CN104195515B - 一种高功率双极脉冲磁控溅射方法 - Google Patents

一种高功率双极脉冲磁控溅射方法 Download PDF

Info

Publication number
CN104195515B
CN104195515B CN201410418382.XA CN201410418382A CN104195515B CN 104195515 B CN104195515 B CN 104195515B CN 201410418382 A CN201410418382 A CN 201410418382A CN 104195515 B CN104195515 B CN 104195515B
Authority
CN
China
Prior art keywords
power supply
sputtering
shielding
arranging
magnetically controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410418382.XA
Other languages
English (en)
Other versions
CN104195515A (zh
Inventor
王浪平
林铁贵
王小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201410418382.XA priority Critical patent/CN104195515B/zh
Publication of CN104195515A publication Critical patent/CN104195515A/zh
Application granted granted Critical
Publication of CN104195515B publication Critical patent/CN104195515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

一种高功率双极脉冲磁控溅射方法,涉及一种双极脉冲磁控溅射方法。本发明的目的是为了解决现有的高功率单级磁控溅射电荷积累而产生的打火的技术问题。本发明的一种高功率双极脉冲磁控溅射方法是按以下步骤进行:一、安装设备;二、设置电源参数;三、预溅射;四、溅射。本发明优点:本发明方法即可有效的抑制靶的打火现象,提高溅射效率,又可获得高致密性和高结合力的薄膜。本发明应用于磁控溅射领域。

Description

一种高功率双极脉冲磁控溅射方法
技术领域
本发明涉及一种双极脉冲磁控溅射方法。
背景技术
高功率脉冲磁控溅射技术是利用较高的脉冲峰值功率和较低的脉冲占空比来产生高溅射金属离化率的一种磁控溅射技术。高功率脉冲磁控溅射在放电过程中其峰值功率可超过平均功率2个数量级,可达1kw/cm2~3kw/cm2,占空比一般低于10%,靶周围的电子密度高达109/m3,并且高密度电子增加了溅射原子与高能电子的电离碰撞几率,等离子体离化率可提高到70%以上。由于受到大量的高能离子的轰击,所以与普通的磁控溅射相比,采用高功率磁控溅射技术制备的薄膜的致密性和结合力显著提高。
目前国内外已有的高功率磁控溅射技术均是高功率单级溅射,如专利201220111912.2“全数字高功率单级磁控溅射电源”以及专利20121040022.8“计算机自动控制的高功率脉冲磁控溅射设备及工艺”等,在制备化合物薄膜时需要采取反应溅射的方式,比如制备Al2O3薄膜时,一般采用Al靶+Ar和O2的混合气体。但是在反应溅射过程中,由于溅射靶同样与气体发生反应而形成绝缘层,在溅射过程中溅射靶表面的电荷积累容易导致靶表面发生打火,因此常规的高功率单极溅射很难应用于制备化合物薄膜。双极磁控溅射可以有效的抑制电荷积累导致的打火现象,从而使溅射过程更加稳定,并且由于采用孪生靶溅射,可将溅射功率提高,从而提高溅射效率。目前的中频双极磁控溅射技术虽然可缓解靶的打火问题,但是由于其单级脉冲的占空比一般大于20%,电源输出的平均功率与脉冲峰值功率相差有限,因而电源的输出功率必须足够高才可能实现高的脉冲峰值功率溅射,这就要求电源必须有足够高的额定功率、额定电压和电流。另一方面,由于溅射时产生的热效应导致靶材所能承受的平均功率有限,所以电源工作时的输出功率又必须低于某一限定值。因此基于以上两点,中频双极磁控溅射由于电源的占空比相对较高,很难实现高功率溅射。
发明内容:
本发明的目的是为了解决现有的高功率单级磁控溅射电荷积累而产生的打火的技术问题,而提供一种高功率双极脉冲磁控溅射方法。
本发明的一种高功率双极脉冲磁控溅射方法是按以下步骤进行:
一、安装设备:将清洗后的试样固定在真空室内可旋转的样品台上,偏压电源的阴极接样品台,偏压电源的阳极接地;安装孪生靶,设置靶基距为3cm~20cm,设置孪生靶之间的最短水平距离为1cm~20cm;将孪生靶分别接入溅射电源的两个输出端;孪生靶的夹角为10°~180°;
二、设置电源参数:设置溅射电源的正负双向脉冲的脉宽相同并且均为大于0ms且小于等于5ms,设置溅射电源的正负脉冲的时间间隔为大于0ms且小于等于5ms,设置溅射电源的正负双向脉冲的频率为大于0kHz且小于等于10kHz,并且溅射电源的占空比为0.5%~20%;设置偏压电源的频率与溅射电源的频率相同,设置偏压电源的脉宽为大于0ms且小于等于5ms;
三、预溅射:对真空室抽真空使得真空室的本底真空度低于10-2Pa,然后向真空室内通入氩气,设置溅射电源的电压为300V~1000V,设置溅射电源的压强为0.1Pa~5Pa,开启溅射电源进行预溅射,预溅射时间为3min~30min;所述氩气的流量为5sccm~200sccm;
四、溅射:预溅射结束后通入工作气体,将溅射电源电压设定为300V~3000V,将溅射电源的功率设定为为20W~3000W,将偏压电源的电压设定为大于0V且小于等于1000V,将溅射压强设定为0.1Pa~5Pa,最后同时开启溅射电源与偏压电源进行溅射沉积5min~500min;步骤四所述的工作气体的气体流量为5sccm~200sccm。
本发明优点:
一、本发明的高功率双极脉冲磁控溅射方法,由于两个孪生靶交替作为阴极和阳极,可以有效的抑制电荷积累导致的打火现象,从而使溅射过程更加稳定,并且由于采用孪生靶溅射,与单靶相比可将溅射功率提高,从而提高溅射效率;
二、本发明的高功率双极脉冲磁控溅射方法中的单级脉冲的占空比仅为0.25%~10%,由于占空比较低,因此可实现高功率溅射;
所以,本发明方法即可有效的抑制靶的打火现象,提高溅射效率,又可获得高致密性和高结合力的薄膜。
附图说明
图1为本发明所使用设备装置示意图,其中1为电源系统,1-1为溅射电源,1-2为偏压电源,2为孪生靶源,3为可旋转的样品台,4为真空室;
图2是本发明的电源系统结构框图;
图3为试验一的波形示意图,其中1为溅射电路,2为偏压电路;
图4是试验一的实际电压与电流波形图。
具体实施方式
具体实施方式一:本实施方式是一种高功率双极脉冲磁控溅射方法,具体是按以下步骤进行:
一、安装设备:将清洗后的试样固定在真空室内可旋转的样品台上,偏压电源的阴极接样品台,偏压电源的阳极接地;安装孪生靶,设置靶基距为3cm~20cm,设置孪生靶之间的最短水平距离为1cm~20cm;将孪生靶分别接入溅射电源的两个输出端;孪生靶的夹角为10°~180°;
二、设置电源参数:设置溅射电源的正负双向脉冲的脉宽相同并且均为大于0ms且小于等于5ms,设置溅射电源的正负脉冲的时间间隔为大于0ms且小于等于5ms,设置溅射电源的正负双向脉冲的频率为大于0kHz且小于等于10kHz,并且溅射电源的占空比为0.5%~20%;设置偏压电源的频率与溅射电源的频率相同,设置偏压电源的脉宽为大于0ms且小于等于5ms;
三、预溅射:对真空室抽真空使得真空室的本底真空度低于10-2Pa,然后向真空室内通入氩气,设置溅射电源的电压为300V~1000V,设置溅射电源的压强为0.1Pa~5Pa,开启溅射电源进行预溅射,预溅射时间为3min~30min;所述氩气的流量为5sccm~200sccm;
