CN104196544A - 翼墙式隧道洞门整体抗滑移设计方法 - Google Patents

翼墙式隧道洞门整体抗滑移设计方法 Download PDF

Info

Publication number
CN104196544A
CN104196544A CN201410100376.XA CN201410100376A CN104196544A CN 104196544 A CN104196544 A CN 104196544A CN 201410100376 A CN201410100376 A CN 201410100376A CN 104196544 A CN104196544 A CN 104196544A
Authority
CN
China
Prior art keywords
wall
headwall
aileron
portal
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410100376.XA
Other languages
English (en)
Other versions
CN104196544B (zh
Inventor
喻渝
赵万强
赵东平
匡亮
郑长青
周佳媚
郑宗溪
倪光斌
全晓娟
贾晓云
谭永杰
曹阈
何昌国
路军富
潘鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Eryuan Engineering Group Co Ltd CREEC
Original Assignee
China Railway Eryuan Engineering Group Co Ltd CREEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Eryuan Engineering Group Co Ltd CREEC filed Critical China Railway Eryuan Engineering Group Co Ltd CREEC
Priority to CN201410100376.XA priority Critical patent/CN104196544B/zh
Publication of CN104196544A publication Critical patent/CN104196544A/zh
Application granted granted Critical
Publication of CN104196544B publication Critical patent/CN104196544B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

翼墙式隧道洞门整体抗滑移的设计方法,以提高隧道洞门稳定性安全系数,使设计准确可靠,并有效节省洞门混凝土圬工用量。包括以下步骤:(1)确定基本计算数据,包括地层特征参数、建筑材料物理参数和稳定性系数K0;(2)确定洞门各部尺寸;(3)对整个端墙、翼墙墙体和与其接触的墙背土体划分条块,划分出若干墙体条块、墙背土体条块;(4)端墙土压力分布计算;(5)滑移合力计算;(6)抗滑移合力计算;(7)抗滑移验算。

Description

翼墙式隧道洞门整体抗滑移设计方法
技术领域
本发明涉及一种隧道洞门抗滑移整体设计方法,特别适用于铁路、公路、水工隧道翼墙式洞门的抗滑移设计,主要采用洞门翼墙与周边介质整体共同作用的方法进行抗倾覆设计。 
背景技术
隧道洞门是隧道洞口用圬工砌筑并加以建筑装饰的支挡结构物,它联系着隧道衬砌和路堑,是整个隧道结构的主要组成部分,也是隧道进出口的标志。翼墙式隧道洞门是经常采用的一种隧道洞门形式,广泛应用于铁路、公路、水工隧洞及地下结构物的洞口支挡,以往的翼墙式隧道洞门抗滑移设计中,国内外通常是将隧道洞门翼墙视作挡土墙结构,近似采用分条法进行设计,具体做法是在翼墙处取一定宽度的计算条带(0.5m)作为研究对象,将对翼墙的分析转化为对一定宽度的挡土墙的分析,再对挡土墙的滑移稳定性进行验算。这种常规设计方法起源于我国二十世纪五十年代编制的铁路隧道洞门标准设计,不论在理论还是在工程应用中都存在极大的弊端,具有明显的不合理和不经济性。由于洞门紧连衬砌,又嵌入路堑边坡内,其受力条件远较一般挡土墙要好,而原设计方法取一窄条单独计算来设计翼墙厚度,没有考虑端墙与洞口衬砌的共同作用及各种有利因素,也没将翼墙作为一个整体结构考虑,理论上明显是不合理的。同时通过几十年的工程实践表明,按原设计方法修建的洞门翼墙极少发生倾覆破坏,说明以前设计的洞门实际安全度偏大,存在较大的安全富余,造成了圬工等建筑材料的浪费,社会经济效益较差。随着社会经济的发展和技术的进步,高速、大跨铁路隧道的应用越来越多,建筑材料性能也有了很大的改进和提高,隧道洞径、洞门厚度和整体性能都有较大改变,从经济和合理的角度考虑,原来的洞门抗滑移设计方法已经不适应当前的技术和社会经济发展,需要从设计方法上作出发明和创新。 
发明内容
本发明的目的是提供一种翼墙式隧道洞门整体抗滑移的设计方法,以提高隧道洞门稳定性安全系数,使设计准确可靠,并有效节省洞门混凝土圬工用量。 
本发明解决其技术问题所采用的技术方案如下: 
本发明的翼墙式隧道洞门整体抗滑移设计方法,包括以下步骤: 
(1)确定基本计算数据,包括地层特征参数、建筑材料物理参数和稳定性系数K0; 
(2)确定洞门各部尺寸; 
(3)对整个端墙、翼墙墙体和与其接触的墙背土体划分条块,划分出若干墙体条块、墙背土体条块; 
(4)端墙土压力分布计算,利用乌氏理论确定墙背土压力随端墙高度的分布情况; 
(5)滑移合力计算,计算每个端墙背后土体条块作用在端墙上的土压力,并进行求和得到滑移合力E; 
(6)抗滑移合力计算,计算端墙、翼墙墙体与墙底土体,端墙墙身与衬砌产生的静摩擦力,将两部分静摩擦力求和得到抗滑移合力P抗滑; 
(7)抗滑移验算,保证隧道洞门不致滑移应满足下式 
本发明的有益效果是,该设计方法将洞门端墙、翼墙作为一个整体结构考虑,并考虑了端墙与衬砌的共同作用,稳定性安全系数大于原设计方法,相比原设计方法,整体抗滑移设计方法理论上更加合理,结果准确可靠,可节省端墙混凝土圬工用量,具有较好的经济效益,与工程技术的进步相协调,同时设计方法使用方便,可提高工作效率。 
本发明可广泛适用于铁路、公路、水工隧洞端墙式洞门的抗滑移稳定性设计,具有广阔的应用前景。 
附图说明
下面结合附图和具体实施方式对本发明作进一步说明。 
图1是翼墙式隧道门正面构造示意图。 
图2是翼墙式隧道门纵断面构造示意图。 
图3是隧道洞门主动土压力分布示意图。 
图4是图1划分计算区域示意图。 
图5是翼墙部分的正示图 
图6是翼墙部分的侧视图 
图7是本发明的设计流程图。 
具体实施方式
下面结合附图和实施例对本发明进一步说明。 
参照图7,本发明的翼墙式隧道洞门整体抗滑移设计方法,包括以下步骤: 
1、确定基本计算数据,包括地层特征参数、建筑材料参数和稳定性参数K0,而地层特征参数、建筑材料参数包括边、仰坡坡度1:m3或仰坡坡角ε、围岩级别、地层计算摩擦角、破裂角ω、地层重度γ、建筑材料重度γd、洞门和衬砌间摩擦系数f、洞门和墙底土体间摩擦系数f。 
2、确定洞门各部尺寸,参照图1至图2,包括边坡坡率1:m3,端墙胸坡坡率1:m2或墙背倾角α(tanα=1/m2),端墙墙身厚度B4,顶帽至坡脚的距离b,分块P1的高度H1,分块P2的高度H2,分块P2的宽度B1,分块P3的高度H3,分块P3的宽度B2,,洞门半结构顶帽的宽度B,翼墙胸坡坡率1:m1,洞门端墙总高度H,翼墙主体部分短边高度H4,翼墙主体部分长边高度H7,翼墙衡重台部分短边高度H5。 
3、对整个端墙、翼墙墙体和与其接触的墙背土体划分条块,划分出 若干墙体条块、墙背土体条块。 
墙体条块、墙背土体条块按以下方法划分: 
根据端墙形状特点及端墙与墙背土体的接触位置,对端墙划分为几个部分:顶帽部分、顶帽底至坡脚水平线部分、拱圈以上部分、拱圈侧部、拱脚部分。由于拱圈部分为弧线形,故可采用以直代曲的思想将拱圈以上部分划分为多个竖向梯形的组合;对于翼墙,根据其厚度不同分开计算,将其横向划分为多个梯形状条块。墙背土体条块与端墙接触部分的墙体条块一一对应。 
4、端墙土压力分布计算,利用乌氏理论确定墙背土压力随端墙高度的分布情况。洞门整体抗滑移计算过程中,作用在洞门上的外部荷载主要包括端墙墙背的主动土压力、端墙埋入路基面下的土压力、墙体与衬砌之间的摩擦力和墙体与墙底土体间的摩擦力。墙背主动土压力采用乌氏公式计算,乌氏公式是在库仑土压力理论基础上,假定墙背摩擦角与墙背倾角相等,即土压力作用方向永远是水平。端墙前面填土压力为被动土压力,一般数值较小,同时因其对结构稳定有利,予以不计。利用乌氏公式计算方法确定墙背土压力随端墙高度的分布情况见图3所示。 
5、滑移合力计算。计算每个端墙背后土体条块作用在端墙上的土压力,并进行求和得到滑移合力E0。 
滑移合力计算按以下步骤进行: 
①计算侧压力系数λ 
式中:ω为土体破裂角,为土体计算摩擦角,ε为仰坡坡度角,α为端墙倾角。 
②计算高度参数h0、h1和h4
h 0 = atgϵ 1 - tgϵtgα
h1=H1+H2+H3-h0-b 
h 4 = a tgω - tgα
式中:a为仰坡坡脚至顶帽的水平净距,分块P1的高度H1,分块P2的高度H2,分块P3的高度H3,顶帽至坡脚的距离b。 
③计算各墙背土体单元边界土压力强度σ 
如图1、3所示,计算作用在端墙条块上下边界的主动土压力: 
σ1dH1λ 
σ2d(h4-h0)λ 
其中:γd—地层重度。 
④计算各墙背土体单元所对应的土压力合力E 
对于顶帽及P1区域,墙背无土压力,无需计算。 
对于P2区域: 
当高度H2<h4时, 
E 2 = 1 2 &times; ( H 2 h 4 &times; &sigma; 2 ) &times; H 2 &times; B 1
当高度H2>h4时, 
E 2 = 1 2 [ ( h 4 &times; &sigma; 2 ) &times; h 4 + ( ( H 2 - h 4 + ( h 1 + h 0 - h 4 ) h 1 &times; &sigma; 1 + &sigma; 2 ) &times; ( H 2 - h 4 ) ) ] &times; B 1
式中:H2为分块P2的高度,B1为分块P2的宽度。 
对于P3区域: 
将其近似看做矩形,其宽度
式中:B1为分块P2的宽度,B2为分块P3的宽度。 
当高度H2<h4时, 
E 3 = 1 2 &times; [ ( h 0 + h 1 - H 3 h 4 &sigma; 2 + &sigma; 2 ) ( H 3 - ( h 1 + h 0 - h 4 ) ) + ( &sigma; 2 + &sigma; 1 ) ( h 0 + h 1 - H 4 ) ] B 3
当高度H2>h4时, 
E 3 = 1 2 &times; ( h 1 - H 3 h 1 &sigma; 1 + &sigma; 1 ) &times; H 3 &times; B 3
式中:H3为分块P3的高度,H4为翼墙主体部分短边高度。 
对于P4: 
将P4区域划分为n个竖条,将每个竖条近似看做直角梯形,计算其面积时取每个竖条平均长度作为近似矩形的长度Li,如图4。 
当条带长度Li<h4时, 
E i = 1 2 &times; ( L i h 4 &times; &sigma; 2 ) &times; L i &times; B i
当条带长度Li>h4时, 
E i = 1 2 [ ( h 4 &times; &sigma; 2 ) &times; h 4 + ( ( L i - h 4 + ( h 1 + h 0 - h 4 ) h 1 &times; &sigma; 1 + &sigma; 2 ) &times; ( L i - h 4 ) ) ] &times; B i
式中:Li为竖条的平均长度(i=1,2,3,……),Bi为竖条的宽度(i=1,2,3,……)。 
则P4区域的总主动土压力 
E 4 = &Sigma; i = 1 n E i
求和,则可以求得端墙墙背总主动土压力: 
E=E2+E3+E4
6、抗滑移合力计算。计算端墙、翼墙墙体与墙底土体,端墙墙体与衬砌产生的静摩擦力,将两部分静摩擦力求和得到抗滑移合力Ey
①端墙墙体自重 
对于顶帽部分:根据实际尺寸计算出图3中顶帽侧面积Ac,则顶帽的 自重: 
PC=AC×B×γd
对于P1部分:根据实际尺寸计算出图3中顶帽下侧至水沟底部以上的侧面积A1,则顶帽的自重: 
P1=A1×B×γd
对于P2部分: 
P2=H2×B1×B4×γd
对于P3部分: 
P3=H3×B3×B4×γd
对于P4部分: 
P 4 = &Sigma; i = 1 n ( L i &times; B i &times; B 4 &times; &gamma; d )
式中:Ac为顶帽侧面积,A1为顶帽下侧至水沟底部以上的侧面积,B为洞门半结构顶帽的宽度,B4为端墙墙身厚度,H2为分块P2的高度,分块P2的宽度B1,H3为分块P3的高度,γd为墙身材料重度。 
②翼墙墙体自重: 
翼墙厚薄不一,因此将翼墙分为主体部分和衡重台部分两块分开计算,并扣除上部凹槽的体积,凹槽为等截面,截面积为A凹槽。 
P y 1 + &Sigma; i = 0 n 1 2 ( a i + a i + 1 ) d &times; t 1 &times; &gamma; d
P y 2 = &Sigma; i = 1 m 1 2 ( a i + a i + 1 ) d &times; t 2 &times; &gamma; d
P凹槽=A凹槽×Ly×γd
式中:ai、ai+1为每个翼墙条块的上下边界长度(i=1,2,3,……,m,n),d为每个翼墙条块的宽度,t1为翼墙主体部分宽度,t2为翼墙衡重台宽度, γd为墙身材料重度,Py1为翼墙主体部分自重,Py2为翼墙衡重台部分自重,Ly为翼墙长度,n为翼墙主体部分的分条数目,m为翼墙衡重台部分的分条数目。 
③抗滑移合力可以计算得: 
即P抗滑=P衬砌+P墙底
式中:B1为分块P2的宽度,B为洞门半结构顶帽的宽度,f为洞门和衬砌间摩擦系数、f为洞门和墙底土体间摩擦系数。 
7、抗滑移验算,保证隧道洞门不致滑移应满足下式 
如抗滑移稳定系数大于或等于K0,表明洞门是稳定的,没有滑移危险;如抗滑移稳定系数小于K0,表明洞门有滑移危险,必须重新调整材料参数和洞门尺寸,直至满足要求为止。 
以某时速120km/h双线铁路隧道翼墙式洞门抗滑移稳定性设计为例: 
(1)地层特征 
仰坡坡度为1:1.5,边坡坡度为1:0.15,洞口衬砌采用IV类围岩直墙衬砌;仰坡坡角ε=16.845°,tgε=0.3028;地层容重γ=17kN/m3;地层计算摩擦角;基底摩擦系数f=0.4。 
(2)建筑材料的容重和容许应力端墙C20混凝土容重γ1=23kN/m3。 
(3)隧道洞门尺寸参数H1=55cm,H2=750cm,H3=316cm,H4=135cm,H5=357cm,H6=110cm,H7=1096cm,B1=276cm,B=814cm,h0=367cm,h1=661cm,h4=688cm, a=150cm。 
结论:按传统条带法设计的洞门端墙厚度1.1m,翼墙厚度1.0m,抗滑移稳定系数为1.92,采用整体抗滑移设计法计算出端墙与翼墙总的抗滑力为3188.172KN,墙背土压力产生的滑移力为762.519KN,最终抗滑移稳定系数为4.13,较传统分条法抗滑移稳定系数高出1.15倍,说明以传统条带法设计的隧道门结构抗倾覆稳定系数偏小,结构过于安全。当采用整体抗滑移设计方法时,仅从承载能力上考虑,端墙厚度可至少减薄22%,翼墙厚度可至少减薄17%,采用新设计方法可大大节省洞门端墙及翼墙结构的混凝土圬工用量。 

Claims (5)

1.翼墙式隧道洞门整体抗滑移设计方法,包括以下步骤: 
(1)确定基本计算数据,包括地层特征参数、建筑材料物理参数和稳定性系数K0; 
(2)确定洞门各部尺寸; 
(3)对整个端墙、翼墙墙体和与其接触的墙背土体划分条块,划分出若干墙体条块、墙背土体条块; 
(4)端墙土压力分布计算,利用乌氏理论确定墙背土压力随端墙高度的分布情况; 
(5)滑移合力计算,计算每个端墙背后土体条块作用在端墙上的土压力,并进行求和得到滑移合力E; 
(6)抗滑移合力计算,计算端墙、翼墙墙体与墙底土体,端墙墙身与衬砌产生的静摩擦力,将两部分静摩擦力求和得到抗滑移合力P抗滑; 
(7)抗滑移验算,保证隧道洞门不致滑移应满足下式 
2.如权利要求1所述的翼墙式隧道洞门整体抗滑移设计方法,其特征是所述地层特征参数、建筑材料物理参数包括: 
边、仰坡坡度1:m3或仰坡坡角ε、围岩级别、地层计算摩擦角、破裂角ω、地层重度γ、建筑材料重度γd、洞门和衬砌间摩擦系数f、洞门和墙底土体间摩擦系数f。 
3.如权利要求2所述的翼墙式隧道洞门整体抗滑移设计方法,其特征是所述步骤(3)中墙体条块、墙背土体条块按以下方法划分: 
根据端墙形状特点及端墙与墙背土体的接触位置,对端墙划分为几个部分:顶帽部分、顶帽底至坡脚水平线部分、拱圈以上部分、拱圈侧部、拱脚部分。由于拱圈部分为弧线形,故可采用以直代曲的思想将拱圈以上部分划分为多个竖向梯形的组合;对于翼墙,根据其厚度不同分开计算,将其横向划分为多个梯形状条块;墙背土体条块与端墙接触部分的墙体条 块一一对应。 
4.如权利要求3所述的翼墙式隧道洞门整体抗滑移设计方法,其特征是所述步骤(5)中滑移合力计算按以下步骤进行: 
①计算侧压力系数λ 
式中:ω为土体破裂角,为土体计算摩擦角,ε为仰坡坡度角,α为端墙倾角; 
②计算高度参数h0、h1和h4
h1=H1+H2+H3-h0-b 
式中:a为仰坡坡脚至顶帽的水平净距,分块P1的高度H1,分块P2的高度H2,分块P3的高度H3,顶帽至坡脚的距离b; 
③计算各墙背土体单元边界土压力强度σ 
如图1、3所示,计算作用在端墙条块上下边界的主动土压力: 
σ1=γdH1λ 
σ2d(h4-h0)λ 
其中:γd—地层重度; 
④计算各墙背土体单元所对应的土压力合力E 
对于顶帽及P1区域,墙背无土压力,无需计算, 
对于P2区域: 
当高度H2<h4时, 
当高度H2>h4时, 
式中:H2为分块P2的高度,B1为分块P2的宽度; 
对于P3区域: 
将其近似看做矩形,其宽度B3=12×(B1+B2), 
式中:B1为分块P2的宽度,B2为分块P3的宽度; 
当高度H2<h4时, 
当高度H2>h4时, 
式中:H3为分块P3的高度,H4为翼墙主体部分短边高度; 
对于P4: 
将P4区域划分为n个竖条,将每个竖条近似看做直角梯形,计算其面积时取每个竖条平均长度作为近似矩形的长度Li, 
当条带长度Li<h4时, 
当条带长度Li>h4时, 
式中:Li为竖条的平均长度(i=1,2,3,……),Bi为竖条的宽度(i=1,2,3,……) 
则P4区域的总主动土压力 
求和,则可以求得端墙墙背总主动土压力为 
E=E2+E3+E4 。
5.根据权利4所述的翼墙式隧道洞门整体抗滑移的设计方法,其特征是所述步骤中(6)的抗滑移合力按如下步骤计算: 
①端墙墙体自重 
对于顶帽部分:根据实际尺寸计算出图3中顶帽侧面积Ac,则顶帽的自重: 
PC=AC×B×γd
对于P1部分:根据实际尺寸计算出图3中顶帽下侧至水沟底部以上的侧面积A1,则顶帽的自重: 
P1=A1×B×γd
对于P2部分: 
P2=H2×B1×B4×γd
对于P3部分: 
P3=H3×B3×B4×γd
对于P4部分: 
式中:Ac为顶帽侧面积,A1为顶帽下侧至水沟底部以上的侧面积,B 为洞门半结构顶帽的宽度,B4为端墙墙身厚度,H2为分块P2的高度,分块P2的宽度B1,H3为分块P3的高度,γd为墙身材料重度; 
②翼墙墙体自重: 
将翼墙分为主体部分和衡重台部分两块分开计算,并扣除上部凹槽的体积,凹槽为等截面,截面积为A凹槽。 
P凹槽=A凹槽×Ly×γd
式中:ai、ai+1为每个翼墙条块的上下边界长度(i=1,2,3,……,m,n),d为每个翼墙条块的宽度,t1为翼墙主体部分宽度,t2为翼墙衡重台宽度,γd为墙身材料重度,Py1为翼墙主体部分自重,Py2为翼墙衡重台部分自重,Ly为翼墙长度,n为翼墙主体部分的分条数目,m为翼墙衡重台部分的分条数目; 
③抗滑移合力计算: 
即P抗滑=P衬砌+P墙底
式中:B1为分块P2的宽度,B为洞门半结构顶帽的宽度,f为洞门和衬砌间摩擦系数、f为洞门和墙底土体间摩擦系数。 
CN201410100376.XA 2014-03-18 2014-03-18 翼墙式隧道洞门整体抗滑移设计方法 Active CN104196544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410100376.XA CN104196544B (zh) 2014-03-18 2014-03-18 翼墙式隧道洞门整体抗滑移设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410100376.XA CN104196544B (zh) 2014-03-18 2014-03-18 翼墙式隧道洞门整体抗滑移设计方法

Publications (2)

Publication Number Publication Date
CN104196544A true CN104196544A (zh) 2014-12-10
CN104196544B CN104196544B (zh) 2018-03-23

Family

ID=52081892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410100376.XA Active CN104196544B (zh) 2014-03-18 2014-03-18 翼墙式隧道洞门整体抗滑移设计方法

Country Status (1)

Country Link
CN (1) CN104196544B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964769A (zh) * 2015-08-04 2015-10-07 中铁第五勘察设计院集团有限公司 一种混凝土侧压力计算方法
CN111581713A (zh) * 2020-05-27 2020-08-25 重庆大学 确定挡土墙主动土压力强度和合力作用点位置的方法
CN112945761A (zh) * 2021-01-29 2021-06-11 福建工程学院 一种桥面触地对岸边挡土墙冲击抗滑移安全性预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105695A1 (en) * 2004-11-12 2006-05-18 Kennedy William R Anchored mine ventilation structure
CN101476466A (zh) * 2008-12-24 2009-07-08 中国科学院水利部成都山地灾害与环境研究所 巨厚层滑坡预应力锚索抗滑隧道施工方法及防治新结构
CN201756967U (zh) * 2010-06-22 2011-03-09 中铁第四勘察设计院集团有限公司 一种单线铁路盾构隧道纵向刚度加强结构
CN102182465A (zh) * 2011-04-01 2011-09-14 长安大学 一种隧道的进洞施工方法
CN202788867U (zh) * 2012-03-13 2013-03-13 中国二十冶集团有限公司 电缆隧道斜坡段的抗滑移装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105695A1 (en) * 2004-11-12 2006-05-18 Kennedy William R Anchored mine ventilation structure
CN101476466A (zh) * 2008-12-24 2009-07-08 中国科学院水利部成都山地灾害与环境研究所 巨厚层滑坡预应力锚索抗滑隧道施工方法及防治新结构
CN201756967U (zh) * 2010-06-22 2011-03-09 中铁第四勘察设计院集团有限公司 一种单线铁路盾构隧道纵向刚度加强结构
CN102182465A (zh) * 2011-04-01 2011-09-14 长安大学 一种隧道的进洞施工方法
CN202788867U (zh) * 2012-03-13 2013-03-13 中国二十冶集团有限公司 电缆隧道斜坡段的抗滑移装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢建华,杨玉凤: "翼墙式隧道洞门强度及稳定性验算研究", 《公路交通科技(应用技术版)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964769A (zh) * 2015-08-04 2015-10-07 中铁第五勘察设计院集团有限公司 一种混凝土侧压力计算方法
CN111581713A (zh) * 2020-05-27 2020-08-25 重庆大学 确定挡土墙主动土压力强度和合力作用点位置的方法
CN111581713B (zh) * 2020-05-27 2024-01-26 重庆大学 确定挡土墙主动土压力强度和合力作用点位置的方法
CN112945761A (zh) * 2021-01-29 2021-06-11 福建工程学院 一种桥面触地对岸边挡土墙冲击抗滑移安全性预测方法
CN112945761B (zh) * 2021-01-29 2022-09-02 福建工程学院 一种桥面触地对岸边挡土墙冲击抗滑移安全性预测方法

Also Published As

Publication number Publication date
CN104196544B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107526873B (zh) 一种浅埋隧道围岩坍塌模式识别及支护结构计算方法
CN107609299B (zh) 一种倾斜基底内排土场边坡形态的优化方法
CN106150546B (zh) 一种根据地表沉陷特征进行采空区部分充填的方法
CN104102767A (zh) 盾构施工对邻近托换桩基影响的数值模拟分析方法
CN105178964A (zh) 一种复合煤层露天矿顺倾层状边坡形态设计方法
CN106593524A (zh) 一种固体充填开采地表沉陷动态预计方法
CN102330423A (zh) 一种采空区上新建铁路地基稳定性的评价方法
CN104653224A (zh) 露天坑尾砂胶结充填治理的方法
CN109899109B (zh) 非规则采空区的注浆充填方法
Xu et al. Genesis, mechanism, and stability of the Dongmiaojia landslide, yellow river, China
CN102102518B (zh) 一种水库坝体下厚煤层放顶煤协调开采方法
CN104196544A (zh) 翼墙式隧道洞门整体抗滑移设计方法
CN110307034B (zh) 采空区的条带式注浆充填方法
CN106096162A (zh) 一种确定盾构土仓压力的方法及其数学模型和构建方法
CN101845815A (zh) 一种软土地层含承压水基坑突涌塑性破坏计算处理方法
Wang et al. Stability analysis of the slope around flood discharge tunnel under inner water exosmosis at Yangqu hydropower station
CN103498478B (zh) 岩石坝基帷幕灌浆施工方法
CN208328666U (zh) 一种带锚杆的扩大基础座板式桥台结构
CN208346573U (zh) 一种组合型抗滑桩
CN108549780B (zh) 浅埋深空留巷道充填体的载荷估算方法
CN203547763U (zh) 高回填抗滑移明洞结构
CN103821533B (zh) 端墙式隧道洞门整体抗倾覆设计方法
CN107657092A (zh) 地基钻孔取土的建筑物纠倾方法
CN207960680U (zh) 一种用于煤矿井下防水的闸墙
CN113221204B (zh) 展臂式排水抗滑桩及其结构计算方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant