发明内容
本发明解决的问题是提供一种磁共振装置中成像磁场测量和校正的方法及系统,以提高磁共振成像的图像质量。
为了解决所述问题,本发明提供一种磁共振装置中成像磁场测量和校正的方法,包括:提供成像磁场,所述成像磁场用于对待扫描对象进行扫描;采集与所述成像磁场相对应的信号;处理所述信号,获得实际磁场强度;基于所述实际磁场强度与目标磁场强度的偏差进行校正。
可选地,提供成像磁场的步骤包括:通过磁共振装置的磁组件提供成像磁场;所述采集与所述成像磁场相对应的信号的步骤包括:提供测量射频信号以激发监测样本并产生与所述成像磁场相对应的测量磁共振信号,采集所述测量磁共振信号;所述处理所述信号,获得实际磁场强度的步骤包括:基于磁共振原理,根据测量磁共振信号获得实际磁场强度。
可选地,提供测量射频信号的步骤包括:通过固定于所述磁组件中的探头或者体线圈提供所述测量射频信号。
可选地,提供测量射频信号以激发位于所述探头内部的监测样本,所述监测样本产生与所述成像磁场相对应的测量磁共振信号。
可选地,形成所述测量磁共振信号的步骤包括:采用与成像时相同或者不同的质子作为监测样本,以产生测量磁共振信号。
可选地,所述校正的步骤包括对成像磁场进行校正。
可选地,在对待扫描对象进行扫描之前,对所述成像磁场进行测量与校正。
可选地,在对待扫描对象进行扫描过程中,对所述成像磁场进行测量与校正。
可选地,采集测量磁共振信号的步骤包括:采用多次激发多次采集或者一次激发多次采集的方式获得测量磁共振信号。
可选地,采集测量磁共振信号的步骤包括:采集一组测量磁共振信号;处理所述信号,获得实际磁场强度的步骤包括:基于所述一组测量磁共振信号建立实际磁场强度的物理模型,以预测实际磁场强度的变化。
可选地,所述基于所述实际磁场强度与目标磁场强度的偏差进行校正的步骤包括:基于实际磁场强度与目标磁场强度的偏差获得成像磁场校正量;根据成像磁场校正量获得所述磁组件的电流调整量;基于所述磁组件的电流调整量校正磁组件所提供的成像磁场;其中,所述实际磁场强度与目标磁场强度的偏差,经过运算能分为均匀项偏差、线性项偏差以及高阶项偏差。
可选地,所述磁组件包括梯度线圈;所述根据成像磁场校正量获得所述磁组件的电流调整量的步骤包括:根据成像磁场校正量获得所述梯度线圈的电流调整量;所述基于所述磁组件的电流调整量校正磁组件所提供的成像磁场的步骤包括:调整所述梯度线圈的电流,以实现线性项偏差校正。
可选地,所述磁组件还包括匀场线圈;所述根据成像磁场校正量获得所述磁组件的电流调整量的具体步骤包括:根据成像磁场校正量获得所述匀场线圈的电流调整量;所述基于所述磁组件的电流调整量校正磁组件所提供的成像磁场的步骤包括:调整所述匀场线圈的电流,以实现线性项以及高阶项偏差的校正。
可选地,所述磁组件还包括主成像磁场漂移补给线圈;所述根据成像磁场校正量获得所述磁组件的电流调整量的具体步骤包括:根据成像磁场校正量获得所述主成像磁场漂移补给线圈的电流调整量;所述基于所述磁组件的电流调整量校正磁组件所提供的成像磁场的步骤包括:调整主成像磁场漂移补给线圈的电流,以实现均匀项偏差的校正。
可选地,所述磁共振装置还执行图像重建的步骤;所述基于所述实际磁场强度与目标磁场强度的偏差进行校正的步骤包括:在通过实际磁场强度获得的数据进行图形重建的过程中,结合实际磁场强度与目标磁场强度的偏差进行所述图像重建,以输出校正后的图像。
可选地,所述采集与所述成像磁场相对应的信号的步骤包括:感应所述成像磁场变化,以形成与所述成像磁场相对应的交变电动势,采集所述交变电动势;所述处理所述信号,获得实际磁场强度的步骤包括:基于电磁感应原理,根据所述交变电动势获得实际磁场强度。
相应地,本发明还提供一种磁共振装置中成像磁场测量和校正的系统,包括:磁组件,用于对待扫描对象进行扫描;采集单元,用于采集与所述成像磁场相对应的信号;处理单元,用于处理所述信号,获得实际磁场强度;校正单元,用于根据所述实际磁场强度与目标磁场强度的偏差进行校正;控制单元,与所述磁组件、采集单元、处理单元和校正单元相连,用于控制磁组件提供成像磁场,用于控制采集单元进行信号的采集,用于控制处理单元处理所述信号,还用于控制校正单元进行校正。
可选地,所述采集单元包括:探头,用于在测量射频信号激发监测样本并产生与所述成像磁场相对应的测量磁共振信号之后,采集所述测量磁共振信号;采集通道,用于传输所述测量磁共振信号;所述处理单元用于根据磁共振原理,基于所述测量磁共振信号获得实际磁场强度。
可选地,所述监测样本位于所述探头内部,与产生成像磁共振信号的样本相同或者不同。
可选地,所述探头固定于所述磁组件的表面上。
可选地,所述磁共振装置还包括局部线圈,所述探头嵌入所述局部线圈中。
可选地,所述探头分布于梯度正交轴上。
可选地,所述探头的数量至少为4个,所述探头对称分布于三个梯度正交轴上。
可选地,所述探头为发射接收射频线圈或者发射射频线圈。
可选地,所述探头为侧面设置有旁翼的线圈。
可选地,所述探头为螺旋管结构的线圈。
可选地,所述探头中设置有磁性材料,用于产生能够补偿所述成像磁场的局部磁场。
可选地,所述局部磁场基于磁性材料中加载电压的改变而改变,用于调整所述成像磁场的局部分布。
可选地,所述磁共振装置还包括体线圈,用于提供成像射频信号和测量射频信号;所述磁组件包括梯度线圈,所述控制单元与所述梯度线圈、体线圈、探头、采集通道连接,用于控制所述梯度线圈提供成像磁场,并控制所述体线圈提供成像射频信号,以产生成像磁共振信号;所述控制单元还用于在磁共振成像过程中控制所述体线圈提供测量射频信号,控制所述探头采集测量磁共振信号,还用于控制所述采集通道同步传输所述成像磁共振信号和所述测量磁共振信号。
可选地,所述采集通道包括多通道,所述多通道的一部分用于传输成像磁共振信号,所述多通道的另一部分用于传输所述测量磁共振信号。
可选地,所述磁共振装置还包括体线圈,用于提供成像射频信号和测量射频信号;所述磁组件包括梯度线圈,所述控制单元与所述梯度线圈、体线圈、探头、采集通道连接;所述控制单元用于在磁共振成像之前控制所述梯度线圈提供成像磁场,控制所述体线圈提供测量射频信号,控制所述探头采集测量磁共振信号,还用于控制所述采集通道传输所述测量磁共振信号,以实现校正。
可选地,所述控制单元控制所述体线圈一次或多次激发监测样本并控制所述探头对测量磁共振信号进行多次采集。
可选地,所述控制单元用于控制探头采集一组测量磁共振信号;所述处理单元用于根据所述一组测量磁共振信号建立实际磁场强度的物理模型,以预测实际磁场强度的变化。
可选地,所述校正单元包括:第一计算元件,用于根据实际磁场强度与目标磁场强度的偏差获得成像磁场校正量;第二计算元件,用于根据成像磁场校正量获得所述磁组件的电流调整量;所述控制单元与所述第二计算元件以及所述磁组件相连,用于根据所述磁组件的电流调整量改变磁组件内的电流,以实现成像磁场校正;所述实际磁场强度与目标磁场强度的偏差,经过运算能分为均匀项偏差,线性项偏差以及高阶项偏差。
可选地,所述磁组件包括梯度线圈;所述第一计算元件,用于根据实际磁场强度与目标磁场强度的偏差获得线性场的成像磁场校正量;所述第二计算元件,用于根据所述线性场的成像磁场校正量获得所述梯度线圈的电流调整量;所述控制单元与所述第二计算元件以及所述梯度线圈相连,用于根据所述梯度线圈的电流调整量改变梯度线圈的电流,以实现线性项偏差的校正。
可选地,所述磁共振装置还设置有提供补偿成像磁场的匀场线圈;所述校正单元还包括:第三计算元件,用于根据成像磁场校正量获得所述匀场线圈的电流调整量;所述控制单元与所述第三计算单元以及所述匀场线圈相连,用于根据所述匀场线圈的电流调整量改变匀场线圈内的电流,以实现线性项以及高阶项偏差的校正。
可选地,所述磁共振装置还设置有提供补偿成像磁场的主成像磁场漂移补给线圈;所述校正单元还包括:第四计算元件,用于根据成像磁场校正量获得所述主成像磁场漂移补给线圈的电流调整量;所述控制单元与所述第四计算单元以及所述主成像磁场漂移补给线圈相连,用于根据所述主成像磁场漂移补给线圈的电流调整量改变主成像磁场漂移补给线圈内的电流,以实现均匀场的成像磁场校正。
可选地,所述磁共振装置还设置有图像重建单元,所述图像重建单元与所述校正单元相连,用于对通过实际磁场强度获得的数据进行图形重建的过程中,结合实际磁场强度与目标磁场强度的偏差进行所述图像重建,以输出完成校正的图像。
可选地,所述采集单元包括:感应线圈,用于感应所述成像磁场变化,以形成与所述成像磁场相对应的交变电动势;所述处理单元基于电磁感应原理,根据所述交变电动势获得实际磁场强度。
与现有技术相比,本发明的技术方案具有以下优点:本发明通过测量实际磁场强度,并获得实际磁场强度与目标磁场强度的偏差,以进行校正,可以对成像磁场的非理想性进行补偿,进而提高成像质量。
可选地,通过磁共振装置的磁组件提供成像磁场;通过固定于所述磁组件中的探头形成测量磁共振信号,以进行校正,从而可以简化成像磁场测量和校正的步骤。
可选地,校正的步骤包括对成像磁场进行校正,这样通过进行成像磁场测量,并将测量结果反馈到成像磁场形成装置中,从而使校正后的成像磁场可以更加均匀和稳定,基于校正后的成像磁场进行成像可以获得高质量图像。对成像磁场进行校正包括在对待扫描对象进行扫描之前,对所述成像磁场进行测量和校正,还包括在对待扫描对象进行扫描的过程中,对所述成像磁场进行测量和校正,提高了测量和校正的操作自由度。
可选地,在后处理过程中,结合所述实际磁场强度与目标磁场强度的偏差对图像进行校正,可以输出高质量图像。
具体实施方式
磁共振装置对磁场强度的均匀性要求较高,而磁场强度除了具有一定的空间分布,同时还会随时间有所变化(即发生成像磁场飘移)。现有技术的磁共振装置输出的图像质量不够高。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
为了解决现有技术中的问题,本发明提供一种磁共振装置中成像磁场测量和校正的方法,所述方法包括:提供成像磁场,所述成像磁场用于对待扫描对象进行扫描;采集与所述成像磁场相对应的信号;处理所述信号,获得实际磁场强度;基于所述实际磁场强度与目标磁场强度的偏差进行校正。本发明在磁共振装置中,通过测量实际磁场强度,并获得实际磁场强度与目标磁场强度的偏差对实现磁共振的成像磁场进行校正,以提高图像质量。
参考图1,示出了本发明磁共振装置中成像磁场测量和校正的方法一实施方式的流程示意图。需要说明的是,本实施方式基于磁共振原理实现测量和校正,但是本发明对此不做限制,还可以根据诸如电磁感应等的原理实现测量和校正。具体地,所述方法大致包括以下步骤:
步骤S1,提供成像磁场,用于对待扫描对象进行扫描;
步骤S2,提供测量射频信号,以激发监测样本并产生与所述成像磁场相对应的测量磁共振信号,采集所述测量磁共振信号;
步骤S3,基于磁共振原理,根据测量磁共振信号获得实际磁场强度;
步骤S4,基于所述实际磁场强度与目标磁场强度的偏差进行校正。
下面对各步骤进行详细描述。
执行步骤S1,提供成像磁场,所述成像磁场用于对待扫描对象进行扫描。
通常磁共振装置包括圆柱形的腔体,所述腔体内部为检测区,成像对象通常设置在所述检测区。需要说明的是,所述腔体的侧壁中设置有磁组件,所述磁组件用于提供成像用的成像磁场,通过所述成像磁场可以获得磁共振信号进而获得磁共振图像。
本实施例可以在特定位置对所述成像磁场的磁场强度进行实时的测量,以实现对所述成像磁场的校正,通过校正后的成像磁场可以获得高质量的磁共振图像;或者,在图像重建过程中结合磁场强度校正的因素,以获得高质量磁共振图像。
在本实施例中,所述磁组件可以包括超导线圈和梯度线圈。其中,所述超导线圈用于产生主成像磁场,所述梯度线圈用于产生梯度场,磁共振装置的腔体内用于获得磁共振信号的是体线圈和梯度线圈共同提供的成像磁场。如下公式表示成像磁场的分布情况:
此处以B0表示所述成像磁场,以X轴为例超导线圈和梯度线圈产生的实际磁场强度可以表示为: 。
需要说明的是,此处对磁场强度的表示只展开到三阶项,更高阶的项,对于图像效果影响比较小,且需要更加复杂的主动匀场线圈,因此实际中高阶一般通过被动匀场来实现的。
基于超导线圈和梯度线圈设定的位置、材料、数量等因素,结合图像质量的设计规格,所属技术领域技术人员还可以对所述成像磁场设置一目标成像磁场,基于所述目标成像磁场进行成像可以获得符合设计规格的高质量图像。本实施例以B00表示目标成像磁场。
所述目标成像磁场为后续进行校正的标准,以X轴为例实际的成像磁场校正量可以表示为:
公式(1)
其中为均匀项偏差,GX为线性线偏差,磁场强度X2+cX3为高阶偏差。本实施例可以通过不同的校正对象以及不同的方法实现对上述均匀偏差、线性偏差或高阶偏差的校正。
需要说明的是基于磁组件提供成像磁场的方法为本领域常用技术手段,在此不再赘述。还需要说明的是,本发明对磁组件的组成不做限制,不应以此限制本发明。
执行步骤S2,提供测量射频信号,以激发监测样本并产生与所述成像磁场相对应的测量磁共振信号。
本实施例中,通过设置在圆柱形腔体内的体线圈提供成像射频信号,还用于提供测量射频信号,以激发监测样本,从而产生与步骤S1所提供的成像磁场相对应的测量磁共振信号。通过设置在腔体内的探头采集所述测量磁共振信号。
可选地,若所述探头为发射接收线圈,所述体线圈可以只提供成像射频信号,而由所述探头提供测量射频信号并采集测量磁共振信号。
具体地,激发产生测量磁共振信号的监测样本可以采用与所述成像磁共振信号相同的质子,例如H质子,从而实现与磁共振装置良好的集成性。但是本发明对此不作限制,在其他实施例中也可以采用与成像磁共振信号不同的质子,从而减少测量和校正过程对成像过程的干扰。
探头设置于固定的位置,可以预先获知探头的位置信息,进而实现对特定位置的成像磁场进行测量。但是本发明对探头是否固定并不做限制。
具体地,所述探头的空间位置比较关键,通过设置特定的位置,可以利用最少的探头数量实现良好的测量效果。
参考图2,示意出了探头一实施例的示意图。本实施例以实现均匀场、线性场校正为例。磁场强度在X、Y、Z三个梯度正交轴上均具有梯度分布,通过在3个梯度正交轴上设置探头100,那么最少采用4个探头100即可以实现对均匀场、线性场的校正。
所述探头可以设置于磁组件中,例如,设置于梯度线圈中。可选地,设置在磁组件的表面可以实现较大范围的磁场强度的测量。
本实施例是在磁共振装置进行扫描的过程中,激发测量磁共振信号和采集测量磁共振信号的,即在成像过程中同步(synchronous)进行磁场强度的测量。
具体地,磁共振装置进行成像的过程是通过成像序列进行激发磁共振信号的,可以在所述成像序列中添加与成像射频信号同步的测量射频信号。通过成像射频信号激发成像磁共振信号,通过测量信号激发测量磁共振信号,从而实现实时的成像磁场测量。同时,通过现有的成像序列实现测量射频信号的激发和采集,可以与现有的磁共振装置实现良好的集成性,还可以简化成像磁场测量和校正的步骤。
继续执行步骤S2,采集所述测量磁共振信号。磁共振装置中设置有多个通道,用于传输磁共振信号。所述探头采集到所述测量磁共振信号之后,可以占用部分通道来传输测量射频信号激发的测量磁共振信号,另外其他的通道继续传输成像射频信号激发的成像磁共振信号。
可选地,可以在所述成像序列中添加与成像采集信号同步的(synchronous)的测量采集信号,以实现在成像采集信号获得成像磁共振信号的过程中,通过测量采集信号获得测量磁共振信号。
需要说明的是,执行步骤S2时,可以采用多次激发多次采集的方式。如图3所示,在一个测量周期中,设置4个测量射频激发信号111,对应设置4个测量控制采集信号112,从而获得4个测量磁共振信号113。
类似地,还可以采用1次激发多次采集的方式,如图4所示,在一个测量周期中,每一个测量射频信号对应设置三个测量控制采集信号,从而可以获得4个测量磁共振信号。
需要说明的是,图3和图4均是对测量磁共振信号的频率信息进行采集,但是本发明对此不做限制,磁共振信号中还包括相位信息,在其他实施例中还可以对测量磁共振信号的相位进行采集(如图5所示)。
执行步骤S3,基于磁共振原理,根据测量磁共振信号获得实际磁场强度。
测量磁共振信号包括频率信息,也包括相位信息。可以通过频率信息获得实际磁场强度,具体如下:
其中为极坐标形式的空间点坐标,f为频率。
也可以通过相位获得瞬时的实际磁场强度。在测量采集信号的时间间隔时间τ内累积的相位变化为,若τ足够短,可以通过下式估算实际磁场强度:
需要说明的是,由于成像磁场飘移是一个随时间慢变的过程。在执行步骤S2和步骤S3的时候,还可以先在采集与所述成像磁场相对应的信号的步骤中:获得不同时刻采集的一组测量磁共振信号。
具体地,较为密集地采集一组测量磁共振信号,之后,在处理所述测量磁共振信号获得实际磁场强度的步骤中,可以基于密集采集所述一组测量磁共振信号,建立实际磁场强度的物理模型。所述物理模型可以模拟实际磁场强度的变化,从而可以估计和预测特定时间间隔内磁场强度的分布。而在所述特定时间间隔之后重新采集测量磁共振信号,以对所述物理模型进行修正。这样的采集和处理信号的方式,可以减少采集的次数,从而提高测量效率。
如图6所示,RF_monitor1和RF_monitor2为密集采集得到的测量磁共振信号对应的数据,用于预测特定时间间隔(dT)内成像磁场动态分布,每隔dT时间后重新采集测量磁共振信号对应的数据RF_monitor3,以对磁场预估的结果做修正。这样的采集和处理信号的方式,可以减少采集的次数,从而提高测量效率。
执行步骤S4,基于所述实际磁场强度与目标磁场强度的偏差进行校正。具体地,通过步骤S3获得实际磁场强度之后,基于实际磁场强度与目标磁场强度的偏差获得成像磁场校正量,之后基于所述成像磁场校正量实现校正。
一方面可以根据成像磁场校正量对成像磁场进行校正(调整线圈的电流),以使调整后形成的成像磁场接近目标磁场强度。
在一个实施例中以调整梯度线圈中电流大小为例进行说明,根据所述成像磁场校正量修改编码梯度,校正磁共振信号的K空间轨迹。具体地,根据测量磁共振信号计算公式(1)中待校正的G,根据G计算出需要改变的电流大小,进一步地在计算出梯度线圈对应的电流,以实现线性项偏差的校正。
在另一个实施例中,还可以根据成像磁场校正量获得所述匀场线圈的电流调整量,根据所述匀场线圈的电流调整量改变匀场线圈内的电流,以实现线性项偏差以及高阶项偏差的校正。
在另一个实施例中,还可以根据成像磁场校正量获得主成像磁场漂移补给线圈的电流调整量,根据所述主成像磁场漂移补给线圈的电流调整量改变主成像磁场漂移补给线圈内的电流,以实现均匀项偏差的校正。
另一方面还可以在通过实际磁场强度获得的数据进行图形重建的过程中,结合实际磁场强度与目标磁场强度的偏差进行所述图像重建,以在最终获得的图像中校正所述偏差。
至此,实现了对磁场强度的实时测量和校正,校正之后可以获得质量较高的图像,提高测量精度。
需要说明的是,在实际磁共振成像过程中,控制整个扫描流程的信息配置于磁共振成像扫描序列中,相应地,所述测量与校正的流程信息也配置于测量校正序列中,在磁共振成像序列运行的同时运行所述测量校正序列,所述测量校正序列具体包括测量射频信号以激发样本、测量采集控制信号以控制探头和采集通道对监测样本所产生的测量磁共振信号进行采样的时间、频率等信息。
还需要说明的是,在上述实施例中,激发、采集测量磁共振信号的步骤与激发、采集成像磁共振信号的步骤同步的(synchronous)。在其他实施例中,还可以在磁共振装置进行成像之前,提供成像磁场并进行测量和校正。具体地,在提供成像磁场之后,提供测量射频信号以激发测量磁共振信号,采集所述测量磁共振信号以获得实际磁场强度,并基于实际磁场强度与目标磁场强度的差值实现校正。在校正之后再通过校正后的成像磁场进行成像,从而可以获得高质量的图像。
上述中提到了“调整梯度线圈中电流大小,根据所述磁场校正量修改编码梯度,校正磁共振信号的K空间轨迹”的序列层面调整方式,事实上,调整磁组件中线圈电流的大小,可以如上所述的将包含电流大小校正量信息反馈到成像序列中,修正成像序列中控制梯度线圈,匀场线圈或主磁场漂移补给线圈电流大小的信息,从而实现这些线圈电流大小的调整。同时,可以通过计算机根据电流的校正量直接改变线圈中电流的大小。本发明对电流大小调整的具体方式不作限制。
在其他实施例中,还可以基于电磁感应原理实现测量。具体地,所述方法包括:感应所述成像磁场变化,以形成与所述成像磁场相对应的交变电动势,采集所述交变电动势;所述处理所述信号,获得实际磁场强度的步骤包括:基于电磁感应原理,根据所述交变电动势获得实际磁场强度。通过电磁感应原理实现测量之后,还可以基于上述实施例类似的校正方法实现成像磁场校正。
参考图7,示出了本发明磁共振装置中成像磁场测量和校正的系统一实施方式的功能框图。所述系统大致包括:
磁组件201,用于对待扫描对象进行扫描。
采集单元202,用于采集与所述成像磁场相对应的信号。
处理单元203,用于处理所述信号,获得实际磁场强度。
校正单元204,基于所述实际磁场强度与目标磁场强度的偏差进行校正。
控制单元205,与所述磁组件201、采集单元202、处理单元203和校正单元204相连,用于控制磁组件201提供成像磁场,用于控制采集单元202进行信号的采集,用于控制处理单元203处理述信号,还用于控制校正单元204进行校正。
本发明提供的成像磁场测量和校正的系统可以对磁共振装置中的成像磁场进行实时测量和校正,从而可以使校正后的磁共振装置输出高质量的图像。
参考图8,示出了本发明磁共振装置中成像磁场测量和校正的系统一实施例的示意图。本实施例以基于磁共振原理实现成像磁场测量和校正为例,但是不应以此限制本发明。
需要说明的是,磁共振装置包括圆柱形的腔体210,所述腔体210内部为探测区,磁共振成像的成像对像放置于所述探测区,以便于实现成像。
本实施例磁共振装置中成像磁场测量和校正系统包括:设置于所述腔体210的内壁上的磁组件212,用于产生成像磁场。
在本实施例中,所述磁组件212包括超导线圈(图未示)和梯度线圈219,磁共振装置内的成像磁场由超导线圈和梯度线圈219产生。
具体地,以X轴为例,超导和梯度线圈产生的实际磁场强度可以表示为: 。
需要说明的是,此处对磁场强度的表示只展开到三阶项,由于更高阶的项对于图像效果影响比较小,且需要更加复杂的主动匀场线圈,因此实际中高阶一般通过被动匀场来实现的,此处不再展开。
本实施例的采集单元包括:探头211,用于在所述测量射频信号激发监测样本并产生与所述成像磁场相对应的测量磁共振信号后,接收所述测量磁共振信号。
本实施例中探头211固定于所述磁组件212的表面上,从而可以测量大范围的成像磁场动态变化。但是本发明对探头211的位置不作限制,所述探头211还可以固定于腔体210内的其他机械结构上。对探头211采用固定位置的方式设置可以预先得知探头211的空间坐标信息,从而无需在测量过程中对探头211的位置信息进行探测。但是本发明对此不作限制,在其他实施例中还可以采用非固定的方式设置所述探头211。或者,磁共振装置还可以包括局部线圈,所述探头211还可以嵌入所述局部线圈中。
请结合参考图9至图13,示出了图8中探头的实施例的示意图。如图9所示,探头2111为简洁的环形(loop)结构线圈。可选地,如图10,探头2112还可以是一侧设置有旁翼的线圈。或者,如图11所示,探头2113还可以是两侧设置有旁翼的线圈。具有旁翼的线圈具有较好的抵抗非测量磁共振信号的能力。
本实施例中所述探头211为接收线圈,具体地,如图12所示,探头2114还可以为螺线管结构的线圈。或者,如图13所示,探头2115为具备消除外界干扰作用的螺线管结构线圈,原理与上述旁翼线圈的作用相同。
需要说明的是,图9至图13示意出了探头211的几种实现方式,但是,本发明对探头211的结构和材料不做限制。
可选的,所述探头211中设置有磁性材料,用于产生能够补偿所述成像磁场的局部磁场。所述局部磁场可以根据磁性材料中加载电压的改变而改变,从而调整所述成像磁场的局部分布。也就说可以通过改变加载在所述磁性材料两端电压的方向来改变所述磁性材料的磁性,从而改变所述成像磁场的局部分布,以便于得到均匀的成像磁场。
本实施例中所述探头211为接收线圈,所述系统还包括用于提供测量射频信号和成像射频信号的体线圈。但是本发明对此不作限制,在其他实施例中探头可以兼具发射和接收射频信号的功能,则所述探头提供测量射频信号且接收测量磁共振信号,而体线圈仅用于提供成像射频信号。
还需要说明的是,磁共振装置在进行成像时通常通过H质子实现磁共振,本实施例中,所述探头可以采用与成像磁共振信号相同的质子(H质子)实现磁共振。但是本发明对此不作限制,在其他实施例中,所述探头还可以采用与磁共振装置成像时磁共振所用的质子不相同。
通过对磁共振装置中探头的空间分布进行设置,可以利用最少的探头数量达到最好的成像磁场检测效果。具体地,以实现均匀场、线性场校正为例。磁场强度在X、Y、Z三个梯度正交轴上均具有梯度分布,通过在3个梯度正交轴上按照对称分布地方式设置探头,那么最少采用4个探头即可以实现对均匀场、线性场的校正(如图2所示的探头)。
本实施例的采集单元还包括:采集通道215,用于传输所述测量磁共振信号。需要说明的是,现有磁共振装置中设置有多通道,所述多通道的一部分用于传输成像磁共振信号,多通道的另一部分用于实现测量磁共振信号的传输。这样采集通道215采用磁共振装置的现有部件(通道)可以实现测量磁共振信号的传输,可以与现有磁共振装置实现良好的兼容,从而简化成像磁场测量和校正系统的结构。
本实施例系统还包括控制单元214,与所述体线圈、梯度线圈219、探头211、采集通道215和所述处理单元216相连。所述控制单元214用于控制体线圈提供测量射频信号激发监测样本,用于控制探头211对测量磁共振信号进行采集,用于控制采集通道215传输所述磁共振测量信号,还用于控制所述处理单元216对测量磁共振信号进行处理,以实现成像磁场测量。
需要说明的是,控制整个测量与校正过程的信息配置于测量校正序列中,控制单元214同时运行磁共振成像序列以及测量校正序列,控制监测样本被激发的时间间隔、频率等。比如,控制单元214可以控制测量射频信号多次激发监测样本,控制探头211多次采集测量磁共振信号,(例如,通过诸如图3所示的信号实现多次激发、多次采集的功能);比如,所述控制单元214也可以控制测量射频信号一次激发监测样本,控制探头211多次采集测量磁共振信号,(例如,通过诸如图4所示的信号实现一次激发、多次采集的功能)。
需要说明的是,在其他实施例中,所述控制单元214还可以在激发成像磁共振信号之前,控制超导线圈、梯度线圈提供成像磁场,并控制体线圈激发监测样本产生测量磁共振信号,控制所述探头211采集所述测量磁共振信号,还控制所述采集通道传输所述测量磁共振信号,以在磁共振装置进行正式扫描之前实现成像磁场的校正。
需要说明的是,所述测量磁共振信号既包括频率信息(如图3和图4所示),还包括相位信息(如图5所示)。
本实施例磁共振装置中成像磁场测量和校正系统还包括处理单元216,用于根据测量磁共振信号获得实际磁场强度。
所述处理单元216可以根据测量磁共振信号的频率获得实际磁场强度。具体如下:
其中为极坐标形式的空间点坐标,f为频率。
所述处理单元216也可以通过相位获得瞬时的实际磁场强度。在测量采集信号的时间间隔时间τ内累积的相位变化为,若τ足够短,可以通过下式估算磁场强度:
在其他实施例中,所述处理单元216还可以根据测量磁共振信号的其他信息估算磁场强度,不应以此限制本发明。
由于成像磁场飘移是一个随时间慢变的过程,所述控制单元214用于控制采集单元获得不同时刻采集的一组测量磁共振信号;所述处理单元216用于根据所述一组测量磁共振信号建立实际磁场强度的物理模型,以预测实际磁场强度的变化,这样在特定时间间隔内可以不再进行数据采集,处理单元216基于物理模型可以获得特定时间间隔内的成像磁场。之后在特定时间间隔之后重新采集测量磁共振信号,以对所述物理模型进行修正。采用这样的采集和处理信号的方式,可以减少采集的次数,从而提高测量效率。
所述系统还包括校正单元217,在所述控制单元216的控制下,根据处理单元216获得实际磁场强度,对磁共振装置中的成像磁场进行校正。
本实施例中,所述校正单元217包括:第一计算元件(图未示),预先设置有目标磁场强度且与处理单元216相连,用于根据处理单元216测量的实际磁场强度与目标磁场强度的偏差获得成像磁场校正量。
需要说明的是,第一计算元件中预先设置的目标磁场强度可以超导线圈和梯度线圈设定的位置、材料、数量等因素,结合图像质量的设计规格设置,基于所述目标成像磁场进行成像可以获得符合设计规格的高质量图像。本实施例以B00表示目标成像磁场。
第一计算元件通过以下公式获得成像磁场校正量Δ:
其中为均匀项偏差,GX为线性项偏差,磁场强度aX2+cX3为高阶项偏差。
所述校正单元217还包括第二计算元件,用于根据成像磁场校正量获得所述磁组件的电流调整量。
所述控制单元214,与所述校正单元217和磁组件212相连,用于控制所述磁组件212中线圈电流的大小校正成像磁场。
具体地,可以通过不同的校正对象以及不同的计算方法实现对上述均匀项偏差、线性项偏差或高阶项偏差的校正。例如:根据测量磁共振信号计算公式(1)中待校正的G,根据G计算出需要改变的电流大小,假设校正对象为梯度线圈中的电流量,则需要计算出梯度线圈对应的需要调整电流量。
所述控制单元214,与所述梯度线圈219相连,用于根据所述梯度线圈219电流调整量改变梯度线圈219中电流大小,从而实现线性场的校正。
需要说明的是,可选地,磁共振装置还设置有提供补偿成像磁场的匀场线圈213。所述补偿成像磁场与磁组件212提供的成像磁场相配合,以获得更为均匀的成像磁场。
相应地,所述校正单元217除了包括用于根据实际磁场强度与目标磁场强度的偏差获得成像磁场校正量的第一计算元件,还包括第三计算元件,用于根据成像磁场校正量获得所述匀场线圈213的电流调整量。
控制单元214,也与所述匀场线圈213相连,用于根据所述匀场线圈中电流调整量改变匀场线圈213中的电流大小,从而实现线性项偏差以及高阶场偏差的校正。
可选地,磁共振装置还设置有提供矫正主成像磁场漂移的主成像磁场漂移补给线圈(简称B0线圈)。
所述校正单元217除了包括用于根据实际磁场强度与目标磁场强度的偏差获得成像磁场校正量的第一计算元件,还包括第四计算元件,用于根据成像磁场校正量获得所述主成像磁场漂移补给线圈的电流调整量。
控制单元214,也与所述主成像磁场漂移补给线圈相连,用于根据所述主成像磁场漂移补给线圈中电流调整量改变主成像磁场漂移补给线圈中的电流大小,从而实现均匀项偏差的校正。
需要说明的是,实际应用中,所述控制单元214、处理单元216和校正单元217可以集成于一计算机。
上述实施例是对成像磁场进行校正的,校正后的成像磁场更为均匀和稳定,可以获得高质量图像的。但是本发明对此不作限制,在其他实施例中,所述系统还包括图像重建单元,与所述校正单元相连,用于在图像重建过程中结合校正单元提供的实际磁场强度与目标磁场强度的偏差进行图像重建,以输出校正后的、高质量的图像。
需要说明的是,上述实施例是通过磁共振原理实现测量的,但是本发明对此不作限制。还可以通过电磁感应原理实现成像磁场的测量。
具体地,采集单元包括:感应线圈,用于感应所述成像磁场变化,以形成与所述成像磁场相对应的交变电动势;所述处理单元基于电磁感应原理,根据所述交变电动势获得实际磁场强度。基于电磁感应原理实现成像磁场的测量之后,还可以根据与上述实施例类似的校正方式完成校正。本领域人员可以根据上述实施例对其进行相应地修改、变形和替换。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。