四、溅射:预溅射结束后通入工作气体,将溅射电源电压设定为300V~3000V,将溅射电源的功率设定为为20W~3000W,将偏压电源的电压设定为大于0V且小于等于1000V,将溅射压强设定为0.1Pa~5Pa,最后同时开启溅射电源与偏压电源进行溅射沉积5min~500min;步骤四所述的工作气体的气体流量为5sccm~200sccm。
本实施方式的电源系统见附图2,直流电源(DC电源)通过全桥逆变电路后输出,当电路发生短路故障或者电流传感器检测到的峰值电流超过最大设定值时,PLC以及电流保护模块将关断驱动电路的的栅极驱动信号对电源系统进行保护,故障排除后电源系统可自动复位,也可手动复位。而电源输出的脉冲形状包括占空比、频率以及脉宽等可通过调节LCD人机界面进行控制。
本实施方式的电源系统的输出由溅射电路和偏压电路两部分组成。
本实施方式步骤四所述的工作气体的气体流量根据实际情况设定。
本实施方式优点:
一、本实施方式的高功率双极脉冲磁控溅射方法,由于两个孪生靶交替作为阴极和阳极,可以有效的抑制电荷积累导致的打火现象,从而使溅射过程更加稳定,并且由于采用孪生靶溅射,与单靶相比可将溅射功率提高,从而提高溅射效率;
二、本实施方式的高功率双极脉冲磁控溅射方法中的单级脉冲的占空比仅为0.25%~10%,由于占空比较低,因此可实现高功率溅射;
所以,本实施方式方法即可有效的抑制靶的打火现象,提高溅射效率,又可获得高致密性和高结合力的薄膜。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中安装孪生靶,设置靶基距为8cm~15cm,设置孪生靶之间的最短水平距离为8cm~15cm。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤二中设置溅射电源的正负双向脉冲的脉宽相同并且均为10μs~1ms,设置溅射电源的正负脉冲的时间间隔为10μs~1ms。其它与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二不同的是:步骤二中设置偏压电源的频率与溅射电源的频率相同,设置偏压电源的脉宽为10μs~1ms。其它与具体实施方式二相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤三中设置溅射电源的电压为500V~700V,设置溅射电源的压强为1Pa~3Pa,开启溅射电源进行预溅射,预溅射时间为10min~20min。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤三中所述氩气的流量为50sccm~150sccm。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤四预溅射结束后通入工作气体,将溅射电源电压设定为1000V~2000V,将溅射电源的功率设定为为1000W~2000W,将偏压电源的电压设定为200V~800V,将溅射压强设定为1Pa~3Pa,最后同时开启溅射电源与偏压电源进行溅射沉积100min~300min。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤四所述的工作气体为氩气或者氩气与气体A的混合气体;所述的气体A为氧气、氮气或甲烷中的一种或几种气体的混合气体。其它与具体实施方式一至七之一相同。
采用下述试验验证本发明效果:
试验一:本试验为一种高功率双极脉冲磁控溅射方法,具体是按以下步骤进行:
一、安装设备:将清洗后的试样固定在真空室内可旋转的样品台上,偏压电源的阴极接样品台,偏压电源的阳极接地;安装孪生靶,设置靶基距为15cm,设置孪生靶之间的最短水平距离为15cm;将孪生靶分别接入溅射电源的两个输出端;孪生靶的夹角为90°;
二、设置电源参数:设置溅射电源的正负双向脉冲的脉宽相同并且均为10μs,设置溅射电源的正负脉冲的时间间隔为100μs,设置溅射电源的正负双向脉冲的频率为2.5kHz,单级脉冲的占空比为2.5%,溅射电源的占空比为5%;设置偏压电源的频率与溅射电源的频率相同,设置偏压电源的脉宽为10μs;
三、预溅射:对真空室抽真空使得真空室的本底真空度低于10-3Pa,然后向真空室内通入氩气,设置溅射电源的电压为500V,设置溅射电源的压强为3Pa,开启溅射电源进行预溅射,预溅射时间为10min;所述氩气的流量为100sccm;
四、溅射:预溅射结束后通入工作气体,将溅射电源电压设定为800V,将溅射电源的功率设定为为500W,将偏压电源的电压设定为100V,将溅射压强设定为1Pa,最后同时开启溅射电源与偏压电源进行溅射沉积100min;步骤四所述的工作气体的气体流量为100sccm;步骤四所述的工作气体为氩气和氧气的混合气体。本试验的电源系统见附图2,直流电源(DC电源)通过全桥逆变电路后输出,当电路发生短路故障或者电流传感器检测到的峰值电流超过最大设定值时,PLC以及电流保护模块将关断驱动电路的的栅极驱动信号对电源系统进行保护,故障排除后电源系统可自动复位,也可手动复位。而电源输出的脉冲形状包括占空比、频率以及脉宽等可通过调节LCD人机界面进行控制;本试验的电源系统的输出由溅射电路和偏压电路两部分组成。
图3为试验一的波形示意图,从图中可以看出溅射电路的正负双向脉冲形状相同,说明本试验的磁控溅射方法是双极的;
图4是试验一的实际电压与电流波形图,从图可以看出本试验实现了高功率双极脉冲磁控溅射方法。

Claims (8)

1.一种高功率双极脉冲磁控溅射方法,其特征在于高功率双极脉冲磁控溅射方法具体是按以下步骤进行:
一、安装设备:将清洗后的试样固定在真空室内可旋转的样品台上,偏压电源的阴极接样品台,偏压电源的阳极接地;安装孪生靶,设置靶基距为3cm~20cm,设置孪生靶之间的最短水平距离为1cm~20cm;将孪生靶分别接入溅射电源的两个输出端;孪生靶的夹角为10°~180°;
二、设置电源参数:设置溅射电源的正负双向脉冲的脉宽相同并且均为大于0ms且小于等于5ms,设置溅射电源的正负脉冲的时间间隔为大于0ms且小于等于5ms,设置溅射电源的正负双向脉冲的频率为大于0kHz且小于等于10kHz,并且溅射电源的占空比为0.5%~20%;设置偏压电源的频率与溅射电源的频率相同,设置偏压电源的脉宽为大于0ms且小于等于5ms;
三、预溅射:对真空室抽真空使得真空室的本底真空度低于10-2Pa,然后向真空室内通入氩气,设置溅射电源的电压为300V~1000V,设置溅射电源的压强为0.1Pa~5Pa,开启溅射电源进行预溅射,预溅射时间为3min~30min;所述氩气的流量为5sccm~200sccm;
四、溅射:预溅射结束后通入工作气体,将溅射电源电压设定为300V~3000V,将溅射电源的功率设定为20W~3000W,将偏压电源的电压设定为大于0V且小于等于1000V,将溅射压强设定为0.1Pa~5Pa,最后同时开启溅射电源与偏压电源进行溅射沉积5min~500min;步骤四所述的工作气体的气体流量为5sccm~200sccm。
2.根据权利要求1所述的一种高功率双极脉冲磁控溅射方法,其特征在于步骤一中安装孪生靶,设置靶基距为8cm~15cm,设置孪生靶之间的最短水平距离为8cm~15cm。
3.根据权利要求1所述的一种高功率双极脉冲磁控溅射方法,其特征在于步骤二中设置溅射电源的正负双向脉冲的脉宽相同并且均为10μs~1ms,设置溅射电源的正负脉冲的时间间隔为10μs~1ms。
4.根据权利要求1所述的一种高功率双极脉冲磁控溅射方法,其特征在于步骤二中设置偏压电源的频率与溅射电源的频率相同,设置偏压电源的脉宽为10μs~1ms。
5.根据权利要求1所述的一种高功率双极脉冲磁控溅射方法,其特征在于步骤三中设置溅射电源的电压为500V~700V,设置溅射电源的压强为1Pa~3Pa,开启溅射电源进行预溅射,预溅射时间为10min~20min。
6.根据权利要求1所述的一种高功率双极脉冲磁控溅射方法,其特征在于步骤三中所述氩气的流量为50sccm~150sccm。
7.根据权利要求1所述的一种高功率双极脉冲磁控溅射方法,其特征在于步骤四预溅射结束后通入工作气体,将溅射电源电压设定为1000V~2000V,将溅射电源的功率设定为1000W~2000W,将偏压电源的电压设定为200V~800V,将溅射压强设定为1Pa~3Pa,最后同时开启溅射电源与偏压电源进行溅射沉积100min~300min。
8.根据权利要求1所述的一种高功率双极脉冲磁控溅射方法,其特征在于步骤四所述的工作气体为氩气或者氩气与气体A的混合气体;所述的气体A为氧气、氮气或甲烷中的一种或几种气体的混合气体。
CN201410418382.XA 2014-08-22 2014-08-22 一种高功率双极脉冲磁控溅射方法 Active CN104195515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410418382.XA CN104195515B (zh) 2014-08-22 2014-08-22 一种高功率双极脉冲磁控溅射方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410418382.XA CN104195515B (zh) 2014-08-22 2014-08-22 一种高功率双极脉冲磁控溅射方法

Publications (2)

Publication Number Publication Date
CN104195515A CN104195515A (zh) 2014-12-10
CN104195515B true CN104195515B (zh) 2016-06-29

Family

ID=52080876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410418382.XA Active CN104195515B (zh) 2014-08-22 2014-08-22 一种高功率双极脉冲磁控溅射方法

Country Status (1)

Country Link
CN (1) CN104195515B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088163A (zh) * 2015-09-22 2015-11-25 苏州格科特真空镀膜技术有限公司 一种在硬质合金刀片表面制备晶态Al2O3涂层的方法
CN105908135A (zh) * 2016-05-09 2016-08-31 魏永强 多级磁场离子镀和孪生靶高功率脉冲磁控溅射复合方法
CN105803411A (zh) * 2016-05-11 2016-07-27 魏永强 电弧离子镀和孪生靶双极性高功率脉冲磁控溅射复合方法
CN106987816B (zh) * 2017-04-06 2019-07-02 天津职业技术师范大学 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺
CN109989016A (zh) * 2017-12-30 2019-07-09 魏永强 一种组合磁场、组合管和多孔挡板复合的真空镀膜方法
CN109136871B (zh) * 2018-09-04 2020-04-10 北京航空航天大学 一种双极脉冲磁控溅射方法
CN109811324B (zh) * 2019-03-14 2021-02-09 哈尔滨工业大学 基于异质双靶高功率脉冲磁控溅射制备掺杂类薄膜的装置及方法
CN110138362B (zh) * 2019-04-10 2020-10-27 北京航空航天大学 一种从靶材泵出离子的新型脉动等离子体的电源
CN110205597B (zh) * 2019-07-12 2021-04-02 哈尔滨工业大学 多段式双极性脉冲高功率脉冲磁控溅射方法
CN113322442B (zh) * 2021-06-03 2022-11-01 哈尔滨工业大学 一种抗原子氧性能优异的γ-三氧化二铝薄膜的制备方法
CN117418207B (zh) * 2023-12-19 2024-02-20 山西农业大学 一种三靶高功率脉冲磁控共溅射方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770023A (en) * 1996-02-12 1998-06-23 Eni A Division Of Astec America, Inc. Etch process employing asymmetric bipolar pulsed DC
US7316764B2 (en) * 2001-03-16 2008-01-08 4 Wave, Inc. System and method for performing sputter etching using independent ion and electron sources and a substrate biased with an a-symmetric bi-polar DC pulse signal
CN101838795B (zh) * 2010-06-30 2011-07-20 哈尔滨工业大学 高功率复合脉冲磁控溅射离子注入与沉积方法
CN103938166A (zh) * 2013-01-23 2014-07-23 香港生产力促进局 一种高能量脉冲式磁控溅射方法及磁控溅射装置

Also Published As

Publication number Publication date
CN104195515A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN104195515B (zh) 一种高功率双极脉冲磁控溅射方法
KR100887820B1 (ko) 변조 전력 신호를 이용한 이온 밀도 및 에너지 제어 시스템및 방법
EP1734558A1 (en) System for modulating power signals to control sputtering
WO2013045454A3 (en) Coating of substrates using hipims
US9551066B2 (en) High-power pulsed magnetron sputtering process as well as a high-power electrical energy source
CN109136871B (zh) 一种双极脉冲磁控溅射方法
TWI414621B (zh) Sputtering target and sputtering method using the target
WO2008071734A3 (en) Arc suppression and pulsing in high power impulse magnetron sputtering (hipims)
CN102027667A (zh) 双极脉冲电源以及由多个双极脉冲电源构成的电源装置
Baba et al. High performance power supplies for plasma materials processing
CN108220901B (zh) 一种等离子体溅射镀膜方法
MX2013012200A (es) Metodo de pulverizacion catódica por magnetron de impulso de alta potencia que proporciona la ionizacion mejorada de las particulas obtenidas por pulverización catódica y aparato para su implementacion.
CN204529967U (zh) 一种大功率中频溅射电源
TW201010260A (en) Bipolar pulsed power supply, and power supply comprising multiple bipolar pulsed power supplies connected in parallel
CN100575543C (zh) 一种在钴基高温合金表面沉积碳化硅高辐射涂层的方法
CN104674178A (zh) 一种实现多模式输出磁控溅射镀膜电源电路及控制方法
JP5322235B2 (ja) スパッタリング方法
CN208174571U (zh) 一种集高压短脉冲预电离一体化高功率双极性脉冲形成电路
CN108173450B (zh) 一种集高压短脉冲预电离一体化高功率双极性脉冲形成电路
CN104451578A (zh) 一种直流耦合型高能脉冲磁控溅射方法
CN110565061A (zh) 一种环保型直接在易氧化金属镀膜的工艺
US20160118233A1 (en) Waveform for improved energy control of sputtered species
TWI496925B (zh) 一種用於減少ito濺射損傷襯底的濺射設備及其方法
CN117778977A (zh) 高功率脉冲磁控溅射与调制脉冲磁控溅射复合共沉积方法
Eom et al. Design of bipolar pulse power supply based on LLC resonant converter for reactive sputtering process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant