CN104189900A - 一种蛋白多肽疫苗载药系统及其制备方法 - Google Patents

一种蛋白多肽疫苗载药系统及其制备方法 Download PDF

Info

Publication number
CN104189900A
CN104189900A CN201410470267.7A CN201410470267A CN104189900A CN 104189900 A CN104189900 A CN 104189900A CN 201410470267 A CN201410470267 A CN 201410470267A CN 104189900 A CN104189900 A CN 104189900A
Authority
CN
China
Prior art keywords
pla
ova
protein polypeptide
bmdc
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410470267.7A
Other languages
English (en)
Inventor
朱俊铭
杨萍
韩淑贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN INSTITUTE OF BIOTECHNOLOGY
Huazhong University of Science and Technology
Original Assignee
WUHAN INSTITUTE OF BIOTECHNOLOGY
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN INSTITUTE OF BIOTECHNOLOGY, Huazhong University of Science and Technology filed Critical WUHAN INSTITUTE OF BIOTECHNOLOGY
Priority to CN201410470267.7A priority Critical patent/CN104189900A/zh
Publication of CN104189900A publication Critical patent/CN104189900A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种以聚乳酸包覆蛋白多肽疫苗、鱼精蛋白包覆聚乳酸的纳米囊用作蛋白多肽疫苗载药系统,以及该载药系统的制备方法。本发明以鸡卵清白蛋白(OVA)为模型蛋白多肽疫苗,通过探头超声方法将OVA溶液分散于含聚乳酸(PLA)的二氯甲烷有机相中,形成初乳。初乳加入含有聚乙烯醇外水相中,探头超声形成复乳。搅拌至二氯甲烷有机相完全挥发得到固化的OVA/PLA纳米囊。在OVA/PLA纳米囊混悬液中加入鱼精蛋白(PS)搅拌得到OVA/PLA/PS纳米囊。本发明的OVA/PLA/PS纳米囊具有稳定的纳米级粒径与分散系数,和适合转染细胞的表面电位;可以有效提高小鼠源性树突状细胞(BMDC)对OVA/PLA/PS纳米囊的摄取水平;显著提高BMDC表面分子MHCI、MHCII、CD83、CD86的表达,增加BMDC极化因子IL-12p70的分泌量。

Description

一种蛋白多肽疫苗载药系统及其制备方法
技术领域
本发明涉及一种蛋白多肽疫苗载药系统及其制备方法,属于生物医药领域。
背景技术
疫苗是将病原微生物(如细菌、立克次氏体、病毒等)及其代谢产物,经过人工减毒、灭活或利用基因工程等方法制成的用于预防传染病的自动免疫制剂。疫苗保留了病原微生物刺激动物体免疫系统的特性。当动物体接触到这种不具伤害力的病原菌后,免疫系统便会产生一定的保护物质,如特异性抗体、免疫激素、活性生理物质等;当动物再次接触到这种病原微生物时,动物体的免疫系统便会依循其原有的记忆,制造更多的保护物质来阻止病原微生物的伤害。疫苗是人类预防和治疗疾病最有效的方式之一。
从研制技术上疫苗分为传统疫苗和新型疫苗。传统疫苗包括灭活疫苗、减毒活疫苗和用天然微生物的某些成分制成的亚单位疫苗等。新型疫苗包括蛋白质多肽(亚单位)疫苗、核酸疫苗、基因缺失活疫苗等。蛋白质蛋白多肽疫苗的安全性较好,但免疫效果略差。增强其免疫原性的方法主要有:调整基因组合使之表达成颗粒性结构;在体外加以聚团化,包入脂质体或胶囊微球;加入有免疫增强作用的化合物作为佐剂。
聚乳酸(PLA)通常由乳酸的二聚物——丙交酯通过开环聚合而成。PLA结构式如下所示:
PLA有三种立体构型:聚右旋乳酸(PDLA)、聚左旋乳酸(PLLA)、聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立构聚合物,熔融或溶液中均可结晶,结晶度可达60%左右;PDLLA是无定形非晶态材料。结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大,无定形的PDLLA力学强度明显低于PLLA,用于纳米药物载体的多为PDLLA。若采用乙交酯与丙交酯共聚的办法则可进一步调节聚乳酸纳米药物载体的降解速度,而利用聚乙二醇(PEG)等高分子表面活性剂与PLA或其共聚物形成的嵌段共聚物则可改善纳米药物载体的表面性能。
PLA作为生物可降解材料,在体内水解后经脱氨酶氧化为丙酮酸参与柠檬酸循环,最后生成二氧化碳和水经肺、肾和皮肤排泄,因此无毒、无刺激性并且具有良好的生物相容性。它将抗原包裹其中,不需要赋形剂和稳定剂,就可增强其稳定性。其疏水性表面防止水的渗入,维持了抗原的初始状态,降解产物的酸性较弱,利于维持蛋白质的稳定性。PLA及其共聚物等因其具有结构和种类多(可根据需要改进分子结构来调控药物释放规律)、毒副作用极低、有一定的机械强度和临床研究及应用的时间长等优点,并且是经美国食品和药物管理局(Food andDrug Administration,U.S.A.,FDA)批准可用于临床的少数几种药物辅料,成为纳米药物载体研究中的主流材料。
PLA纳米囊的制备方法大多来源于微球的制备方法,常用的有乳化法、溶剂扩散法、盐析法、纳米沉淀法、喷雾干燥法等等。
乳化法是在强机械(超声设备、均质机和高速剪切设备等)作用下,将含有载体基材的内相在加有乳化剂的外相中强行乳化分散,从而制备载体的一种方法。
水包油(O/W)乳化法主要适于亲脂性载体,包括乳化—挥发法(emulsification-evaporation technique)和高压均质法(high pressure homogenizationtechnique)等。乳化—挥发法通常是将PLA等载体基材和药物先溶入二氯甲烷、氯仿和乙酸乙酯等易挥发的有机溶剂中,然后加到水溶液中形成O/W乳液,最后挥发脱出载体中的有机溶剂。其中,二氯甲烷和氯仿等有机溶剂的毒性较大。根据体系的不同,该法还有所变化:当药物为水溶性分子时,如蛋白质,以油包水(W/O)乳液的形式存在于有机溶剂中,然后再加到水溶液中再分散,形成W/O/W复乳。针对本发明的包裹对象为蛋白质,所以,本发明主要采用W/O/W乳化法的基本原理来制备。除了上述常见的外,还有一些独特的乳化制备方法,如盐析法和乳化—扩散法等。
表面修饰指通过物理吸附或者化学吸附的方法改进纳米药物载体表面的空间位阻和电荷情况,或者通过化学/生物化学反应将抗体等配体接到药物载体表面。例如:PLA纳米粒表面吸附了聚乙烯醇等表面活性物质后,表面电位发生显著正移,空间位阻增加,表面的亲水性也增加。在聚氰基丙烯酸酯纳米粒的表面接上抗成骨肉瘤单克隆抗体以后,对于肿瘤细胞有良好的靶向特性。PLA纳米粒表面修饰两亲性甘露糖化聚氧乙烯-β-聚己内酯可以增加纳米粒被含有甘露糖受体的免疫细胞识别和摄取。将大豆凝集素修饰在PLA微粒表面,在小鼠实验中发现其可以诱导比铝佐剂更强的免疫反应,而且可以保持较高的抗体滴度长达6周。将低分子鱼精蛋白包覆载有香豆素-6的PEG化PLA(Coumarin-6/PEG-PLA/LMWP)纳米粒鼻腔给药大鼠,发现在大鼠的大脑、小脑、嗅神经束和嗅球有显著的纳米粒聚集。此外,改进载体材料的组成也可以实现纳米药物载体的改性,比如:PEG-PLA共聚物的表面亲水性较纯PLA纳米粒有了很大的提高,能够在体内长循环。
鱼精蛋白(PS)富含精氨酸,带有正电荷,已经被FDA批准用于因为注射肝素过量导致的出血以及自发性出血性疾病,或者与胰岛素合用作为长效制剂。。目前还没有将PS包覆于PLA纳米粒表面用作疫苗载体的相关报道。
发明内容
本发明的任务是提供一种蛋白多肽疫苗载药系统及其制备方法。该蛋白多肽疫苗载药系统可以改变蛋白多肽疫苗与树突状细胞(DC)之间的相互作用,对DC表型分化、细胞因子的分泌、DC对蛋白多肽疫苗的摄取、DC抗原递呈带来重要作用,提高DC的免疫应答反应,可开发成为新型的蛋白质蛋白多肽疫苗纳米载药系统。
本发明的蛋白多肽疫苗载药系统,为PLA包覆蛋白多肽疫苗、PS包覆PLA的W/O/W结构的阳离子纳米囊。
所述的蛋白多肽疫苗可以为卵清蛋白(OVA)、人乙型肝炎病毒表面抗原(HBsAg)等用作疫苗的各类多肽分子。
本发明提供上述蛋白多肽疫苗载药系统的制备方法,包括以下步骤:
步骤一:称取适量蛋白多肽疫苗(如OVA)溶于pH7.0、0.01mol/L的磷酸缓冲水溶液(PBS)中,浓度为12~100mg/ml,作为内水相;称取PLA溶于二氯甲烷中,浓度为8~40mg/ml,作为有机相;
步骤二:向有机相中逐滴加入内水相,内水相与有机相体积之比为1:3~1:10,搅拌成悬浮液,并用超声波细胞破碎仪制得初乳,超声功率200W、超声时间3秒、间隔时间5秒,共超声7次;
步骤三:称取聚乙烯醇溶于pH7.0,0.01mol/L的PBS中,质量体积浓度为1~3%,作为外水相;
步骤四:向外水相中逐滴加入步骤二制备的初乳,控制有机相与外水相体积之比为1:2~1:6,搅拌成悬浮液,并用超声波细胞破碎仪制得复乳,超声功率200W、超声时间3秒、间隔时间5秒,共超声7次;
步骤五:称取PS溶于pH7.0,0.01mol/L的PBS中,浓度为2~15mg/ml;
步骤六:取步骤五制备的PS溶液,加入步骤四制备的复乳中,采用磁力搅拌器,室温下100转/分钟搅拌2小时,制备得到含有PLA包覆OVA、PS包覆PLA的OVA/PLA/PS纳米囊的悬浮液;4℃下将悬浮液离心去上清,得到OVA/PLA/PS的W/O/W结构的阳离子纳米囊即为蛋白多肽疫苗载药系统。
步骤七:将步骤四制备的悬浮液离心去上清,沉淀为OVA/PLA纳米囊。
本发明采用OVA作为模型蛋白多肽疫苗,制备得到OVA/PLA/PS纳米囊,并将OVA/PLA/PS纳米囊按照具体要求加入适当体积的pH7.0,0.01mol/L的PBS中,采用如英国Malvern公司的Zetasizer/Nano-ZS90激光粒度仪,测定纳米囊的粒径、表面电位和分散系数。
本发明在无菌环境中制备小鼠源性树突状细胞(BMDC),采用流式细胞仪分析方法,测试OVA/PLA/PS纳米囊对于BMDC的免疫效果的影响水平,主要检测指标为BMDC表面第一型主要组织相容性复合物(MHC I),第二型主要组织相容性复合物(MHC II),白细胞分化抗原簇(cluster of differentiation,CD)中的CD80、CD83、CD86,白细胞介素12蛋白70(IL-12p70)等指标,通过这些指标的变化确认OVA/PLA/PS纳米囊对BMDC细胞的免疫应答的促进作用。
本发明利用PLA以W/O的结构将模型抗原OVA包裹,然后在其外包覆PS,形成具有直径200~300纳米(nm)、表面电位10~20毫伏(mV)、分散系数小于0.1(颗粒大小很均匀)的W/O/W囊状结构。通过流式细胞仪检测,OVA/PLA/PS对BMDC表面MHC I、MHC II、CD 83、CD86的表达均有显著上调作用(P<0.05,统计表示数据有显著性差异),而对CD80的表达无显著影响;通过酶联免疫法检测,OVA/PLA/PS显著提高BMDC分泌IL-12p70含量。OVA/PLA/PS被BMDC摄取的机率大幅提高,且对BMDC没有明显的毒性。表明以PS包覆PLA的抗原纳米囊可以极大提高BMDC的免疫应答水平,可能成为潜在的新型疫苗载药系统。
与本发明有相关性的专利有2项。
专利“一种基因药物的输送系统及其制备方法”(ZL200610039006.5)涉及基因药物的输送系统及其制备方法。该输送系统为基因药物与阳离子多肽或聚合物以及任选的辅助成分形成复合物,该复合物包封于PEG修饰的高分子材料的纳米粒中,并对纳米粒表面进行配体修饰。其制备方法包括:1)混合基因药物和阳离子多肽或聚合物及任选的辅助成分,制备复合物溶液;2)向复合物溶液中加入高分子材料的有机溶液,并分散到水相,制备W/O/W型复乳,分离收集所得纳米粒;3)用配体对纳米粒表面进行修饰,分离收集修饰所得纳米粒。该系统增强了基因药物在制备过程中的稳定性,提高了包封率;表面修饰延长了血浆半衰期;增强了输送系统的靶向性;提高了转染效率;该输送系统的细胞毒性显着降低,保证了用药安全性。
本发明与其的主要差异在于:1)对象不同——该专利强调的是基因药物,主要是核酸类物质,而本发明核心是多肽蛋白类药物或疫苗;2)制备方法不同——该专利将复合溶液加入高分子材料的有机溶剂,而本发明直接将多肽蛋白或抗原溶液分散到高分子材料的有机溶剂;3)范围不同——该专利修饰纳米粒的配体是各类物质,本发明主要考虑的是鱼精蛋白这种可在临床应用的物质;4)考察体系不同——该专利直接谈到产品最终的优点是增强稳定性、提高包封率、延长半衰期、增强靶向性、提高转染效率、降低细胞毒性,而本发明强调的是提高BMDC细胞表面分子水平,从而增强细胞的免疫应答能力,与疫苗载药系统的功能有直接关系。
专利“载药纳米微粒及其制备方法和该微粒在制备抗血管再狭窄制剂中的应用”(200510014643.2)公开了一种载药纳米微粒及其制备方法和该微粒在制备抗血管再狭窄制剂中的应用。载药纳米微粒由可生物降解高分子材料与药物组成,可生物降解高分子材料包括聚己内酯(PCL)、聚乳酸(PLA)和聚乳酸-聚羟基乙酸共聚物(PLGA)中的一种;其药物分别是抑制血管内皮增生药物、抗细胞增殖药物、溶血栓药物、抗凝血药物及抗炎药;纳米微粒含有70-95%的生物可降解高分子,5-30%的药物。微粒直径范围为50-500纳米;纳米微粒表面经过修饰物修饰,为了加强载药微粒抗血管再狭窄的作用,可以将不同药物作用的载药微粒根据病情按用药量的比例混合,配成混合悬液制剂。
本发明与其的主要差异在于:1)对象不同——该专利强调的是各类药物,而本发明核心是多肽蛋白类药物或疫苗;2)制备产物不同——本发明在高分子材料纳米囊基础上进行了PS的包覆修饰,这是本发明的核心技术;3)指标不同——该专利微粒范围过广,粒径为50~500nm,本发明的纳米囊粒径为200~300nm,该尺寸的纳米囊具有提高细胞摄取的重要优势;4)考察体系不同——该专利强调在抗血管再狭窄的作用,而本发明强调的是提高BMDC细胞表面分子水平,从而增强细胞的免疫应答能力,与疫苗载药系统的功能有直接关系。
总体而言,本发明的优势在于通过优化PS包覆PLA纳米囊的具体制备工艺技术,获得最优的尺寸、电位,有利于BMDC细胞摄取,提高了BMDC表面分子的表达或分泌,对细胞不产生毒性,可提高BMDC的免疫应答效应,具有成为新型疫苗载药系统的潜在价值。
本发明利用PLA以W/O的结构将模型抗原OVA包裹,然后在其外包覆PS,形成具有直径200~300nm、表面电位10~20mV、分散系数小于0.1的W/O/W囊状结构,经实验证明可极大提高BMDC对纳米囊的摄入机率,且对BMDC没有明显的毒性。
OVA/PLA/PS纳米囊对BMDC表面MHC I、MHC II、CD 83、CD86等分子的表达均有显著上调作用(P<0.05,统计表示数据有显著性差异),显著提高BMDC分泌IL-12p70含量。表明以PS包覆PLA的抗原纳米囊可以极大提高BMDC的免疫应答水平,可能成为潜在的新型疫苗载药系统。
附图说明
图1:本发明方法以卵清蛋白为模型多肽的制备和检查流程图。
图2:BMDC表达MHC I水平比较,#与OVA组有显著差异,*与OVA/PLA组有显著差异。
图3:BMDC表达MHC II水平比较,##与OVA组有非常显著差异,**与OVA/PLA组有非常显著差异。
图4:BMDC表达CD80水平比较,与OVA、OVA/PLA组没有显著差异。
图5:BMDC表达CD83水平比较,#与OVA组有显著差异,*与OVA/PLA组有显著差异。
图6:BMDC表达CD86水平比较,#与OVA组有显著差异,与OVA/PLA组没有显著差异。
图7:BMDC对纳米囊的摄取量比较,*与OVA/PLA组有显著差异。
图8:OVA/PLA/PS对BMDC活细胞率的影响。
具体实施方式
实施例1:OVA/PLA/PS纳米囊(含25mg/ml OVA)制备
1.称取250mg OVA,溶于pH7.0,0.01mol/L的PBS中,定容为10.0ml,作为内水相。
2.称取125mg PLA,溶于10ml二氯甲烷中,充分搅拌至均匀,作为有机相。
3.取3ml步骤2中制备的有机相,向该有机相中逐滴加入450μl步骤1中制备的内水相,搅拌成悬浮液。
4.采用宁波新芝生物技术研究所生产的JY99-2D超声波细胞破碎仪,在步骤3制备的悬浮液中插入超声探头,将超声破碎仪设置成功率200W、超声时间3秒、间隔时间5秒,超声7次,制备获得初乳。
5.称取100~300mg聚乙烯醇(PVA),溶于pH7.0,0.01mol/L的磷酸缓冲水溶液(PBS)中,定容为10.0ml,作为外水相。
6.取3ml步骤5中制备的PVA溶液(外水相),向该外水相中逐滴加入250~750μl步骤4中制备的初乳,搅拌成悬浮液。
7.采用宁波新芝生物技术研究所生产的JY99-2D超声波细胞破碎仪,在步骤6制备的悬浮液中插入超声探头,将超声破碎仪设置成功率200W、超声时间3秒、间隔时间5秒,超声7次,制备获得复乳。
8.称取40~300mg鱼精蛋白(PS),充分溶于pH7.0,0.01mol/L的磷酸缓冲水溶液(PBS)中,定容为10.0ml。
9.取3ml步骤8中制备的PS溶液,加入到3ml步骤7中制备的复乳中,采用实验室常规磁力搅拌器,室温下,100rpm,搅拌2小时,制备得到PS包覆的PLA纳米囊(OVA/PLA/PS)悬浮液。
10.将步骤9中制备的纳米囊悬浮液置于美国Beckman公司的J-26XP高速冷冻离心机中,设定4℃,15,000rpm,离心30分钟,去掉上清,沉淀为PS包覆的PLA纳米囊(OVA/PLA/PS);将步骤6中制备的悬浮液置于美国Beckman公司的J-26XP高速冷冻离心机中,设定4℃,15,000rpm,离心30分钟,去掉上清,沉淀为PLA纳米囊(OVA/PLA)。
11.将OVA/PLA/PS纳米囊测定纳米囊的粒径、表面电位和分散系数,与没有包覆PS的PLA纳米囊(OVA/PLA)比较,获得表1各项表征技术参数。
表1 鱼精蛋白包覆PLA纳米囊(OVA/PLA/PS)的表征技术参数(表中数值为平均值±标准差,3次检测结果)
12.在无菌环境中制备BMDC:
(1)取C57/BL6小鼠的胫骨和股骨,剪掉骨两端,用注射器吸取细胞培养用RPMI 1640培养液反复冲洗含骨髓的骨干,3~4次,直至骨干颜色变白,收集冲洗液(含骨髓干细胞及红细胞的RPMI 1640培养液)置于无菌离心管中;
(2)室温下1,500rpm,离心5分钟,收集细胞;
(3)加入红细胞裂解液5ml作用3分钟,室温下1,500rpm,离心5分钟,收集细胞;
(4)加入RPMI 1640培养液10ml,混匀洗涤,室温下1,500rpm,离心5分钟,收集细胞;
(5)重复步骤(4)一次;
(6)在细胞中加入RPMI 1640培养液(含20ng/ml小鼠粒细胞巨噬细胞集落刺激因子(GM-CSF)、10ng/ml小鼠白细胞介素-4(IL-4)、10%胎牛血清、100U/ml青霉素和100μg/ml链霉素),并调整浓度为5×105/ml;
(7)将步骤(6)获得的细胞分别加到细胞培养6孔板中,每孔2ml,将6孔板置37℃、5%CO2饱和湿度的细胞培养箱中培养;
(8)培养2天,吸弃细胞悬液,获得贴壁的骨髓干细胞,于培养的第3、5天各更换一半新鲜的RPMI 1640培养液;
(9)培养到第6~7天,取出6孔板,用吸管轻轻反复吸取吹出细胞,收集悬浮和半贴壁细胞用于后续实验,此即未成熟的细胞BMDC。
13.向BMDC加入OVA/PLA/PS纳米囊,采用流式细胞仪检测BMDC表面的MHC I、MHC II、CD80、CD83、CD86等指标,与PBS、OVA溶液、OVA/PLA纳米囊比较,结果见图2~6;采用酶联免疫法检测BMDC的IL-12p70分泌水平,结果见表2。
表2 纳米囊对BMDC分泌IL-12p70的影响(表中数值为平均值±标准差,3次检测结果)
注:与PBS组相比,*有显著差异,**有非常显著差异
14.将荧光材料FITC与OVA/PLA/PS纳米囊进行偶联,然后加入BMDC,通过流式细胞仪检测BMDC对纳米囊的摄取量,结果如图7。
15.采用CCK-8试剂[含有WST–8:2-(2-甲氧基-4-硝基苯基)-3-(4-硝基苯基)-5-(2,4-二磺酸苯)-2H-四唑单钠盐]检测活细胞率方法,对比OVA/PLA纳米囊与OVA/PLA/PS对细胞的毒性,结果如图8。
上述结果表明,OVA/PLA/PS促进BMDC表达MHC I、MHC II、CD83、CD86分子;分泌IL-12p70水平提高,表明BMDC的抗原呈递作用增强,出现抗原交叉呈递现象,是提高体液免疫与细胞免疫的基础。OVA/PLA/PS被BMDC摄取的量有极大提高,并未显示对BMDC有明显的毒性,表明OVA/PLA/PS具有成为新型疫苗载药系统的潜在可能性。
主要参考文献:(1)张虹,鮟鱇鱼皮硫酸皮肤素的提取,食品与发酵工业,2009,35(2):167;(2)唐明龙,粗品肝素黄分离纯化为高纯度肝素钠的方法,发明专利,2006;(3)李坦等,一种从肝素副产物中纯化硫酸皮肤素的方法,发明专利,2009;(4)国家药典委员会,《中华人民共和国药典》(三部),化学工业出版社,2010。

Claims (4)

1.一种蛋白多肽疫苗载药系统,为聚乳酸包覆蛋白多肽疫苗、鱼精蛋白包覆聚乳酸的水包油包水结构的阳离子纳米囊。
2.根据权利要求1所述的蛋白多肽疫苗载药系统,其特征在于,所述的蛋白多肽疫苗为卵清蛋白或人乙型肝炎病毒表面抗原。
3.根据权利要求1所述的蛋白多肽疫苗载药系统,其特征在于,所述的蛋白多肽疫苗载药系统粒径为200~300纳米,表面电位为10~20毫伏,分散系数不大于0.1。
4.权利要求1所述的蛋白多肽疫苗载药系统的制备方法,包括以下步骤:
步骤一:称取适量蛋白多肽疫苗溶于pH7.0、0.01mol/L的磷酸缓冲水溶液中,浓度为12~100mg/ml,作为内水相;称取聚乳酸溶于二氯甲烷中,浓度为8~40mg/ml,作为有机相;
步骤二:向有机相中逐滴加入内水相,内水相与有机相体积之比为1:3~1:10,搅拌成悬浮液,并用超声波细胞破碎仪制得初乳,超声功率200W、超声时间3秒、间隔时间5秒,共超声7次;
步骤三:称取聚乙烯醇溶于pH7.0,0.01mol/L的PBS中,质量体积浓度为1~3%,作为外水相;
步骤四:向外水相中逐滴加入步骤二中制备的初乳,控制有机相与外水相体积之比为1:2~1:6,搅拌成悬浮液,并用超声波细胞破碎仪制得复乳,超声功率200W、超声时间3秒、间隔时间5秒,共超声7次;
步骤五:称取鱼精蛋白溶于pH7.0,0.01mol/L的PBS中,浓度为2~15mg/ml;
步骤六:取步骤五制备的PS溶液,加入步骤四制备的复乳中,采用磁力搅拌器,室温下100rpm搅拌2小时,制备得到含有PLA包覆OVA、PS包覆PLA的OVA/PLA/PS纳米囊悬浮液,4℃下将悬浮液离心去上清,得到OVA/PLA/PS的W/O/W结构的阳离子纳米囊即为蛋白多肽疫苗载药系统。
CN201410470267.7A 2014-09-15 2014-09-15 一种蛋白多肽疫苗载药系统及其制备方法 Pending CN104189900A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410470267.7A CN104189900A (zh) 2014-09-15 2014-09-15 一种蛋白多肽疫苗载药系统及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410470267.7A CN104189900A (zh) 2014-09-15 2014-09-15 一种蛋白多肽疫苗载药系统及其制备方法

Publications (1)

Publication Number Publication Date
CN104189900A true CN104189900A (zh) 2014-12-10

Family

ID=52075366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410470267.7A Pending CN104189900A (zh) 2014-09-15 2014-09-15 一种蛋白多肽疫苗载药系统及其制备方法

Country Status (1)

Country Link
CN (1) CN104189900A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101966A (zh) * 2017-12-26 2018-06-01 暨南大学 基于细胞穿膜肽的氧化还原敏感多肽及其在疫苗载体中的应用
CN113908267A (zh) * 2021-11-30 2022-01-11 中国科学院长春应用化学研究所 一种疫苗佐剂及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J.M. MARTÍNEZ GÓMEZ ET AL.: "Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis", 《JOURNAL OF CONTROLLED RELEASE》 *
LIANG ZHAO ET AL.: "Nanoparticle vaccines", 《VACCINE》 *
杜美: "鱼精蛋白包覆PLGA纳米粒用于乙肝疫苗载体的初步研究", 《中国优秀硕士学位论文数据库》 *
韩瑞玲: "鱼精蛋白包覆PLGA纳米粒用于疫苗载体的初步研究", 《中国博士学位论文全文数据库》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101966A (zh) * 2017-12-26 2018-06-01 暨南大学 基于细胞穿膜肽的氧化还原敏感多肽及其在疫苗载体中的应用
CN108101966B (zh) * 2017-12-26 2020-10-27 暨南大学 基于细胞穿膜肽的氧化还原敏感多肽及其在疫苗载体中的应用
CN113908267A (zh) * 2021-11-30 2022-01-11 中国科学院长春应用化学研究所 一种疫苗佐剂及其制备方法和应用
CN113908267B (zh) * 2021-11-30 2023-12-19 中国科学院长春应用化学研究所 一种疫苗佐剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP6434995B2 (ja) 界面活性剤を含まない水中油エマルジョン及びその用途
CN105362251B (zh) DOTAP-mPEG-PLA纳米粒及其纳米粒溶液、载药复合物和制备方法和应用
Felder et al. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters
Trifonova et al. Obtaining and characterization of spherical particles—new biogenic platforms
CN108324938A (zh) 一种颗粒型佐剂及其制备方法和应用
CN109528653A (zh) 具有基因编辑功能的膜性囊泡及其制备方法、药物组合物和用途
Liu et al. Surface-engineered cubosomes serve as a novel vaccine adjuvant to modulate innate immunity and improve adaptive immunity in vivo
CN112142972A (zh) 修饰的聚乙烯亚胺衍生物及其合成方法和应用
CN110403917A (zh) 一种人工外泌体、其制备方法及应用
CN110613844A (zh) 一种迷你联合佐剂纳米颗粒及其制备方法和应用
CN109111575B (zh) 一种金属-有机框架纳米颗粒的制备方法和应用
CN104189900A (zh) 一种蛋白多肽疫苗载药系统及其制备方法
CN108096189A (zh) 一种脂质体纳米颗粒及其药物组合物和应用
DE60026571T2 (de) Durchflussverfahren zur herstellung von mikropartikeln
CN108403659A (zh) 一种硬乳液纳微球及其制备方法和应用
CN104974343A (zh) 改性聚乙烯亚胺及其在制备基因转染载体试剂中的应用
CN103721269B (zh) 脂质体保护的纳米金基因载体及其制备方法
CN112137961A (zh) 一种雷帕霉素组合物及其制备方法
JP2011088909A (ja) 核酸を送達するための微粒子
Yu et al. DOTAP-incorporated PEG-PLGA nanoparticles for efficient in vitro and in vivo gene delivery
AU2020203845C1 (en) Tumor lysate loaded particles
Zwiorek Gelatin nanoparticles as delivery system for nucleotide-based drugs
US9592205B2 (en) Fascile synthesis of biocompatible polymer capsule nanoparticles for drug encapsulation
CN104689325B (zh) 一种负载寡聚脱氧核苷酸的壳聚糖纳米粒及其制备方法和应用
CN114366808B (zh) 一种多糖和病毒抗原共递送纳米疫苗、其制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141210