3:Eu offers x-ray stopping power and good x-ray-to-light conversion efficiency, but emits in the red area of the spectrum. GOS:Tb provides moderate stopping power, has good conversion efficiency, but offers a better match with amorphous silicon photodetectors. provides moderate stopping power, has good conversion efficiency, but offers a better match with amorphous silicon photodetectors.
  • For the exemplary embodiment of FIG. 1, the adaptable imaging assembly 20 further includes an electron intensification layer 14 coupled to the free-standing phosphor film 10 and that is configured to receive the incident radiation prior to incidence on the free-standing phosphor film 10. Exemplary electron intensification layers 14 include metallic layers formed of metals with high atomic number, such as lead. Beneficially, electron intensification layers 14 reduce x-ray scatter. According to a particular embodiment, electron intensification layer 14 is directly coupled to the free-standing phosphor film 10. This direct coupling is facilitated by virtue of the fact that the free-standing film 10 does not have a substrate, such as a Mylar® backing. (Mylar® is a registered trademark of DuPont-Teijin Films.) This allows direct coupling on both sides of the film 10. Another advantage of the free standing phosphor film 10 is the fact that the low energy electrons emitted from the metal screen at low x-ray energies (<400 kV) are not stopped, as typically happens for conventional phosphor screens with Mylar® backings.
  • According to a particular embodiment, the electron intensification layer 14 is removable and replaceable. Beneficially, by configuring the electron intensification layer to be removable, it can be included for high-energy (>1 MeV) applications and removed for lower energy (<150 kV) applications. Similarly, by configuring the electron intensification layer 14 to be replaceable, different electron intensification layers 14 (either with respect to composition, thickness or both) may be employed for different imaging applications.
  • For another exemplary embodiment, the thickness of the free-standing phosphor film 10 is adjustable. For example, a single 100 micron phosphor layer may be employed for certain imaging applications, and one or more additional layers of 100 micron thick phosphors may be added to build up the thickness of the free-standing phosphor film 10 for other imaging applications. For this embodiment, the additional phosphor layers may include the same or different phosphors relative to the initial phosphor layer.
  • According to a particular embodiment, the free-standing phosphor film 10 is replaceable. Beneficially, by employing a replaceable phosphor film 10, different phosphors and/or different film thicknesses may be employed for different imaging applications. For example, for high spatial resolution, low energy imaging of small cracks or small porosity in castings, a 50-100 micron free standing phosphor composed of GOS:Tb may be employed directly attached to an amorphous silicon photodetector and may be used to perform nondestructive testing. For higher energy exposures of thicker castings, or larger steel components, a heavier phosphor may be used, again with the appropriate thickness for optimum x-ray capture. More specifically, the latter can also be configured with a metal screen such as 500 microns of lead or tungsten to further improve x-ray image quality. In addition, replacement operations may be performed for repair purposes.
  • According to a particular embodiment, the free-standing phosphor film 10 is attached to the electronic device 12. This may be accomplished in many ways, including pressure fitting the free-standing phosphor film 10 to the electronic device 12. For example, the phosphors may be pressed onto the device using the front cover plate. For other embodiments, a frame may also be used. More particularly, the film is pressure fit to a frame.
  • FIG. 8 illustrates another exemplary set of embodiments of adaptable imaging assembly 20. As indicated in FIG. 8, adaptable imaging assembly 20 further includes a fiber optic plate (FOP) 52 disposed between the free-standing phosphor film 10 and the electronic device 12. The FOP may be non-scintillating or scintillating. Beneficially, the numerical aperture of the FOP may be adjusted to accept a shallower angle of incident light, in order to improve resolution of the adaptable imaging assembly 20. This permits improved tuning of spatial resolution and contrast. According to a particular embodiment, the electronic device 12 is an amorphous-silicon panel. The FOP may be beneficially combined with optical coupling fluids or optical cement. For example, an optical coupling fluid or optical cement (not shown) may be disposed between the free-standing phosphor film 10 and the FOP 52. In addition, an optical coupling fluid or optical cement may be disposed between the FOP 52 and the electronic device 12.
  • Adaptable imaging assembly 20 may be used to inspect components 30, examples of which include, without limitation, turbine blades, castings, welded assemblies, and aircraft fuselage frames. FIGS. 2 and 3 illustrate another embodiment of the invention, which is directed to a method for inspecting a component 30. As indicated in FIG. 2, the method includes at step 22 exposing the component 30 and a free-standing phosphor film 10 to radiation, generating corresponding optical signals with the free standing phosphor film 10 at step 24, and at step 26 receiving the optical signals with an electronic device 12, which is coupled to the free-standing phosphor film 10. The inspection method further includes, at step 28, generating an imaging signal using the electronic device 12. For the exemplary embodiment of FIG. 3, the imaging signal is subjected to a number of processing steps (not shown) in a processor 18, and an image of the component 30 is generated based on one or more imaging signals. In many embodiments, the image is displayed on a display 16, as indicated in FIG. 3.
  • According to particular embodiments, the method further includes performing at least one of the following operations: adjusting a thickness of the free-standing phosphor film 10, adding at least one layer of another free-standing phosphor film 10′ (which may have the same or a different phosphor(s) as the original film 10) to the original free-standing phosphor film 10, as indicated for example, in FIG. 4, and replacing the free-standing phosphor film 10 with another free-standing phosphor film (for example, which differs in composition and/or thickness). The latter replacement operation may be employed either to modify or repair the free-standing phosphor film 10.
  • According to a particular embodiment, the method further includes reducing radiation scatter by coupling a high atomic number electron intensification layer 14 to the free-standing phosphor film 10. As used here, the phrase “high atomic number” indicates an atomic number of at least 26. In this manner, the metallic screen can offer not only scatter rejection, but will also offer further capture of photoelectrons emitted from the metal screen and therefore improved intensification from said metal layer. Metal layers are commonly used in industrial film imaging, where metals such as lead are placed in intimate contact with industrial x-ray film. This results in the primary capture medium for moderate energy x-rays above about 100 kV. The free-standing phosphor film offers direct contact for both the front surface with the photodetector array and for the back surface, with a metal “intensifying” screen. For more particular embodiments thereof, the method further includes performing at least one of the following operations: adjusting a thickness of the electron intensification layer 14, replacing the electron intensification layer 14, and removing the electron intensification layer 14.
  • Another aspect of the invention is to provide a free-standing phosphor film 10 comprising x-ray phosphor particles dispersed in a silicone binder. Non-limiting examples of x-ray phosphors suitable for these applications include, but are not limited to, Gd2O2S:Tb, Gd2O2S:Eu, CaWO4, Y2O2S:Tb, (YSr)TaO4, (YSr)TaO4:Gd, (YSr)TaO4:Nb, BaFCl:Eu, Lu2O3:Eu, CsI:Tl, and combinations of these phosphors. The choice of a particular material or combinations of materials depends on the specific application. In some exemplary embodiment, the x-ray phosphor is Lu2O3:Eu. Lu2O3:Eu has the distinct advantages of high density and hence better x-ray stoppage, and narrow band emission at 610 nm, which matches the spectral response of CCDs.
  • For a particular embodiment, the free-standing phosphor film comprises a blended phosphor comprising at least two different phosphors. In one particular embodiment, blended phosphor comprises GOS:Tb3+ and Lu2O3:Eu3. Blended phosphors may comprise a combination of phosphors suitable for specific applications. For example, for amorphous Si panels which are more sensitive towards green, a blend of Lu2O3:Eu and GOS:Tb may be useful. These different phosphors may be combined to form a blend or may be used in different layers.
  • The removable and replaceable layers allow for easy handling. They may be repeatedly reused. Phosphor films may be changed in accordance with the associated electronics. For example, PMTs are sensitive to blue radiation and hence BaFCl:Eu2+ phosphors are useful. On the other hand, CCDs are more sensitive to red, and hence Lu2O3:Eu may be useful in those cases.
  • The thickness of the free-standing phosphor film may vary depending on the specific requirement. The sensitivity of the imager assembly is determined by the chemical composition of the phosphor film, its crystal structure, particle shape, the weight amount of phosphor content in the film, and the thickness of the phosphor film. In some embodiments, the thickness of the free-standing phosphor film is less than 1 millimeter. In other embodiments, the phosphor film has a thickness in a range from about 100 microns to about 500 microns. As used here, the term “about” should be understood to mean within ten percent of the stated thickness. Accordingly, “about 100 microns” should be understood to mean 100+/−10 microns, etc.
  • FIG. 5 shows a flow diagram of a method (indicated generally by reference numeral 32) for preparing a free-standing phosphor film according to one embodiment of the present invention. The method includes the steps of preparing a phosphor powder at step 34, where the phosphor includes an x-ray phosphor. The method includes preparing a binder solution including a silicone binder and a curing agent at step 36. At step 38, a slurry is prepared by mixing the binder solution and the phosphor powder. Step 40 includes forming a phosphor layer on a substrate by applying the slurry on the substrate. At step 42, the phosphor layer is cured to obtain a phosphor film. Step 44 includes removing the phosphor film from the substrate to obtain a free-standing phosphor film 10.
  • In step 34, a phosphor powder comprising an x-ray phosphor powder is prepared. The phosphor powder may be prepared by any synthesis method known in the art. Useful synthesis methods include solid state synthesis, co-precipitation, sol-gel synthesis, colloidal methods, flame spray pyrolysis, inverse-microemulsion technique, combustion method, oxalate precipitation method, and microwave synthesis. In one exemplary embodiment, a co-precipitation method with urea as the precipitant is used. This technique is particularly useful for the preparation of Lu2O3:Eu phosphor powders with precise particle size and morphology. In another embodiment, ammonium carbonate is used as the precipitant. This technique is also useful for the preparation of Lu2O3:Eu phosphor powder with controlled particle size, narrow size distribution and precise morphology. The synthesis method and the process conditions may be chosen depending on the size and shape of the phosphor particles that are required. According to a particular embodiment, the mean particle size of the phosphor particles varies from about 1 micron to about 25 microns. In some specific embodiments, the mean particle size ranges from about 4 microns to about 5 microns.
  • The co-precipitation method proves useful in yielding phosphor particles with extremely narrow size distribution and uniform spherical morphology. Particle size and shape have significant influence on the rheological properties of the slurry. Particle size and morphology influence the packing density in the film. Moreover, it is known that sharper images are obtained with phosphor particles of smaller mean particle size. However, light emission efficiency declines with decreasing particle size. Thus, the optimum mean particle size for a given application is a compromise between imaging speed and image sharpness desired.
  • In step 36, a binder solution comprising a binder and a curing agent is prepared. The binder may be any binder compatible with the phosphor system. In some exemplary embodiments, a silicone binder is used. Silicone binders provide good refractive index matching characteristics with the phosphor particles, and allow light to emit from deep layers and hence enable the use of thick phosphor plates. In step 38, a slurry is prepared by mixing the binder solution and the phosphor powder. The amount of phosphor powder in the slurry is generally adjusted to have the best rheological character. Further additive agents may be mixed into the slurry, such as a dispersing agent for improving the dispersibility and to prevent rapid settling, and a platicizer for improving the binding force between the binder and the phosphor particles and to lower the risk of cracks. According to particular embodiments, the method includes the additional optional steps of deagglomeration and deairing of the slurry for better results. Step 40 includes forming a phosphor layer on a substrate by applying the slurry on the substrate. Any technique known in the art for preparing layers may be used for forming a phosphor layer. Non-limiting examples of useful formation techniques include, but are not limited to, spraying, screen printing, ink-jet printing, casting, wire-bar coating, extrusion coating, gravure coating, roll coating, and combinations thereof. In some exemplary embodiments, a casting technique, such as tape casting, is used. Tape casting proves useful for making large area thin ceramic sheets with controlled thickness and microstructure. A variety of substrates may be used for making the film, including, but not limited to plastic, glass, mica, metal substrates, and ceramic substrates. Step 42 includes curing the phosphor layer to obtain a phosphor film. Exemplary curing techniques may involve heating at a specified temperature for a specified duration, or microwave irradiation, or electron beam irradiation, or UV light exposure, or a combination of those. In step 44, the phosphor film is removed from the substrate to obtain a free-standing phosphor film 10. For example, the phosphor film may be peeled off by hand.
  • EXAMPLE
  • An example of the present invention will be described hereinafter. However, the invention is not to be limited by the following example.
  • Preparation of Free-Standing Phosphor Film
  • The following example describes the preparation method for a free-standing phosphor film of Lu2O3:Eu. Lu2O3:Eu phosphor particles with a mean particle size of 5 microns and with spherical morphology were prepared by a urea assisted coprecipitation method. 2.5 ml of the phosphor powder was weighed and sieved through 100 mesh. 7.02 g of Dow coming Sylgard 184 base was mixed with 7 gm of curing agent in a 50 ml beaker to form a binder solution. The phosphor powder was added to the binder solution in the beaker and mixed vigorously for 5 minutes to remove agglomerates. The beaker was placed in a vacuum dessicator and cycled from vacuum to 1 atmosphere a few times to deair the suspension. A glass substrate of desired size was cleaned, and the suspension is formed into a phosphor layer of desired thickness by standard doctor blade technique. The tape was heated at 80° C. for 15 hrs. The phosphor film was peeled from the glass substrate to obtain a free standing Lu2O3:Eu film.
  • FIG. 6 illustrates a flexible free-standing phosphor film of Lu2O3:Eu3+ (46), prepared by method 32. These flexible free-standing films may be used in the imager assembly as described above. These free-standing films are flexible allowing intimate contact with the panels. For example FIG. 7 shows a free-standing film of Lu2O3:Eu3+ (46) placed in intimate contact between a metal plate (50) and a Si wafer (48).
  • The imager assembly described herein may have a wide variety of uses. For example, it may be useful in any system where conversion of high-energy radiation to electric signals is involved. Specifically, it may be useful in a variety of industrial and medical imaging applications, including x-ray radiography, mammography, intra-oral radiography (in dentistry), fluoroscopy, x-ray computed tomography, radionuclide imaging such as positron emission tomography, industrial and non-destructive testing; passive and active screening of baggage and containers.
  • Although only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims (26)

1. An adaptable imaging assembly comprising:
a free-standing phosphor film configured to receive incident radiation and to emit a plurality of corresponding optical signals; and
an electronic device coupled to said free-standing phosphor film, wherein said electronic device is configured to receive the optical signals from said free-standing phosphor film and to generate an imaging signal.
2. The adaptable imaging assembly of claim 1, wherein said free-standing phosphor film comprises a plurality of phosphor particles.
3. The adaptable imaging assembly of claim 2, wherein said free-standing phosphor film comprises a plurality of x-ray phosphor particles dispersed in a silicone binder.
4. The adaptable imaging assembly of claim 1, further comprising an electron intensification layer coupled to said free-standing phosphor film and configured to receive the incident radiation prior to incidence on said free-standing phosphor film.
5. The adaptable imaging assembly of claim 4, wherein said electron intensification layer is removable and replaceable.
6. The adaptable imaging assembly of claim 1, wherein a thickness of said free-standing phosphor film is adjustable.
7. The adaptable imaging assembly of claim 1, wherein said free-standing phosphor film is replaceable.
8. The adaptable imaging assembly of claim 1, wherein said free standing phosphor film is pressure fit to said electronic device.
9. The adaptable imaging assembly of claim 1, further comprising one of an optical coupling fluid and an optical cement disposed between said free-standing phosphor film and said electronic device.
10. The adaptable imaging assembly of claim 1, further comprising a fiber optic plate (FOP) disposed between said free-standing phosphor film and said electronic device.
11. The adaptable imaging assembly of claim 10, further comprising one of an optical coupling fluid and an optical cement disposed between said free-standing phosphor film and said FOP.
12. The adaptable imaging assembly of claim 10, further comprising one of an optical coupling fluid and an optical cement disposed between said FOP and said electronic device.
13. A method for inspecting a component comprising:
exposing the component and a free-standing phosphor film to radiation;
generating a plurality of corresponding optical signals with said free standing phosphor film;
receiving the optical signals with an electronic device coupled to said free-standing phosphor film; and
generating an imaging signal using said electronic device.
14. The method of claim 13, further comprising performing at least one of:
adjusting a thickness of the free-standing phosphor film;
adding at least one layer of another free-standing phosphor film; and
replacing the free-standing phosphor film.
15. The method of claim 13, wherein said layer and original free-standing phosphor film comprise different phosphors.
16. The method of claim 13, further comprising reducing radiation scatter by coupling an electron intensification layer to said free-standing phosphor film.
17. The method of claim 16, further comprising performing at least one of:
adjusting a thickness of the electron intensification layer;
replacing the electron intensification layer; and
removing the electron intensification layer.
18. A free-standing phosphor film comprising a plurality of x-ray phosphor particles dispersed in a silicone binder.
19. The free-standing phosphor film of claim 18, wherein said x-ray phosphor particles comprise at least one phosphor selected from a group consisting of Gd2O2S:Tb, Gd2O2S:Eu, CaWO4, Y2O2S:Tb, (YSr)TaO4, (YSr)TaO4:Gd, (YSr)TaO4:Nb, BaFCl:Eu, Lu2O3:Eu, CsI:Tl, and combinations thereof.
20. The free-standing phosphor film of claim 19, wherein said x-ray phosphor particles comprise Lu2O3:Eu.
21. The free-standing phosphor film of claim 18, wherein said x-ray phosphor particles form a blended phosphor comprising at least two different phosphors.
22. The free-standing phosphor film of claim 21, wherein said blended phosphor comprises GOS:Tb3+ and Lu2O3:Eu3+.
23. The free-standing phosphor film of claim 18, wherein said phosphor film has a thickness in a range from about 100 microns to about 500 microns.
24. The free-standing phosphor film of claim 18, wherein a volume ratio of said phosphor to said silicone binder is in a range from about 20% to about 30%.
25. A method of forming a free-standing phosphor film, the method comprising the steps of:
(a) preparing a phosphor powder, wherein said phosphor comprises a x-ray phosphor;
(b) preparing a binder solution comprising a silicone binder and a curing agent;
(c) preparing a slurry by mixing said binder solution and said phosphor powder,
(d) forming a phosphor layer on a substrate by applying said slurry on said substrate;
(e) curing said phosphor layer to obtain a phosphor film; and
(f) removing said phosphor film from said substrate to obtain a free-standing phosphor film.
26. The method of claim 25, wherein forming a phosphor layer comprises using a technique selected from the group consisting of spraying, screen printing, ink-jet printing, casting, wire-bar coating, extrusion coating, gravure coating, roll coating, and combinations thereof.
US11/088,039 2005-03-23 2005-03-23 Phosphor film, imaging assembly and inspection method Abandoned US20060214115A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/088,039 US20060214115A1 (en) 2005-03-23 2005-03-23 Phosphor film, imaging assembly and inspection method
DE602006008682T DE602006008682D1 (en) 2005-03-23 2006-03-08 Imaging arrangement and test method
EP06251230A EP1705478B1 (en) 2005-03-23 2006-03-08 Imaging assembly and inspection method
JP2006063558A JP5450920B2 (en) 2005-03-23 2006-03-09 Image forming assembly and inspection method thereof
CN2012104255091A CN102915785A (en) 2005-03-23 2006-03-23 Phosphor film, imaging assembly and inspection method
CNA2006100718898A CN1837954A (en) 2005-03-23 2006-03-23 Phosphor film, imaging assembly and inspection method
US11/846,990 US7547895B2 (en) 2005-03-23 2007-08-29 Imaging assembly and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/088,039 US20060214115A1 (en) 2005-03-23 2005-03-23 Phosphor film, imaging assembly and inspection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/846,990 Division US7547895B2 (en) 2005-03-23 2007-08-29 Imaging assembly and inspection method

Publications (1)

Publication Number Publication Date
US20060214115A1 true US20060214115A1 (en) 2006-09-28

Family

ID=36293675

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/088,039 Abandoned US20060214115A1 (en) 2005-03-23 2005-03-23 Phosphor film, imaging assembly and inspection method
US11/846,990 Expired - Fee Related US7547895B2 (en) 2005-03-23 2007-08-29 Imaging assembly and inspection method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/846,990 Expired - Fee Related US7547895B2 (en) 2005-03-23 2007-08-29 Imaging assembly and inspection method

Country Status (5)

Country Link
US (2) US20060214115A1 (en)
EP (1) EP1705478B1 (en)
JP (1) JP5450920B2 (en)
CN (2) CN102915785A (en)
DE (1) DE602006008682D1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241041A1 (en) * 2007-03-26 2008-10-02 General Electric Company Nano-scale metal oxyhalide and oxysulfide scintillation materials and methods for making same
US7608829B2 (en) 2007-03-26 2009-10-27 General Electric Company Polymeric composite scintillators and method for making same
US7625502B2 (en) 2007-03-26 2009-12-01 General Electric Company Nano-scale metal halide scintillation materials and methods for making same
US20100231892A1 (en) * 2006-08-15 2010-09-16 Koninklijke Philips Electronics N. V. Method of measuring and/or judging the afterglow in ceramic materials and detector
US9238773B2 (en) 2011-09-22 2016-01-19 Lawrence Livermore National Security, Llc Lutetium oxide-based transparent ceramic scintillators

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481069B (en) * 2008-11-27 2015-04-11 Lextar Electronics Corp Optical film
EP2434955A4 (en) * 2008-12-16 2014-01-01 Feldman Daniel Uzbelger Dental fluoroscopic imaging system
CN101957452A (en) * 2009-07-16 2011-01-26 Ge医疗系统环球技术有限公司 X-ray detector and manufacture method thereof
US8399842B2 (en) * 2009-12-07 2013-03-19 Carestream Health, Inc. Digital radiographic detector with bonded phosphor layer
US8399841B2 (en) * 2009-12-07 2013-03-19 Carestream Health, Inc. Digital radiographic detector with bonded phosphor layer
US8693613B2 (en) * 2010-01-14 2014-04-08 General Electric Company Nuclear fuel pellet inspection
JP5504203B2 (en) * 2010-04-30 2014-05-28 富士フイルム株式会社 Radiation conversion panel
US9223034B2 (en) * 2012-01-09 2015-12-29 Carestream Health, Inc. X-ray imaging panel with thermally-sensitive adhesive and methods of making thereof
US9831375B2 (en) 2012-04-25 2017-11-28 Westinghouse Electric Company Llc Solid state radiation detector with enhanced gamma radiation sensitivity
US9042516B2 (en) * 2012-10-09 2015-05-26 The Boeing Company Nondestructive examination of structures having embedded particles
WO2014091539A1 (en) * 2012-12-10 2014-06-19 株式会社エルム Light emitting apparatus, led illumination apparatus, and method for manufacturing phosphor-containing film piece used in light-emitting apparatus
JP6671839B2 (en) * 2014-10-07 2020-03-25 キヤノン株式会社 Radiation imaging apparatus and imaging system
CA3170197A1 (en) * 2015-06-09 2016-12-15 Gen-Probe Incorporated Methods and devices for calibrating and/or monitoring optical measurement devices
WO2018020555A1 (en) * 2016-07-25 2018-02-01 野洲メディカルイメージングテクノロジー株式会社 Scintillator sensor substrate and method for producing scintillator sensor substrate
US11183314B2 (en) * 2018-05-14 2021-11-23 University Of Florida Research Foundation, Inc. Methods and compositions for minimizing x-ray scattering artifacts
US11170903B2 (en) 2019-06-12 2021-11-09 Westinghouse Electric Company Llc Method and system to detect and locate the in-core position of fuel bundles with cladding perforations in candu-style nuclear reactors
KR102257204B1 (en) * 2019-07-26 2021-05-27 한국광기술원 Phosphor film and Method for Manufacturing the same, and Apparatus and Method for Measuring Optical Properties Using the same
JP2021076393A (en) * 2019-11-05 2021-05-20 キヤノン株式会社 Radiation imaging device and radiation imaging system

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706885A (en) * 1971-01-29 1972-12-19 Gen Electric Photocathode-phosphor imaging system for x-ray camera tubes
US4288264A (en) * 1979-11-21 1981-09-08 Emi Limited Detector construction
US4549083A (en) * 1982-06-10 1985-10-22 Matsushita Electric Industrial Co., Ltd. X-Ray imaging device for directly displaying X-ray images
US4778995A (en) * 1987-05-12 1988-10-18 Eastman Kodak Company Stimulable phosphor imaging apparatus
US5083031A (en) * 1986-08-19 1992-01-21 International Sensor Technology, Inc. Radiation dosimeters
US5306367A (en) * 1990-04-27 1994-04-26 Fuji Photo Film Co., Ltd. Process for the preparation of radiation image storage panels
US5482813A (en) * 1993-07-28 1996-01-09 Fuji Photo Film Co., Ltd. Radiological image forming method
US5607774A (en) * 1994-10-07 1997-03-04 Imation Corp. Radiation cured radiographic intensifying screen
US5663005A (en) * 1995-08-08 1997-09-02 Agfa-Gevaert, N.V. Self-supporting or supported phosphor screen or panel
US6027810A (en) * 1994-10-07 2000-02-22 Minnesota Mining & Manufacturing Radiographic intensifying screen with antistat
US20020074929A1 (en) * 1997-11-28 2002-06-20 Nanocrystal Imaging Corporation High resolution tiled microchannel storage phosphor based radiation sensor
US20020139937A1 (en) * 2001-01-24 2002-10-03 Fuji Photo Film Co., Ltd. Radiation image storage panel
US20030173532A1 (en) * 2002-02-20 2003-09-18 Fuji Photo Film Co., Ltd. Radiation image reproducing device and method for reproducing radiation image
US6641858B1 (en) * 1999-06-07 2003-11-04 Fuji Photo Film Co., Ltd. Phosphor layer for radiation image conversion panel
US6744056B1 (en) * 1998-12-28 2004-06-01 Fuji Photo Film Co., Ltd. Radiation image conversion panel and method of manufacturing radiation image conversion panel
US6815092B2 (en) * 2001-12-05 2004-11-09 Agfa-Gevaert Radiation image storage panel
US20060060823A1 (en) * 2004-09-21 2006-03-23 Cooke D W Flexible composite radiation detector
US20060086311A1 (en) * 2003-11-04 2006-04-27 Zagumennyi Alexander I Scintillation substances (variants)
US20060261722A1 (en) * 2005-05-23 2006-11-23 General Electric Company Phosphor admixture, phosphor screen and imaging assembly

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196287A (en) * 1982-05-12 1983-11-15 Kasei Optonix Co Ltd Preparation of radiation image conversion screen
JPH0757649B2 (en) * 1988-10-25 1995-06-21 日本信号株式会社 Pinch roller mechanism for card transport section
US5164224A (en) 1989-04-19 1992-11-17 Fuji Photo Film Co., Ltd. Radiation image storage panel radiographic intensifying screen and processes for the preparation of the same
JP2618596B2 (en) 1991-07-08 1997-06-11 ローン−プーラン・ロレ・ソシエテ・アノニム Novel composition based on taxane derivatives
JP3269742B2 (en) * 1994-10-12 2002-04-02 富士写真フイルム株式会社 Stimulable phosphor sheet
JP3270264B2 (en) * 1994-10-19 2002-04-02 富士写真フイルム株式会社 Radiation image conversion panel and manufacturing method thereof
JP2000028799A (en) * 1998-07-07 2000-01-28 Fuji Photo Film Co Ltd Radiation image conversion panel for method for reading by condensing light on both side and method for reading radiation image
GB9911781D0 (en) 1999-05-20 1999-07-21 Isis Innovations Ltd Process for preparing phosphor particles
EP1065671A1 (en) * 1999-06-22 2001-01-03 Agfa-Gevaert N.V. Method of image formation, dosimetry and personal monitoring
US6476406B1 (en) * 1999-06-22 2002-11-05 Agfa-Gevaert Devices equipped with tribostimulable storage phosphors
EP1065525A3 (en) * 1999-07-02 2006-04-05 Agfa-Gevaert Radiation image read out apparatus
JP3578726B2 (en) * 2001-04-13 2004-10-20 富士写真フイルム株式会社 Radiation image recording / reproducing method and radiation image conversion panel
JP2003021699A (en) * 2001-07-09 2003-01-24 Fuji Photo Film Co Ltd Phosphor sheet, and method for manufacturing the same
US6903505B2 (en) 2001-12-17 2005-06-07 General Electric Company Light-emitting device with organic electroluminescent material and photoluminescent materials
JP2003270742A (en) * 2002-03-19 2003-09-25 Konica Corp Radiograph read method and radiograph reader
EP1542362B1 (en) 2002-06-20 2011-03-30 Ube Industries, Ltd. Thin film piezoelectric oscillator, thin film piezoelectric device, and manufacturing method thereof
US7675039B2 (en) * 2002-09-26 2010-03-09 Kabushiki Kaisha Toshiba Phosphor sheet for radiation detector, radiation detector and apparatus for radiographic equipment
US20040262536A1 (en) 2003-06-30 2004-12-30 Van Den Bergh Rudy Rare earth activated rare earth oxysulfide phosphor for direct X-ray detection
JP2005049337A (en) 2003-06-30 2005-02-24 Agfa Gevaert Nv Rare-earth element activating oxysulfide phosphor for directly detecting x ray

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706885A (en) * 1971-01-29 1972-12-19 Gen Electric Photocathode-phosphor imaging system for x-ray camera tubes
US4288264A (en) * 1979-11-21 1981-09-08 Emi Limited Detector construction
US4549083A (en) * 1982-06-10 1985-10-22 Matsushita Electric Industrial Co., Ltd. X-Ray imaging device for directly displaying X-ray images
US5083031A (en) * 1986-08-19 1992-01-21 International Sensor Technology, Inc. Radiation dosimeters
US4778995A (en) * 1987-05-12 1988-10-18 Eastman Kodak Company Stimulable phosphor imaging apparatus
US5306367A (en) * 1990-04-27 1994-04-26 Fuji Photo Film Co., Ltd. Process for the preparation of radiation image storage panels
US5482813A (en) * 1993-07-28 1996-01-09 Fuji Photo Film Co., Ltd. Radiological image forming method
US6027810A (en) * 1994-10-07 2000-02-22 Minnesota Mining & Manufacturing Radiographic intensifying screen with antistat
US5607774A (en) * 1994-10-07 1997-03-04 Imation Corp. Radiation cured radiographic intensifying screen
US5663005A (en) * 1995-08-08 1997-09-02 Agfa-Gevaert, N.V. Self-supporting or supported phosphor screen or panel
US20020074929A1 (en) * 1997-11-28 2002-06-20 Nanocrystal Imaging Corporation High resolution tiled microchannel storage phosphor based radiation sensor
US6744056B1 (en) * 1998-12-28 2004-06-01 Fuji Photo Film Co., Ltd. Radiation image conversion panel and method of manufacturing radiation image conversion panel
US6641858B1 (en) * 1999-06-07 2003-11-04 Fuji Photo Film Co., Ltd. Phosphor layer for radiation image conversion panel
US20020139937A1 (en) * 2001-01-24 2002-10-03 Fuji Photo Film Co., Ltd. Radiation image storage panel
US6815092B2 (en) * 2001-12-05 2004-11-09 Agfa-Gevaert Radiation image storage panel
US20030173532A1 (en) * 2002-02-20 2003-09-18 Fuji Photo Film Co., Ltd. Radiation image reproducing device and method for reproducing radiation image
US20060086311A1 (en) * 2003-11-04 2006-04-27 Zagumennyi Alexander I Scintillation substances (variants)
US20060060823A1 (en) * 2004-09-21 2006-03-23 Cooke D W Flexible composite radiation detector
US20060261722A1 (en) * 2005-05-23 2006-11-23 General Electric Company Phosphor admixture, phosphor screen and imaging assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100231892A1 (en) * 2006-08-15 2010-09-16 Koninklijke Philips Electronics N. V. Method of measuring and/or judging the afterglow in ceramic materials and detector
US20080241041A1 (en) * 2007-03-26 2008-10-02 General Electric Company Nano-scale metal oxyhalide and oxysulfide scintillation materials and methods for making same
US7608829B2 (en) 2007-03-26 2009-10-27 General Electric Company Polymeric composite scintillators and method for making same
US7625502B2 (en) 2007-03-26 2009-12-01 General Electric Company Nano-scale metal halide scintillation materials and methods for making same
US7708968B2 (en) 2007-03-26 2010-05-04 General Electric Company Nano-scale metal oxide, oxyhalide and oxysulfide scintillation materials and methods for making same
US20110024685A1 (en) * 2007-03-26 2011-02-03 General Electric Company Nano-scale metal oxyhalide and oxysulfide scintillation materials and methods for making same
US9238773B2 (en) 2011-09-22 2016-01-19 Lawrence Livermore National Security, Llc Lutetium oxide-based transparent ceramic scintillators

Also Published As

Publication number Publication date
JP2006267099A (en) 2006-10-05
US7547895B2 (en) 2009-06-16
CN1837954A (en) 2006-09-27
EP1705478A1 (en) 2006-09-27
EP1705478B1 (en) 2009-08-26
DE602006008682D1 (en) 2009-10-08
US20070290135A1 (en) 2007-12-20
CN102915785A (en) 2013-02-06
JP5450920B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US7547895B2 (en) Imaging assembly and inspection method
Jana et al. Perovskite: Scintillators, direct detectors, and X-ray imagers
US7586252B2 (en) Phosphor screen and imaging assembly
US20090032718A1 (en) Color scintillator and image sensor
US20060054862A1 (en) Needle-shaped cylindrical storage phosphor crystals
US8083968B2 (en) Solid scintillator, radiation detector, and X-ray tomographic imaging apparatus
CA2771063A1 (en) Multi-element x-ray detector, its rear-earth luminescent materials, production of multi-element scintillator and detector in general
WO2017091989A1 (en) Packaging methods of semiconductor x-ray detectors
Valais et al. Luminescence efficiency of Gd/sub 2/SiO/sub 5: Ce scintillator under X-ray excitation
CN101669042A (en) Radiography measuring device and radiography measuring method
US7378676B2 (en) Stimulable phosphor screens or panels and manufacturing control thereof
Michail et al. A comparative investigation of Lu2SiO5: Ce and Gd2O2S: Eu powder scintillators for use in x-ray mammography detectors
JP2011232197A (en) Scintillator panel and radiation image detection device
JP4678924B2 (en) Radiation detector and X-ray diagnostic apparatus using the same
KR20220064678A (en) Radiation Detector using Scintillator having High Sensitivity and High Resolution
EP1359204A1 (en) Needle-shaped cylindrical storage phosphor crystals
Michail et al. Light Emission Efficiency of ${\rm Gd} _ {2}{\rm O} _ {2}{\rm S}\!\!\!:\!\!\!{\rm Eu} $(GOS: Eu) Powder Screens Under X-Ray Mammography Conditions
JPH04290985A (en) Neutron detector
David et al. Evaluation of the luminescence efficiency of YAG: Ce powder scintillating screens for use in digital mammography detectors
Cha et al. Fabrication and comparison Gd 2 O 2 S (Tb) and CsI (Tl) films for X-ray imaging detector application
Miller et al. Lu 2 O 3: Eu scintillator screen for x-ray imaging
JP2004339506A (en) Lutetium silicate accumulative phosphor activated with cerium
KR20210013798A (en) Curved Intra-oral Radiation Detector of High resolution
Valais et al. Thin substrate powder scintillator screens for use in digital X-ray medical imaging applications
Miller et al. Lu< sub> 2</sub> O< sub> 3</sub>: Eu scintillator screen for x-ray imaging

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANIVANNAN, VENKATESAN;BUENO, CLIFFORD;DUCLOS, STEVEN JUDE;AND OTHERS;REEL/FRAME:016412/0367;SIGNING DATES FROM 20050321 TO 20050322

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION