CN104204265B - 冷加工性优异的轴承用钢材及其制造方法 - Google Patents

冷加工性优异的轴承用钢材及其制造方法 Download PDF

Info

Publication number
CN104204265B
CN104204265B CN201380017375.2A CN201380017375A CN104204265B CN 104204265 B CN104204265 B CN 104204265B CN 201380017375 A CN201380017375 A CN 201380017375A CN 104204265 B CN104204265 B CN 104204265B
Authority
CN
China
Prior art keywords
interface
cementite
mentioned
cold
balling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380017375.2A
Other languages
English (en)
Other versions
CN104204265A (zh
Inventor
贝塚正树
新堂阳介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of CN104204265A publication Critical patent/CN104204265A/zh
Application granted granted Critical
Publication of CN104204265B publication Critical patent/CN104204265B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种轴承用钢材满足规定的化学成分组成,并满足母材的从与球状化渗碳体的边界面起到20nm位置的区域中(界面区域)中所含的Si(界面Si):0.6%以下(不含0%)、Ni(界面Ni):0.10%以下(不含0%)、Cu(界面Cu):0.10%以下(不含0%)、Mo(界面Mo):0.03%以下(含0%)、Mn(界面Mn):0.10%以下(不含0%)以及Cr(界面Cr):0.9%以下(不含0%),并且,球状化渗碳体的圆形度系数为0.80以上。轴承用钢材在通过冷加工制造轴承零件时,能够发挥良好的冷加工性。

Description

冷加工性优异的轴承用钢材及其制造方法
技术领域
本发明涉及用于制造汽车和各种工业机械等所使用的轴承零件的钢材,特别是在通过冷加工制造轴承零件时,发挥良好的冷加工性的轴承用钢材及其制造方法。
背景技术
历来,作为在汽车和各种工业机械等各种领域中使用的轴承的材料,使用JIS G 4805(1999)规定的SUJ2等高碳铬轴承钢。
本申请申请人进行了各种作为上述轴承用钢材能够得到优异的特性的提案,例如专利文献1,为了使加工成制品形状时的研磨性良好,并且稳定得到良好的滚动疲劳寿命,而特别是限定在钢中分散的Al系氮化合物的大小和密度、以及渗碳体的大小和面积率。另外,专利文献2为了进一步提高滚动疲劳寿命,而限定在条纹状偏析产生的Cr稠化部和Cr非偏析部分别观察到的碳化物面积率之比。另外,专利文献3提出了为了得到即使进行拉丝减面率超过大约50%(进一步为70%)这种强拉丝加工也不会断线的、适于强拉丝加工的轴承钢线材,而控制制造条件,将球状化退火后的渗碳体的平均当量圆直径和标准偏差限定为一定以下来抑制偏差。
另外,轴承零件是通过对线材和棒钢等的形状的轴承用钢材实施切断、锻造、切削等冷加工而加工成最终形状而得到。但是,热轧状态的上述线材和棒材过硬而难以进行上述冷加工,因此,为了提高冷加工性,通过在冷加工前实施球状化退火。为了确保优异的冷加工性,重要的是控制上述球状化退火后的钢材(球状化退火材)的组织,而提出了各种方案。
例如,在专利文献4中提出了通过控制制造工序中的热轧温度和冷却速度,来实现网状先共析渗碳体的降低和珠光体片层间隔的粗大化。但是,在该技术中,由于使球状化渗碳体均匀且微细地分散,因此难以说硬度得到充分的降低。
另外,在专利文献5中公开了通过限定球状化退火处理后,经冷拉丝后的铁素体平均粒径、渗碳体平均粒径,由此提高冷加工性的专利。但是,由于存在C和Cr的含量多,生成共晶碳化物的情况,因此,必须扩散退火,另外,在经球状化退火后,还要以20~40%实施冷拉丝,因此,钢材的成品率恶化,制造成本变高。
但是近年来,从进一步降低成本和削减CO2的观点出发,要求更优异的冷加工性。
现有技术文献
专利文献
专利文献1:日本特开2011-111668号公报
专利文献2:日本特开2010-047832号公报
专利文献3:日本特开2007-224410号公报
专利文献4:日本特开平6-299240号公报
专利文献5:日本特开2001-294972号公报
发明内容
本发明鉴于上述情况而形成,其目的在于实现发挥比现有优异的冷加工性的轴承用钢材及其制造方法。
用于解决技术课题的技术手段
能够解决上述课题的本发明的冷加工性优异的轴承用钢材,其特征在于,满足
C:0.95~1.10%(质量%的意思,关于化学成分以下相同)、
Si:0.10~0.30%、
Mn:0.1%~0.40%、
Cr:1.00~1.50%、
Ni:0.05%以下(不含0%)、
Cu:0.05%以下(不含0%)、以及
Mo:0.03%以下(含0%),
余量由铁以及不可避免的杂质构成,
母材的从与球状化渗碳体的边界面起到20nm位置的区域(界面区域)中所含的Si(界面Si)、Ni(界面Ni)、Cu(界面Cu)、Mo(界面Mo)、Mn(界面Mn)以及Cr(界面Cr)满足下述范围,并且,球状化渗碳体的圆形度系数为0.80以上。
界面Si:0.6%以下(不含0%)
界面Ni:0.10%以下(不含0%)
界面Cu:0.10%以下(不含0%)
界面Mo:0.03%以下(含0%)
界面Mn:0.10%以下(不含0%)
界面Cr:0.9%以下(不含0%)
本发明还包括冷加工性优异的轴承用钢材的制造方法,其特征在于,是制造上述轴承用钢材的方法,其中,
使用上述成分组成的钢材,在热轧后进行球状化退火,热轧后到740℃的平均冷却速度为8℃/s以上,并且,在球状化退火中,从室温到780~800℃的温度区域(均热温度)以100~150℃/hr的平均升温速度升温,在上述均热温度进行1~2小时加热后,从上述均热温度到680℃为止以50~150℃/hr的平均冷却速度进行冷却。
发明效果
根据本发明,能够得到与现有相比发挥优异的冷加工性的轴承用钢材。如果使用该轴承用钢材,则能够良好地进行切断、锻造。切削等冷加工。由此,在制造滚珠、滚柱、滚针、座圈等轴承零件时,能够实现所使用的模具的长寿命化。另外,由于能够通过冷加工制造在热态加工而成的环等,因此,能够削减零件制造工序中的CO2排出量。另外,能够缩短球状化时间,还能够降低成本。
具体实施方式
本发明者们以进一步提高轴承用钢材的冷加工性为目标,为了降低冷加工时产生的变形阻力,在球状化退火材的组织中,特别是着眼于作为最弱部的球状化渗碳体和母相的界面,详细地说,是与母相的球状化渗碳体的截面区域的组织(铁素体组织)进行了锐意研究。
其结果是发现,(a)为了降低冷加工时产生的变形阻力,降低从球状化渗碳体表面起到20nm的位置为止的母相区域(以下,将该母相区域称为“界面区域”)的组织中的固溶元素(Si、Cr、Mn、Ni、Cu、Mo)非常有效。
另外,进一步判明(b)使球状化渗碳体的圆形度系数为0.80以上,确保优异的变形能力也对进一步提高冷加工性有效。
以下,首先对上述(a)进行详细说明。
在现有的球状化退火材的组织中,在通过FE-TEM的EDX对界面区域的元素浓度进行线分析时,判明在该界面区域中,Si、Cu、Ni、Mo比钢材母相的各元素浓度高而稠化,Cr、Mn比钢材母相的各元素浓度低而匮乏。
Si、Ni、Cu、Mo均是平衡分布系数低的元素,在球状化退火中难以融入渗碳体,因此,在渗碳体和母相的界面稠化,其结果认为,界面区域的铁素体组织强化,变形阻力增大。由此,从降低变形阻力的观点出发,降低该界面区域的Si、Ni、Cu、Mo即可。
另一方面,Mn、Cr均是平衡分布系数高的元素,在球状化退火中容易融入渗碳体,因此,在渗碳体和母相的界面中,生成Mn、Cr的匮乏区域。Mn、Cr匮乏时,认为铁素体组织的强度降低,因此,能够降低变形阻力。
如上所述,为了确保优异的冷加工性(为了降低变形阻力),积极地降低在界面区域容易稠化的Si、Ni、Cu、Mo,并且,进一步降低在界面区域容易匮乏的Mn、Cr即可,从这种观点出发,对界面区域中的上述各元素的容许量进行了研究(还有,在以下,将界面区域中的Si、Ni、Cu、Mo、Mn、Cr分别称为界面Si、界面Ni、界面Cu、界面Mo、界面Mn、界面Cr)。
其结果是,发现为了充分降低变形阻力来确保优异的冷加工性,如下进行抑制即可。
界面Si:0.6%以下(不含0%)、
界面Ni:0.10%以下(不含0%)、
界面Cu:0.10%以下(不含0%)、
界面Mo:0.03%以下(含0%)、
界面Mn:0.10%以下(不含0%)、以及
界面Cr:0.9%以下(不含0%)
如上所述,为了降低变形阻力,优选降低存在于界面区域的任一元素,界面Si优选为0.5%以下,更优选为0.4%以下。界面Ni和界面Cu分别优选为0.08%以下,更分别优选为0.05%以下。另外,界面Mo优选为0.02%以下,更优选为0.01%以下。另外,界面Mn优选为0.08%以下,更优选为0.05%以下,界面Cr优选为0.85%以下,更优选为0.70%以下。
还有,虽然从确保优异的冷加工性的观点出发,上述界面区域的任一元素没有特别限定含量下限,但考虑到钢中成分和制造条件等,界面Si的下限为大约0.30%,界面Ni的下限为大约0.01%,界面Cu的下限为大约0.01%,界面Mo的下限为0%,界面Mn的下限为大约0.01%,界面Cr的下限为大约0.60%。
为了将界面Si、界面Ni、界面Cu以及界面Mo限定在上述范围内,在钢材中的成分组成(母相的平均成分组成)中,需要使Si、Ni、Cu、Mo为各自的规定上限值以下。另外,为了使界面Mn和界面Cr在上述范围,在钢材中的成分组成中,需要使Mn、Cr在各自的规定上限值以下,并且,需要如后所述地控制球状化退火的条件。
在上述界面区域中,上述Si、Ni、Cu、Mo、Cr、Mn以外为铁以及不可避免的杂质。
接着,对上述(b)(使球状化渗碳体的圆形度系数为0.80以上,确保优异的变形能力)进行说明。
对通过下述式(1)计算得到的球状化渗碳体的圆形度系数和冷加工性的关系进行了研究,在对球状化渗碳体的圆形度系数为各种的钢材进行后述实施例所示的冷加工试验(压缩试验)时发现,上述球状化渗碳体的圆形度系数为0.80以上时,在上述试验中在压缩后未发生裂纹,能够确保良好的冷加工性。
另一方面上述圆形度系数低于0.80时,在冷锻时在球状化渗碳体容易应力集中,在界面发生龟裂、容易产生裂纹。
上述球状化渗碳体的圆形度系数优选为0.83以上,更优选为0.86以上。还有,从生产性的观点出发,上述圆形度系数的上限为0.95左右。
球状化渗碳体的圆形度系数=4π×(球状化渗碳体的面积)/(球状化渗碳体的周围长度)2…(1)
为了使球状化渗碳体的圆形度系数为0.80以上,如下即可。即,在本发明中,如后面详细记述,为了抑制球状化渗碳体中的Cr、Mn在界面扩散,而使球状化退火时间比通常短。如此球状化退火时间短时,珠光体的截断以及球状化未充分进行,圆形度系数低于0.80而容易产生裂纹。由此,在本发明中,控制球状化退火前的轧制条件。详细地说,通过使热轧后的平均冷却速度加速到8℃/s以上而使先共析渗碳体和珠光体微细化,由此,即使球状化退火时间为短时间,渗碳体也容易球状化,能够使圆形度系数为0.80以上。
以下,对用于得到上述组织的成分组成和制造条件进行详细说明。
首先,为了得到上述组织并且,确保作为轴承用钢材必要的特性,需要使成分组成在下述范围内。
〔C:0.95~1.10%〕
C是增大淬火硬度,使适当的渗碳体分散,用于维持室温以及高温中的零件强度而赋予耐磨损性所必须的元素。因此,C需要含有0.95%以上,优选为0.98%以上,更优选为1.00%以上。但是,C量过多时,铁素体被强化变形阻力容易增大,因此,C量为1.10%以下。优选为1.05%以下。
〔Si:0.10~0.30%〕
Si是提高回火软化阻抗性,确保零件的滚动疲劳特性所必须的元素,但过量时,上述界面Si量也过量,由于基材的固溶强化,冷加工时的变形阻力增加。由此,Si量为0.30%以下。优选为0.25%以下,更优选为0.20%以下。但是,Si量过少时,不能充分确保上述的滚动疲劳特性,因此,Si量为0.10%以上。优选为0.13%以上,更优选为0.15%以上。
〔Mn:0.1%~0.40%〕
Mn是提高母材的淬火性,确保滚动疲劳特性所必须的元素,但过量时,上述界面Mn量也过量,由于基材的固溶强化,冷加工时的变形阻力增加。由此,Mn量需要为0.40%以下。优选为0.35%以下,更优选为0.30%以下。但是,Mn量过少时,不能确保淬火性,难以确保高的零件强度和优异的滚动疲劳特性,因此,Mn量为0.10%以上。优选为0.15%以上,更优选为0.20%以上。
〔Cr:1.00~1.50%〕
Cr是与C结合形成微细且圆形度系数为0.80以上的渗碳体,有助于冷加工性以及耐磨损性,并且,提高淬火性所必须的元素。为了发挥这种效果,Cr含量需要为1.00%以上。优选为1.10%以上,更优选为1.15%以上。但是,Cr量超过1.50%时,上述界面Cr量也过量,由于基材的固溶强化,冷加工时的变形阻力增加。由此,Cr量为1.50%以下。优选为1.45%以下,更优选为1.40%以下。
〔Ni:0.05%以下(不含0%)〕
Ni是如上所述平衡分布系数低,在球状化渗碳体和母相的界面稠化,提高上述界面Ni量,使变形阻力增加的元素。由此,优选尽可能地降低,在本发明中,Ni量为0.05%以下。优选为0.04%以下,更优选为0.03%以下。还有,极端降低会导致炼钢成本的增加,因此,Ni量下限为0.01%左右。
〔Cu:0.05%以下(不含0%)〕
Cu也是如上所述平衡分布系数低,在球状化渗碳体和母相的界面稠化,提高上述界面Cu量,使变形阻力增加的元素。由此,优选尽可能地降低,在本发明中,Cu量为0.05%以下。优选为0.04%以下,更优选为0.03%以下。还有,极端降低会导致炼钢成本的增加,因此,Cu量下限为0.01%左右。
〔Mo:0.03%以下(含0%)〕
Mo也是如上所述平衡分布系数低,在球状化渗碳体和母相的界面稠化,提高上述界面Mo量,使变形阻力增加的元素。由此,优选尽可能地降低,在本发明中,Mo量为0.03%以下。优选为0.02%以下,更优选为0.01%以下。还有,Mo量下限没有特别限定,也包括0%的情况。
本发明钢材的成分如上所述,余量由铁以及不可避免的杂质构成。作为不可避免的杂质的P在晶界偏析,会使滚动疲劳特性以及冲击特性下降,因此,希望极力降低,优选为0.05%以下。更优选为0.04%以下,进一步优选为0.03%以下为佳。另外,作为不可避免的杂质的S,作为MnS析出,会使滚动疲劳特性下降,因此,希望极力降低,优选将S含量抑制在0.05%以下。更优选为0.04%以下,进一步优选为0.03%以下。
[制造条件]
为了得到具有上述规定的界面区域的轴承用钢材,需要以下述条件进行制造。
在现有的球状化退火中,将上述热轧材或热锻材在780~800℃的温度范围加热2~8小时后,以10~15℃/hr的平均冷却速度冷却到680℃进行大气放冷,由此,使球状化渗碳体分散。其结果是,在冷却中析出的球状化渗碳体中的Cr、Mn的一部分在母相中扩散,界面Cr和界面Mn超过规定量。
对此,在本发明中,使用上述成分组成的钢材,在热轧后进行球状化退火时,使热轧后到740℃为止的平均冷却速度为8℃/s以上,并且,在球状化退火中,从室温到780~800℃的温度区域(均热温度)为止以100~150℃/hr的平均升温速度升温,在上述均热温度加热1~2小时后,从上述均热温度到680℃为止以50~150℃/hr的平均冷却速度进行冷却(在其后进行大气放冷即可),由此,能够实现渗碳体的球状化,并且,不会使球状化渗碳体中的Cr、Mn在母相中扩散,能够将界面区域的Cr和Mn的浓度抑制在规定范围内。
以下,对各制造条件的限定理由进行详细说明。
[热轧后到740℃为止的平均冷却速度:8℃/s以上]
在热轧后到740℃为止的平均冷却速度低于8℃/s时,由于旧γ晶粒粗大化,因此,不能使先共析渗碳体和珠光体微细化,在后述条件进行球状化退火时,不能实现珠光体的截断以及先共析渗碳体的球状化,不能使球状化渗碳体的圆形度系数为0.80以上。由此,热轧后到740℃为止的平均冷却速度为8℃/s以上。优选为10℃/s以上,更优选为20℃/s以上。还有,由于因过冷组织(马氏体)而发生断线,因此,从制造性的观点出发,上述平均冷却速度的上限为100℃/s左右。
上述以外的到热轧的制造条件没有特别限定,能够采用通常的条件。例如可以例举在加热炉中加热到1100~1300℃后,在900~1200℃实施开坯轧制,其后,在830~1100℃进行热轧。
接着,对热轧后的球状化退火工序进行说明。
[从室温到780~800℃的温度区域(均热温度)的平均升温速度:100~150℃/hr]
从室温到780~800℃的温度区域(均热温度)的平均升温速度低于100℃/hr时,在珠光体截断中Cr、Mn会在界面扩散,不能将界面Cr和界面Mn抑制在规定范围内。由此,上述平均升温速度为100℃/hr以上。优选为110℃/hr以上,更优选为120℃/hr以上。另一方面,上述平均升温速度超过150℃/hr时,不能将珠光体充分截断,渗碳体的圆形度系数低于0.80。由此,上述平均升温速度为150℃/hr以下。优选为140℃/hr以下,更优选为130℃/hr以下。
[在780~800℃的温度域(均热温度)下加热1~2小时]
均热温度低于780℃时,珠光体的截断不充分,不能得到良好的渗碳体分布,渗碳体的圆形度系数低于0.80。由此,均热温度为780℃以上。优选为790℃以上。另一方面,均热温度超过800℃时,球状化渗碳体中的Cr、Mn在界面扩散,不能将界面Cr和界面Mn抑制在规定范围内。由此,均热温度抑制在800℃以下。优选为795℃以下。
上述均热温度的加热时间(均热时间)低于11r时,珠光体的截断不充分,不能得到良好的渗碳体分布,渗碳体的圆形度系数低于0.80。均热时间优选为1.2hr以上,更优选为1.5hr以上。但是,均热时间超过2hr时,球状化渗碳体中的Cr、Mn在母相侧扩散,不能将界面Cr和界面Mn抑制在规定以下。由此,在本发明中,均热时间为2hr以下。优选为1.8hr以下。
[从上述均热温度到680℃为止的平均冷却速度:50~150℃/hr]
从上述均热温度到680℃为止的平均冷却速度低于50℃/hr时,析出的球状化渗碳体中的Cr、Mn在界面扩散,不能将界面Cr和界面Mn抑制在规定范围内。由此,上述平均冷却速度为50℃/hr以上。优选为60℃/hr以上,更优选为70℃/hr以上。另一方面,上述平均冷却速度超过150℃/hr时,析出的渗碳体的球状化不充分,渗碳体的粗大化进行,大小成为0.6μm以上,渗碳体的圆形度系数低于0.80。由此,上述平均冷却速度为150℃/hr以下。优选为140℃/hr以下,更优选为130℃/hr以下。
上述平均冷却速度的冷却在从上述均热温度到至少680℃为止进行。在680℃以下时,各元素的扩散变得极慢,因此,680℃以下的冷却速度基本不会影响界面区域浓度。为此,680℃以下的冷却速度可以根据生产线适当选择。如此,冷却到上述680℃后,到室温为止的冷却速度没有特别限定,但从提高生产性的观点出发,优选放冷(大气放冷)。
根据上述方法,与由于现有的球状化退火工序相比均热时间短,所以能够实现成本降低和提高生产性。
本发明的钢材在进行上述的球状化退火后,被加工成规定的零件形状,接着,进行淬火、回火制造成轴承零件等,但对于钢材阶段的形状也包括能够适于这种制造的线状、棒状的任一种,其大小也可以根据最终制品而适当决定。
实施例
以下,举实施例对本发明进行具体的说明,但本发明不受限于下述实施例,在适于前、后宗旨的范围内当然可以适当变更实施,这均包含在本发明的技术范围内容。
将表1所示的化学成分组成的铸片在加热炉中加热到1100~1300℃后,在900~1200℃实施开坯轧制。其后,在830~1100℃进行热轧,热轧结束后到740℃为止的冷却以表2所示的平均冷却速度实施而得到大小的钢材。接着,将该钢材以表2所示的各平均升温速度从室温加热到表2所示的各均热温度,在該均热温度保持表2所示的均热时间。其后,以表2所示的平均冷却速度冷却到680℃后进行大气放冷。
[表1]
[表2]
使用如上述得到的钢材,如下进行界面区域的各元素浓度的测量、渗碳体的圆形度系数的测量、冷加工性(冷锻性)的评价。
[界面区域的各元素浓度的测量]
将上述球状化退火(热处理)后的钢材,以能够观察D(直径)/4的位置的方式在纵截面(轧制方向与平行的截面)进行切断,对该截面进行研磨后,通过薄膜法制作试料,通过FE-TEM(场致发射型透射式电子显微镜)进行球状化渗碳体的观察。此时,通过TEM的EDX(能量色散型X射线检测仪)以通过球状化渗碳体的大致圆中心的方式实施球状化渗碳体的线分析(测量条件如下所述),测量Fe、Si、Mn、Cr、Cu、Ni、Mo各元素的浓度。对任意选择的5个球状化渗碳体进行该分析,求得母材的、从与球状化渗碳体的边界面起到20nm位置的区域的各元素的平均值,分别作为界面Fe、界面Si、界面Mn、界面Cr、界面Cu、界面Ni、界面Mo的量。
(测量条件)
倍率:500000倍
测量节距:2nm
分析长度:100nm
[渗碳体的圆形度系数的测量]
将上述热处理后的试验片以能够观察D(直径)/4的位置的方式在纵截面(轧制方向与平行的截面)切断,通过扫描电子显微镜以2000倍观察D/4的位置。1个视野的大小为2688μm2,合计观察4个视野(2688μm2×4=10752μm2)。而且,使用粒子分析软件[粒子分析III],对渗碳体粒径(当量圆直径)为0.13μm以上的粒子通过下述式(1)算出圆形度系数。
圆形度系数=4π×面积/(周围长度)2
[冷加工性(冷锻性)的评价]
从上述球状化退火后的钢材的轴中心部,切出直径φ14mm、长度21mm的试验片,使用冲压试验机,以压缩率(加工率)60%进行冷加工后,使用光学显微镜以20倍观察试验片的侧面,确认有无裂纹来评价变形能力。另外,测量以压缩率40%加工时的变形阻力。
还有,上述压缩率由下述式(2)求得。
压缩率(%)=(1-L/L0)×100...(2)
(式(2)中,L0:加工前的试验片长度,L:加工后的试验片长度)
而且,将以压缩率60%加工后没有裂纹且相对于由下述式(3)求得的基材钢(现有钢,No.1)的变形阻力的降低率为5%以上的评价为合格(冷加工性优异)。
变形阻力的降低率(%)=100×[No.1的变形阻力(934MPa)-各试料的变形阻力]/No.1的变形阻力(934MPa)...(3)
这些结果在表3以及表4中显示。
[表3]
[表4]
根据表1~4可以进行如下考察。No.2~5、14~16、25~39是满足本发明规定的要件的例,能够得到发挥良好的冷加工性的轴承用钢材。对此,上述No.以外的试样由于不满足本发明规定的要件中的任一个,所以不能得到优异的冷加工性。详细情况如下所述。
即No.1是基材钢(现有钢),热轧后的冷却速度慢(1℃/s),并且,球状化退火时的平均升温速度慢(80℃/s),另外,均热时间长(6hr),;另外,均热后到680℃的冷却速度慢(15℃/hr),所以未将界面Cr和界面Mn抑制在规定范围内,变形阻力高(934MPa)。
还有,No.1中,虽然热轧后的冷却速度慢(1℃/s),但球状化渗碳体的圆形度系数为0.80以上的理由,是由于均热时间长(6hr)。
No.6和No.40由于到均热温度为止的升温时间过慢,所以均未能将界面Cr和界面Mn抑制在规定范围内,变形阻力增加(No.6:921MPa、No.40:908MPa)。
No.7和No.41由于均热温度过高(No.7:820℃、No.41:830℃),所以均未能将界面Cr和界面Mn抑制在规定范围内,变形阻力增加(No.7:923MPa、No.41:910MPa)。
No.8和No.42由于均热时间过长(No.8:5hr、No.42:7hr),所以均未将界面Cr和界面Mn抑制在规定范围内,变形阻力变高(No.8:938MPa、No.42:925MPa)。
No.9和No.43由于均热后到680℃的冷却速度过慢(No.9:30℃/hr、No.43:30℃/hr),所以均未将界面Cr和界面Mn抑制在规定范围内,变形阻力变高(No.9:945MPa、No.43:932MPa)。
No.10和No.44由于热轧后的冷却速度过慢(No.10:1℃/s、No.44:5℃/s),所以渗碳体的圆形度系数低于0.80,其结果是,冷加工时发生裂纹。
No.11和No.45由于球状化退火时的平均升温速度过快(No.11:170℃/hr、No.45:180℃/hr),所以珠光体为充分截断,渗碳体的圆形度系数低于0.80,其结果是,冷加工时发生裂纹。
No.12和No.46由于均热时间过短(No.12:0.5hr、No.46:0.5hr),所以珠光体的截断不充分,渗碳体的圆形度系数低于0.80,其结果是,冷加工时发生裂纹。
No.13和No.47由于均热温度过低(No.13:760℃、No.47:760℃),所以珠光体的截断不充分,渗碳体的圆形度系数低于0.80,其结果是,冷加工时发生裂纹。
No.48由于均热后到680℃的冷却速度过快(200℃/hr),所以析出的渗碳体的球状化不充分,渗碳体的圆形度系数低于0.80,其结果是,冷加工时发生裂纹。
No.17由于钢材(钢材编号5)的Si量过量(0.38mass%),所以界面Si量在规定范围外,变形阻力增加(945MPa)。
No.18由于钢材(钢材编号6)的Mn量过量(0.44mass%),所以界面Mn量在规定范围外,变形阻力增加(897MPa)。
No.19由于钢材(钢材编号7)的Cr量不足(0.97mass%),所以渗碳体的圆形度系数低于0.80,其结果是,冷加工时发生裂纹。
No.20由于钢材(钢材编号8)的C量过量(1.14mass%),所以变形阻力增加(945MPa)。No.21由于钢材(钢材编号9)的Cr量过量(1.58mass%),所以界面Cr量在规定范围外,变形阻力增加(912MPa)。
No.22由于钢材(钢材编号10)的Cu量过量(0.07mass%),所以界面Cu量在规定范围外,变形阻力增加(942MPa)。另外,No.23由于钢材(钢材编号11)的Ni量过量(0.08mass%),所以界面Ni量在规定范围外,变形阻力增加(923MPa)。
No.24由于钢材(钢材编号12)的Mo量过量(0.06mass%),所以界面Mo量在规定范围外,变形阻力增加(911MPa)。

Claims (2)

1.一种冷加工性优异的轴承用钢材,其特征在于,以质量%计满足
C:0.95~1.10%、
Si:0.10~0.30%、
Mn:0.1%~0.40%、
Cr:1.00~1.50%、
Ni:0.05%以下且不含0%、
Cu:0.05%以下且不含0%、以及
Mo:0.03%以下且含0%,
余量由铁以及不可避免的杂质构成,
母材的从与球状化渗碳体的边界面起到20nm位置的区域的界面区域中所含的Si即界面Si、Ni即界面Ni、Cu即界面Cu、Mo即界面Mo、Mn即界面Mn以及Cr即界面Cr满足下述范围,并且,球状化渗碳体的圆形度系数为0.80以上,
其中,球状化渗碳体的圆形度系数=4π×(球状化渗碳体的面积)/(球状化渗碳体的周围长度)2
界面Si:0.6%以下且不含0%
界面Ni:0.10%以下且不含0%
界面Cu:0.10%以下且不含0%
界面Mo:0.03%以下且含0%
界面Mn:0.10%以下且不含0%
界面Cr:0.9%以下且不含0%。
2.一种冷加工性优异的轴承用钢材的制造方法,其特征在于,是制造权利要求1所述的轴承用钢材的方法,其中,
使用权利要求1所述的成分组成的钢材,在热轧后进行球状化退火,热轧后到740℃的平均冷却速度为8℃/s以上,并且,在球状化退火中,从室温到780~800℃的温度区域的均热温度以100~150℃/hr的平均升温速度升温,在上述均热温度进行1~2小时加热后,从上述均热温度到680℃为止以50~150℃/hr的平均冷却速度进行冷却。
CN201380017375.2A 2012-03-30 2013-03-05 冷加工性优异的轴承用钢材及其制造方法 Expired - Fee Related CN104204265B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-083066 2012-03-30
JP2012083066A JP5820325B2 (ja) 2012-03-30 2012-03-30 冷間加工性に優れた軸受用鋼材およびその製造方法
PCT/JP2013/056008 WO2013146123A1 (ja) 2012-03-30 2013-03-05 冷間加工性に優れた軸受用鋼材およびその製造方法

Publications (2)

Publication Number Publication Date
CN104204265A CN104204265A (zh) 2014-12-10
CN104204265B true CN104204265B (zh) 2015-10-14

Family

ID=49259395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380017375.2A Expired - Fee Related CN104204265B (zh) 2012-03-30 2013-03-05 冷加工性优异的轴承用钢材及其制造方法

Country Status (8)

Country Link
US (1) US9090959B2 (zh)
EP (1) EP2832892B1 (zh)
JP (1) JP5820325B2 (zh)
KR (1) KR101527337B1 (zh)
CN (1) CN104204265B (zh)
ES (1) ES2628102T3 (zh)
TW (1) TWI480387B (zh)
WO (1) WO2013146123A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435397A (zh) * 2016-11-09 2017-02-22 安徽千禧精密轴承制造有限公司 一种渗碳轴承滚子加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294972A (ja) * 2000-04-18 2001-10-26 Sumitomo Metal Ind Ltd 軸受用鋼材
CN1745188A (zh) * 2003-01-30 2006-03-08 住友金属工业株式会社 轴承零件用钢管、其制造方法及切削方法
CN101397628A (zh) * 2007-09-25 2009-04-01 宝山钢铁股份有限公司 连铸轴承钢圆钢及其制造方法
WO2012035884A1 (ja) * 2010-09-15 2012-03-22 株式会社神戸製鋼所 軸受用鋼

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023988A (en) * 1976-02-02 1977-05-17 Ford Motor Company Heat treatment for ball bearing steel to improve resistance to rolling contact fatigue
US4581079A (en) * 1985-03-27 1986-04-08 Amax Inc. Bearing steel
JPS6299240A (ja) 1985-10-24 1987-05-08 Hino Motors Ltd 自動車の盗難警報装置
JP2707170B2 (ja) 1991-08-23 1998-01-28 月島機械株式会社 水平式真空濾過機
JP3291068B2 (ja) 1993-04-12 2002-06-10 新日本製鐵株式会社 球状化焼鈍特性の優れた軸受用鋼材の製造方法
JP3556968B2 (ja) 1994-06-16 2004-08-25 新日本製鐵株式会社 高炭素系高寿命軸受鋼
JP2000001723A (ja) * 1998-06-16 2000-01-07 Sanyo Special Steel Co Ltd 冷間ローリング成形用ベアリング素材とその成形部材
JP3405277B2 (ja) * 1999-08-03 2003-05-12 住友金属工業株式会社 被削性に優れた軸受要素部品用の鋼線材、棒鋼及び鋼管
JP2001234286A (ja) * 2000-02-24 2001-08-28 Nippon Steel Corp 伸線加工性に優れた細径高炭素低合金鋼熱間圧延線材とその製造方法
JP4646866B2 (ja) 2006-01-24 2011-03-09 株式会社神戸製鋼所 伸線性に優れた軸受鋼線材およびその製造方法
JP5124847B2 (ja) * 2007-10-22 2013-01-23 新日鐵住金株式会社 高炭素クロム軸受鋼鋼材の圧延方法
JP5202040B2 (ja) * 2008-03-05 2013-06-05 株式会社神戸製鋼所 耐摩耗性に優れた軸受用鋼材
JP5416459B2 (ja) 2008-07-24 2014-02-12 株式会社神戸製鋼所 転動疲労寿命に優れた軸受用鋼材
JP5400590B2 (ja) 2009-11-30 2014-01-29 株式会社神戸製鋼所 転動疲労寿命の安定性に優れた鋼材
WO2012073458A1 (ja) * 2010-11-29 2012-06-07 Jfeスチール株式会社 球状化焼鈍後の加工性に優れ、かつ焼入れ・焼戻し後の耐水素疲労特性に優れる軸受鋼
WO2012160677A1 (ja) * 2011-05-25 2012-11-29 株式会社神戸製鋼所 冷間加工性に優れた軸受用鋼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294972A (ja) * 2000-04-18 2001-10-26 Sumitomo Metal Ind Ltd 軸受用鋼材
CN1745188A (zh) * 2003-01-30 2006-03-08 住友金属工业株式会社 轴承零件用钢管、其制造方法及切削方法
CN101397628A (zh) * 2007-09-25 2009-04-01 宝山钢铁股份有限公司 连铸轴承钢圆钢及其制造方法
WO2012035884A1 (ja) * 2010-09-15 2012-03-22 株式会社神戸製鋼所 軸受用鋼
JP2012062515A (ja) * 2010-09-15 2012-03-29 Kobe Steel Ltd 冷間加工性、耐摩耗性、及び転動疲労特性に優れた軸受用鋼

Also Published As

Publication number Publication date
ES2628102T3 (es) 2017-08-01
US20150129094A1 (en) 2015-05-14
EP2832892A4 (en) 2015-09-02
WO2013146123A1 (ja) 2013-10-03
KR101527337B1 (ko) 2015-06-09
KR20140121898A (ko) 2014-10-16
JP2013213240A (ja) 2013-10-17
CN104204265A (zh) 2014-12-10
EP2832892B1 (en) 2017-05-31
TW201404895A (zh) 2014-02-01
EP2832892A1 (en) 2015-02-04
TWI480387B (zh) 2015-04-11
JP5820325B2 (ja) 2015-11-24
US9090959B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
CN104011249B (zh) 冷加工用机械结构用钢及其制造方法
CN103097565B (zh) 轴承用钢
CN103124801B (zh) 表面硬化钢及其制造方法
CN104220625B (zh) 滚动疲劳特性优异的轴承用钢材及其制造方法
CN104321456B (zh) 不锈钢制制动盘及其制造方法
CN105899703B (zh) 轴承部件、轴承部件用钢材及它们的制造方法
JP5742801B2 (ja) 熱間圧延棒鋼または線材
KR101367350B1 (ko) 냉간 가공성, 절삭성, 침탄 담금질 후의 피로 특성이 우수한 표면 경화 강 및 그 제조 방법
JP5927868B2 (ja) 冷間鍛造性に優れた浸炭用鋼およびその製造方法
CN103906853A (zh) 非调质机械部件用线材、非调质机械部件用钢线和非调质机械部件及它们的制造方法
CN105793456A (zh) 螺栓用钢丝和螺栓及其制造方法
JP5407178B2 (ja) 冷間加工性に優れた冷間鍛造用鋼線材およびその製造方法
KR101862962B1 (ko) 열간 공구 재료 및 열간 공구의 제조 방법
US20130037182A1 (en) Mechanical part made of steel having high properties and process for manufacturing same
CN108138285A (zh) 拉丝加工用钢丝材
CN106029925A (zh) 高频淬火用钢材
CN108474073A (zh) 非调质机械部件用钢丝及非调质机械部件
KR20130108403A (ko) 열간 단조용 압연 봉강 또는 선재
JP2002235151A (ja) 高強度ばね用熱処理鋼線
CN106460123A (zh) 冷加工用机械结构用钢及其制造方法
WO2018008355A1 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP5391711B2 (ja) 高炭素パーライト系レールの熱処理方法
JP5799917B2 (ja) 熱間圧延棒鋼または線材
CN108368583A (zh) 非调质机械部件用钢丝及非调质机械部件
JP4528363B1 (ja) 冷間加工性、切削性、浸炭焼入れ後の疲労特性に優れた肌焼鋼及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151014

Termination date: 20210305