CN104160030A - 改善植物抗旱性:upl4 - Google Patents

改善植物抗旱性:upl4 Download PDF

Info

Publication number
CN104160030A
CN104160030A CN201380009859.2A CN201380009859A CN104160030A CN 104160030 A CN104160030 A CN 104160030A CN 201380009859 A CN201380009859 A CN 201380009859A CN 104160030 A CN104160030 A CN 104160030A
Authority
CN
China
Prior art keywords
plant
upl4
protein
drought resistance
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380009859.2A
Other languages
English (en)
Other versions
CN104160030B (zh
Inventor
安妮·德斯莱特斯·梅斯
玛丽克·海伦娜·阿德里安娜·范·赫尔滕
希塔尔·阿尼尔库马尔·迪克西特
马丁·德·福斯
杰斯·大卫·蒙克沃尔德
马修·维塔比莱·迪莱奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Triumphant King Co
Keygene NV
Original Assignee
Triumphant King Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Triumphant King Co filed Critical Triumphant King Co
Publication of CN104160030A publication Critical patent/CN104160030A/zh
Application granted granted Critical
Publication of CN104160030B publication Critical patent/CN104160030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)

Abstract

本发明涉及一种增强植物抗旱性的新方法。所述方法包括破坏所述植物中一个或多个基因的表达。与没有被处理以破坏所述基因的表达的植物相比,该植物显示改善的抗旱性。还提供可以通过根据本发明的方法获得的植物和植物产品。

Description

改善植物抗旱性:UPL4
技术领域
本发明涉及一种增强植物抗旱性的方法。所述方法包括破坏所述植物中一个或多个基因或蛋白质的表达。与没有被处理以破坏所述一个或多个基因或蛋白质表达的植物相比,所述植物显示改善的抗旱性。还提供了可以通过根据本发明的方法获得的植物和植物产品。
背景技术
非生物胁迫,例如干旱、盐度、极端温度、化学毒性和氧化胁迫都是农业的威胁,并且其是全世界作物损失的主要原因(Wang等,(2003)Planta 218(1)1-14)。
本领域中,一些报道可用于处理非生物胁迫的生物化学、分子和遗传学背景(Wang等,(2003)Planta 218(1)1-14或Kilian等(2007)Plant J 50(2)347-363)。用于处理非生物胁迫的植物改良通常是基于保护和保持细胞组分的功能和结构的基因操作。然而,由于对非生物胁迫条件的遗传复杂反应,这样的植物似乎更难控制和工程化。Wang(Wang等,(2003)Planta 218(1)1-14)特别地提及工程化的策略之一依靠使用一个或几个基因,所述基因参与信号传导和调控途径、或编码引起功能和结构性保护物例如渗透物和抗氧剂的合成的途径中存在的酶、或编码赋予耐逆性的蛋白质。
尽管已经报道了在提供非生物胁迫抗性植物方面的改善,但是以其为基础的遗传复杂机制的性质提供了进一步改善该领域的持续的需要。例如,据报道由于发育和生理失衡,基因转化的抗旱植物通常可能显示更慢的生长和减少的生物量(Serrano等,(1999)J Exp Bot 50:1023–1036),因此,与没有转化的植物相比具有显著的适合度代价(Kasuga等,(1999)Nature Biot.Vol.17;Danby and Gehring(2005)Trends in Biot.Vol.23No.11)。
为了在胁迫条件下获得植物生长,提出了一些生物技术方法。例如,WO03/020015中公开了对盐胁迫的抗性增强的植物。该文件公开了利用9-顺式-环氧类胡萝卜素加双氧酶核苷酸和多肽而抗盐胁迫的转基因植物。
在例如US2009/0144850、US 2007/0266453和WO 2002/083911中公开了抗旱性增强的植物。US2009/0144850描述了由于DR02核酸的表达改变而显示耐旱表型的植物。US 2007/0266453描述了由于DR03核酸的表达改变而显示耐旱表型的植物,并且WO2002/083911描述了由于在保卫细胞中表达的ABC转运体的活性降低而具有对干旱胁迫的抗性增强的植物。另一个实例是Kasuga和合著者(1999)的工作,其描述了在正常生长条件下,转基因植物中编码DREB1A的cDNA的过表达活化许多胁迫抗性基因的表达,导致对干旱、盐负荷和严寒的抗性改善。然而,DREB1A的表达也引起在正常生长条件下严重的生长迟缓(Kasuga(1999)Nat Biotechnol 17(3)287-291)。仍然需要用于增强对非生物胁迫(尤其是如干旱的非生物胁迫)的抗性的新的、可替代的和/或另外的方法。
本发明的一个目的是提供增强植物抗旱性的新方法。如果在低的水可利用性/干旱的条件下生长,与没有接受根据本发明的方法的植物相比,这样的植物例如有可能生产更多生物量和/或更多作物和其衍生的植物产品。
发明内容
本发明提供一种用于生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏植物中UPL蛋白质的表达的步骤,和可选择地再生所述植物,所述UPL蛋白质包括包含至少一个根据PF00632的Pfam HECT结构域和至少一个根据模型SSF48371的超家族ARM重复的氨基酸序列。
在另一个方面,本发明提供了一种生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏植物、植物细胞或植物原生质体中功能性UPL4蛋白质表达的步骤,和可选择地再生所述植物,其中所述功能性UPL4蛋白质包括包含与SEQ IDNO:2的氨基酸序列至少35%同一性的氨基酸序列。
所述功能性UPL4蛋白质可以包括包含至少一个根据PF00632的Pfam HECT结构域和至少一个根据模型SSF48371的超家族ARM重复的氨基酸序列。
所述功能性UPL4蛋白质可以是如下蛋白质:当在具有破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其得到与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。
本发明进一步涉及一种生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏植物、植物细胞或植物原生质体中功能性UPL4蛋白质表达的步骤,和可选择选地再生所述植物,其中所述功能性UPL4蛋白质包括具有至少一个根据PF00632的Pfam HECT结构域和至少一个根据模型SSF48371的超家族ARM重复的氨基酸序列。
本发明还涉及一种生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏功能性UPL4蛋白质表达的步骤,和可选择地再生所述植物,其中所述功能性UPL4蛋白质由包含与SEQ ID NO:1的核酸序列具有至少60%同一性的核酸序列的核酸序列编码。
所述功能性UPL4蛋白质可以是如下蛋白质:当在具有破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其得到与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。
破坏功能性UPL4蛋白质的表达的步骤可以包括使编码所述功能性UPL4蛋白质的核酸序列突变。使所述核酸序列突变可以包括插入、缺失和/或取代至少一个核苷酸。破坏表达的步骤可以包括基因沉默。破坏表达的步骤可以包括破坏所述植物中两种或更多种功能性UPL4蛋白质的表达。
所述方法可以进一步包括由具有改善的抗旱性的植物生产植物或植物产品的步骤。
本发明还涉及与SEQ ID NO:2的氨基酸序列具有至少35%同一性的氨基酸序列或与SEQ ID NO:1的核酸序列具有至少60%同一性的核酸序列在植物抗旱性筛选中的用途。
本发明涉及具有SEQ ID NO:2的UPL4氨基酸序列或SEQ ID NO:1的UPL4核酸序列在拟南芥植物抗旱性筛选中的用途。
本发明还涉及SEQ ID NO:1的UPL4核酸序列的至少一部分或SEQ ID NO:2的UPL4氨基酸序列的至少一部分作为培育抗旱性拟南芥植物的标记物的用途。
本发明进一步提供如本文定义的功能性UPL4蛋白质用于调节、优选地提高植物抗旱性的用途。
在另一个方面,本发明提供其中功能性UPL4蛋白质的表达受损的植物、植物细胞或植物产品用于在干旱胁迫条件下生长的用途,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其得到与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物,其中所述干旱胁迫条件引起其中所述功能性UPL4蛋白质的表达未受损的对照植物、植物细胞或植物产品比其中功能性UPL4蛋白质的表达被破坏的植物、植物细胞或植物产品更早地显示干旱胁迫症状,例如枯萎症状。
本发明还教导其中功能性UPL4蛋白质的表达受损的番茄(Solanumlycopersicum)、陆地棉(Gossypium hirsutum)、大豆(Glycine max)、小麦属植物(Triticumspp.)、大麦(Hordeum vulgare.)、燕麦(Avena sativa)、高粱(Sorghum bicolor)、黑麦(Secale cereale)或甘蓝型油菜(Brassica napus)植物、植物细胞或植物产品,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其产生与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。所述植物、植物细胞或植物产品可包括被破坏的内源性UPL4基因。
附图说明
图1显示在实施例1和2中说明的典型的实验的结果。
图2显示与对照(野生型)植物的干旱敏感性表型相比,UPL4敲除(拟南芥At5g02880插入突变体)的抗旱表型。
图3显示At5g02880-插入突变体(UPL4)的干旱存活率。拟南芥At5g02880插入突变体比野生型(Col-0)植物或补充At5g02880(SEQ ID NO:1;阳性对照)和来自拟南芥(SEQ ID NO:3)、芜菁(SEQ ID NO:5或7)、番茄(SEQ ID NO:9)或水稻(SEQID NO:11)的同系物的编码序列(CDS)的At5g02880插入突变体抗旱存活显著地更好(p<0.05)。该图证实UPL4基因中的插入突变产生抗旱表型。而且,其也表明来自单子叶植物和双子叶植物物种的该基因同系物起恢复正常干旱-敏感性表型的作用。因此,这些同系物在它们各自作物物种中,在耐旱方面执行相同的功能。当插入拟南芥的UPL4插入突变体中时,观察到单子叶植物和双子叶植物UPL4基因都可以恢复干旱敏感性,表明UPL4基因编码的蛋白质的活性降低在整个植物界中产生耐旱表型。因此,预测UPL4(基于同源性检索和特征结构域[HECT]和犰狳重复序列)将能够鉴定植物物种中的植物UPL4同系物。然后,人们可以使用众所周知的方法降低这些植物同系物的蛋白质活性(例如,诱变、TDNA或转座子插入、RNAi等),以得到抗旱植物。灰色条具有比黑色条显著更低的值(p<0.05)。
图4显示番茄UPL4-突变体的干旱表型。对于干旱实验,使用含有纯合型、杂合型和野生型等位基因的分离的M2种群。在干旱处理开始之后21天拍摄的相片显示野生型番茄植物(右)和携带Slg98247中V158E突变的植物(左)。与野生型等位基因相比,携带Slg98247中V158E突变的植物的耐旱表型和干旱处理的存活率显著地更好(p<0.1),表明蛋白质的这一改变引起番茄出现耐旱表型。
定义
在下述说明和实施例中,使用大量术语。为了提供对说明书和权利要求书(包括给出的这类术语的范围)的清楚一致的理解,提供下述定义。除非本文另有定义,否则使用的所有技术术语和科技术语具有与如本发明所属领域的普通技术人员通常理解的相同的含义。将所有出版物、专利申请、专利及其它参考文献的全部内容通过引用合并于此。
实施用于本发明方法中的常规技术的方法将对普通技术人员是显而易见的。本领域技术人员熟知分子生物学、生物化学、计算化学、细胞培养、重组DNA、生物信息学、基因组学、序列和相关领域中常规技术的实践,并且在例如下述文献参考中讨论:Sambrook等,Molecular Cloning.A Laboratory Manual,2nd Edition,Cold Spring HarborLaboratory Press,Cold Spring Harbor,N.Y.,1989;Ausubel等,Current Protocols inMolecular Biology,John Wiley & Sons,New York,1987及定期更新;和the seriesMethods in Enzymology,Academic Press,San Diego。
在该文件及其权利要求书中,动词“包括”及其变化形式以非限定含义使用,意味着包括该术语后的项目,但是不排除没有明确提及的项目。其涵盖动词“基本上由...组成”以及"由...组成"。
除非上下文另有清楚的规定,如本文使用的单数形式“一个”、“一种”和“所述”包括复数指示。例如,如上述使用的用于分离“一个”DNA分子的方法包括分离多个分子(例如,数十个、数百个、数千个、数万个、数十万个、数百万个、或更多分子)。
对齐(Aligning)和比对(alignment):术语“对齐”和“比对”指根据相同或相似核苷酸的短或长的延伸的存在,比较两个或更多个核苷酸序列。本领域已知一些核苷酸序列比对的方法,如下进一步解释。
“基因表达”指可操作地连接到合适的调节区(尤其是启动子)的DNA区域转录成RNA的过程,该RNA有生物活性,即能够翻译成生物活性蛋白质或肽(或活性肽片段)。“异位表达”指在其中通常基因不表达的组织中的表达。“蛋白质表达”在本文中与术语基因表达可互换地使用。其指可操作地连接到合适的调节区(尤其是启动子)的DNA区转录成mRNA,然后翻译成蛋白质或肽(或活性肽片段)的过程。
与UPL4蛋白质(或变体,例如直系同系物或突变体、及片段)有关的“功能性”指基因和/或编码蛋白质改良(定量和/或定性)抗旱性的能力,例如通过改良植物中基因的表达水平(例如通过过表达或沉默)。例如,可以通过各种方法检测从植物物种X获得的UPL4蛋白质的功能性。优选地,如果蛋白质是功能性的,则植物物种X中编码该蛋白质的基因的沉默,例如使用基因沉默载体,将导致抗旱性改善,如通过本文的详细阐述检测。而且,用功能性UPL4蛋白质互补UPL4敲除将能够修复或赋予该特性,在此情形中将恢复干旱敏感性。本领域技术人员在检测功能性方面没有任何困难。
术语“基因”指包含区域(转录区)的DNA序列,其被转录为可操作地连接至合适的调控区(例如启动子)的细胞中RNA分子(例如mRNA)。因此,基因可以包括几个可操作地连接的序列,例如启动子、5’前导序列(包含例如参与翻译起始的序列)、(蛋白质)编码区(cDNA或基因组DNA)和3’非翻译序列(包含例如转录终止序列位点)。
术语“cDNA”指互补DNA。互补DNA是通过将RNA逆转录成互补DNA序列制备的。因此,cDNA序列对应于从基因表达的RNA序列。由于当从基因组表达时mRNA序列可能受到剪切,即在细胞质中翻译成蛋白质之前,内含子被从mRNA剪切掉且外显子连接在一起,应当理解cDNA的表达指编码cDNA的mRNA的表达。因此,cDNA序列可能与其对应的基因组DNA序列不相同,因为cDNA可能仅编码蛋白质的完全开放读码框(由连接的外显子构成),而基因组DNA编码,并且外显子中散布内含子序列。因此,遗传修饰编码cDNA的基因可能不仅涉及修饰对应于cDNA的序列,而且也可能涉及使基因组DNA的内含子序列和/或该基因的其它基因调控序列的突变,只要其造成基因表达的破坏。
“同一性”是对核苷酸序列或氨基酸序列的同一性的测量。通常,比对序列,以便获得最高位匹配。“同一性”本身具有领域公知的含义,并且可以使用公开的技术计算。参见,例如:(COMPUTATIONAL MOLECULAR BIOLOGY,Lesk,A.M.编辑,Oxford University Press,New York,1988;BIOCOMPUTING:INFORMATICS andGENOME PROJECTS,Smith,D.W.编著,Academic Press,New York,1993;COMPUTERANALYSIS OF SEQUENCE DATA,第1部分,Griffin,A.M.和Griffin,H.G.编辑,Humana Press,New Jersey,1994;SEQUENCE ANALYSIS IN MOLECULARBIOLOGY,von Heinje,G.,Academic Press,1987;和SEQUENCE ANALYSIS PRIMER;Gribskov,M.和Devereux,J.编辑,M Stockton Press,New York,1991)。虽然有多种测量两个多核苷酸或多肽序列之间的同一性的方法,但是普通技术人员所熟知该术语“同一性”(Carillo,H.和Lipton,D.,SIAM J,Applied Math(1988)48:1073)。通常用于确定两个序列之间的同一性或相似性的方法包括,但不限于在GUIDE TO HUGECOMPUTERS,Martin J.Bishop编辑,Academic Press,San Diego,1994,以及Carillo,H.和Lipton,D.,SIAM J,Applied Math(1988)48:1073中公开的方法。计算机程序编码了测定同一性和相似性的方法。优选的测定两个序列之间的同一性和相似性的计算机程序方法包括,但不限于GCS程序包(Devereux,J.等,Nucleic Acids Research(1984)12(1):387),BLASTP、BLASTN、FASTA(Atschul,S.F.等,J.Molec.Biol.(1990)215:403)。
作为示例,具有与编码某个序列的多肽的参考核苷酸序列至少例如95%“同一性”的核苷酸序列多核苷酸,表示该多核苷酸序列除了可以相对于每100个参考多肽序列的核苷酸包括至多5点突变之外,该多核苷酸的核苷酸序列与参考序列相同。因此,在参考核酸序列的全长上计算核苷酸序列与参考核酸序列的同一性百分比。换句话说,为了获得与参考核苷酸序列具有至少95%同一性的核苷酸序列的多核苷酸,参考序列中至多5%的核苷酸可以缺失和/或被另外的核苷酸取代,和/或参考序列中总核苷酸的至多5%的数目核苷酸可以插入到参考序列中。参考序列的这些突变可发生在参考核苷酸序列的5'或3'末端位置上,或者这两种末端位置之间的任何位置上,单个散布在参考序列的核苷酸之间或参考序列的一个或多个邻接组内。
类似地,具有与SEQ ID NO:2的参考核苷酸序列至少例如95%“同一性”的氨基酸序列的多肽,表示该多肽序列除了可以相对于SEQ ID NO:2的参考氨基酸的每100个氨基酸包括至多5个氨基酸改变之外,该多肽的氨基酸序列与参考序列相同。因此,在参考氨基酸序列的全长上计算氨基酸序列与参考氨基酸序列的同一性百分比。换句话说,为了获得与参考氨基酸序列具有至少95%同一性的氨基酸序列的多肽,参考序列中至多5%的氨基酸残基可以缺失和/或被另外的氨基酸残基取代,和/或参考序列中总氨基酸残基的至多5%的数目的氨基酸可以插入到参考序列中。参考序列的这些改变可发生在参考核苷酸序列的氨基或羧基末端位置上,或者这两种末端位置之间的任何位置上,单个散布在参考序列的残基之间或参考序列的一个或多个邻接组内。
根据本发明的核酸可以包括嘧啶和嘌呤碱基,分别优选胞嘧啶、胸腺嘧啶、和尿嘧啶、及腺嘌呤和鸟嘌呤的任何聚合物或低聚物(参见其全部内容为所有目的通过引用合并于此的Albert L.Lehninger,Principles of Biochemistry,at 793-800(Worth Pub.1982))。本发明涵盖任何脱氧核糖核苷酸、核糖核苷酸或肽核酸组分、及其任何化学变体,例如这些碱基的甲基化、羟甲基化或糖基化形式等。所述聚合物或低聚物组成上可以是异质的或同质的,并且可以从天然存在来源分离,或人工或合成生成。另外,核苷酸可以是DNA或RNA、或其混合物,并且可以以单链或双链形式永久或短时存在,包括同源双链体、异源双链体和杂交体。
如本文使用的术语“可操作地连接的”指功能上相关的多核苷酸元件的连接。当核酸置于与另一个核酸序列功能相关时,其是“可操作地连接的”。例如,如果其影响编码序列的转录,则启动子或更确切地转录调节序列与编码序列可操作地连接。可操作地连接可以指连接的DNA序列是邻接的。
“植物”指完整植物或可从植物获得的植物的一部分,例如细胞、组织或器官(例如花粉、种子、配子、根、叶、花、花蕾、花粉囊、果实等),以及这些的任何衍生物及通过自交或杂交衍生自这类植物的后代。“植物细胞”包括分离物中或组织、器官或生物体之内的原生质体、配子、悬浮培养物、小孢子、花粉粒等。
如本文使用的术语“启动子”指核酸片段,其起控制一个或多个基因的转录的作用,相对于基因的转录起始位点的转录方向位于上游,并且从结构上识别为存在DNA-依赖性RNA聚合酶结合位点、转录起始位点和任何其它DNA序列,包括,但不限于转录因子结合位点、遏制子或激活蛋白结合位点以及本领域技术人员已知直接或间接地调节从该启动子转录的量的任何其它核苷酸序列。可选择地,术语“启动子”在本文中也包括5’UTR区(5’非翻译区)(例如启动子在本文中可包括基因的翻译起始密码子的一个或多个上游部分(5’),因为该区域可在调节转录和/或翻译方面有作用。“组成型”启动子是在大部分生理和发育条件下在大部分组织中有活性的启动子。“可诱导的”启动子是生理地(例如通过外部应用某些化合物)或发育调节的启动子。“组织特异性”启动子仅仅在特定类型的组织或细胞中有活性。“植物或植物细胞中的启动子活性”指启动子在植物或植物细胞内驱动转录的启动子的一般能力。其没做出有关于启动子的时空活性的任何暗示。
术语“蛋白质”或“多肽”可互换地使用,并且指由氨基酸链组成的分子,与具体作用方式、尺寸、3维结构或来源无关。因此,蛋白质的“片段”或“部分”仍然可以称为“蛋白质”。“分离蛋白”用于指不再位于其自然环境中的蛋白质,例如位于体外或重组的细菌或植物宿主细胞中。
“转基因植物”或“转化植物”在本文中指例如通过将非沉默突变引入内源基因或其部分中而已经转化的植物或植物细胞。这样的植物已经遗传修饰,以例如在基因中引入一个或多个突变、插入和/或缺失和/或在基因组中引入基因沉默构建物。转基因的植物细胞可以指处于分离物或组织培养中的植物细胞,或者包含在植物或分化的器官或组织中的植物细胞,这两种都可能性都明确地包括在本文中。因此,在说明书或权利要求书中提及植物细胞不是仅指培养物中分离的细胞或原生质体,而且指任何植物细胞,无论其位于任何位置,或在任何类型的植物组织或器官中。
靶核苷酸交换(TNE)是一种方法,通过该方法一条与染色体或附加体基因中的位点部分互补的合成寡核苷酸在特定位点引导单个核苷酸的逆转。已经描述了TNE使用多种寡核苷酸和靶标。一些报道的寡核苷酸是RNA/DNA嵌合体,含有末端修饰以赋予核酸酶耐受性。
如本文使用的术语“干旱胁迫”或“干旱”指与植物对水可获得性受限有关的次佳(sub-optimal)环境条件。当例如不下雨或下雨少和/或当植物的灌溉常常比所需更少时,可能出现水可获得性受限。当例如土壤中存在水但植物不能有效地吸取时,也可能出现植物对水的可获得性受限。例如,当土壤强结合水时或水具有高含盐量时,植物可能更难从土壤吸取水。因此,许多因素可能有助于导致植物的水可获得性受限,即干旱。植物经历“干旱”或“干旱胁迫”的影响可能是植物不能具有最佳生长和/或发育。经历干旱的植物可具有枯萎症状。例如,植物可以在其中不提供水(例如,没有降雨和/或灌溉植物)的特定控制条件经历至少15天的时期。
术语“改善的抗旱性”指当具有改善的抗旱性的植物经历干旱或干旱胁迫时,不会显示如没有具有改善的抗旱性的植物中观察到的影响或显示减轻的影响。正常植物具有一定水平的抗旱性。通过在所选控制条件下比较对照植物与具有改善的抗旱性的植物,可容易地确定植物是否具有改善的抗旱性,因此,在一定时期之后,即当植物经历干旱或干旱胁迫时,可以观察到对照植物干旱症状。与对照植物相比,具有改善的抗旱性的植物将显示较少和/或减少的已经历干旱的症状,例如枯萎。本领域技术人员知道如何选择合适的条件,例如像实施例中的控制条件。当植物具有“改善的抗旱性”时,经干旱或干旱胁迫时能够持续正常生长和/或正常发育,否则将导致正常植物的生长减慢和/或发育减慢。因此,“改善的抗旱性”是通过比较植物而确定的相对术语,其中在干旱胁迫下最能够持续(正常)生长的植物是具有“改善的抗旱性”的植物。本领域技术人员熟知如何选择用于测定植物抗旱性的合适条件和如何测量干旱症状,例如在例如如下提供的手册描述的:IRRI,Breeding rice for drought proneenvironments,Fischer等,2003,和CIMMYT,Breeding for drought and nitrogen stresstolerance in maize:from theory to practice,Banzinger等,2000。Snow和Tingey,1985,Plant Physiol,77,602-7,和Harb等,Analysis of drought stress in Arabidopsis,AOP2010,Plant Physiology Review中提供了测定植物改善的抗旱性的方法的实例,并且如下述实施例部分中描述的。
具体实施方式
本发明涉及通过破坏所述植物中功能性UPL4蛋白质的表达来改善植物的抗旱性。改善是相对于其中这样的改变没有被引入或不存在且其中功能性UPL4蛋白质的表达未受损的对照植物而言。换句话说,与对照植物,即非改变的植物相比,根据本发明改变的植物能够在水可获得性减少、(暂时性)缺水或干旱条件下较好地生长和存活。应理解,根据本发明改变(例如破坏)功能性UPL4蛋白质的表达可包括遗传修饰,例如遗传修饰UPL4基因表达或靶核苷酸交换。
遗传修饰包括在感兴趣的核酸序列中引入突变、插入、缺失和/或将基因沉默构造插入靶向感兴趣的核酸序列的植物或植物细胞的基因组中。遗传修饰编码mRNA的核酸序列(例如基因)不仅涉及修饰对应于mRNA序列的外显子序列,而且涉及使基因组DNA的内含子序列和/或核酸序列的(其它)基因调节序列(例如基因)的突变。
在本发明的上下文中,功能性UPL4蛋白质可以是如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系,例如本文列举的At5g02880敲除系,如SALK_091246C(http://www.arabidopsis.org/servlets/SeedSearcher?action=detail&stock_number=SALK_091246C)中表达时,产生与其中所述功能性UPL4蛋白质未表达的、具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系(例如At5g02880敲除系,如SALK_091246C)的抗旱性相比抗旱性受损的植物。
如本文使用的术语“被破坏的内源性UPL4基因”指被破坏(例如切断(例如利用T-DNA插入所述UPL4基因中的方式))植物基因组中的天然存在的UPL4基因。破坏所述内源性UPL4基因可以导致所述内源性UPL4基因不表达,因此,不存在内源性UPL4蛋白质(功能性的或非功能性的)。
如本文使用的术语“对照植物”指相同种类的植物,优选相同种类,优选相同遗传学背景的植物。
本发明还涉及通过修饰所述植物中功能性UPL4蛋白质的表达而调节植物的抗旱性。调节是相对于其中这种修饰没有被引入或不存在的对照植物(优选地相同种类和/或品种的,并且优选相同遗传学背景)而言的。
在一个方面,本发明提供一种生产具有与对照植物相比改善的抗旱性的植物的方法,其包括破坏植物中UPL蛋白质的表达的步骤,所述UPL蛋白质包括包含至少一个根据PF00632的Pfam HECT结构域和至少一个根据模型SSF48371的超家族ARM重复单元的氨基酸序列。
在另一个方面,本发明涉及一种用于生产具有与对照植物相比改善的抗旱性的植物的方法,该方法包括破坏所述植物中功能性UPL4蛋白质表达的步骤。
如本文使用的“使功能性UPL4蛋白质的表达受损”可以指UPL4基因的表达受损,和/或UPL4基因的表达正常,但是得到的mRNA的翻译被抑制或阻止(例如,通过RNA干扰),和/或UPL4蛋白质的氨基酸序列改变,使得优选地在生理条件下,尤其是在相同的生理条件下,与如SEQ ID NO:2所述蛋白质的泛素蛋白连接酶比活性相比,其泛素蛋白连接酶比活性降低。备选地,UPL4蛋白质可以通过使用UPL4抑制剂,例如特异性结合所述UPL4蛋白质的抗体,或其它UPL4抑制剂(例如中止、阻止、或降低UPL4蛋白质的活性的蛋白质)或化学抑制剂(例如离子、或金属,或辅助因子)清除(scavenging)其而变成无功能的或较少功能的。例如,特异性集合所述UPL4蛋白质的抗体可以与所述UPL4蛋白质同时表达,从而降低其比活性。如果UPL4蛋白质的泛素蛋白连接酶比活性统计学显著地低于如SEQ ID NO:2中所述蛋白质的泛素蛋白连接酶比活性,则可认为该蛋白质的泛素蛋白连接酶比活性“降低”。UPL4蛋白质的泛素蛋白连接酶比活性可以例如降低至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%或更多。可以通过例如使用定向诱变来改变启动子序列,实现植物的内源性UPL4基因的表达减少。本领域技术人员能够基于常规方法确定泛素蛋白连接酶比活性。
本发明人相信由于低表达,例如通过RNA干扰,或者降低UPL4蛋白质的活性/功能性,或上述一种或多种,破坏功能性UPL4蛋白质的表达(例如通过表达和/或活性的降低、抑制或缺失)导致功能性UPL4蛋白质不存在或水平降低,并且所述功能性UPL4蛋白质不存在或水平降低导致所述植物对水的需要的减少或抗旱性改善。
已知泛素蛋白连接酶蛋白质(UPL)参与酵母菌和动物中调节蛋白的选择性降解(Huibregtse等,(1995)Proc.Natl.Acad.Sci.USA 92,2563-2567;Pickart(2001)Annu.Rev.Biochem.70,503-533)。用多个泛素链修饰呈递用于降解的蛋白质,然后被26S蛋白酶体识别。这些泛素蛋白连接酶蛋白质的一个重要类型是由HECT E3s形成的,其包括在C末端称为HECT结构域的保守的350个氨基酸结构域(基于其与人E6-相关蛋白(E6-AP)的C-末端的同源性)(Huibregtse等,(1995)Proc.Natl.Acad.Sci.USA,92,2563-2567)。HECT结构域包括围绕催化泛素转移所需位置不变的半胱氨酸的高度保守区。
根据Downes等(2003,Plant J 35,729-742),植物也含有HECT E3s,拟南芥中存在7个:UPL1、UPL2、UPL3、UPL4、UPL5、UPL6和UPL7。Downes等进一步描述了可以基于相应基因的内含子/外显子位置、蛋白质序列和长度、以及HECT结构域的上游存在另外的蛋白质基序将UPL1、UPL2、UPL3、UPL4、UPL5、UPL6和UPL7按结构分成四个子家族:UPL1/2、UPL3/4、UPL5和UPL6/7。HECT结构域上游存在多种结构域表明的UPL1-UPL7家族的单独成员具有不同的靶标和功能的集合(参见Downes等,2003,The Plant Journal,35,729-742,特别是其图1,关于不同UPL蛋白质的不同特性的更多信息)。
在拟南芥中,可通过例如由于不存在来自泛素连接酶4的C-末端的225-残基区域650个氨基酸而使泛素蛋白连接酶4与泛素蛋白连接酶3区别开(Downes等,(2003)Plant J 35,729-742)。
已经报道在拟南芥中发现的泛素蛋白连接酶4具有与泛素蛋白连接酶3约54%的氨基酸序列同一性(Downes等,(2003)Plant J 35,729-742)。泛素蛋白连接酶4的基因座名称为At5g02880,ORF名称为F9G14(两者都是根据www.uniprot.org/uniprot/Q9LYZ7)。
拟南芥的UPL4蛋白质由1502个氨基酸组成(如SEQ ID NO:2中所述)。编码拟南芥的UPL4蛋白质的cDNA包含4506个核苷酸(SEQ ID NO:1中所述)。基于其与拟南芥中KAKTUS基因的相似性,拟南芥的UPL4基因也称为KLI5(染色体5上的Kaktus LIke)(参见Refy等,Mol Gen Genomics(2003)270:403–414)。
如本文使用的“UPL4蛋白质”包含SEQ ID NO:2中所述的蛋白质、及其片段和变体。UPL4蛋白质的变体包括,例如优选地在全长上与SEQ ID NO:2具有至少40%、50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或更高,例如100%的氨基酸序列同一性的蛋白质。使用如上定义的Needleman和Wunsch算法及GAP缺省参数,通过双序列比对确定氨基酸序列的同一性。
由Downes等((2003)Plant J.35,729-742)知道在编码UPL3的基因中具有T-DNA插入的拟南芥植物。该UPL3突变体显示毛状体发育异常。Downes等也描述了在编码UPL4的基因中具有T-DNA插入的拟南芥植物。Downes等描述了与UPL3突变体相比,当在最佳生长条件下生长时该UPL4突变体没有显示异常表型且毛状体发育正常。
在另一个方面,提供一种用于生产具有改善的抗旱性的方法,该方法包括破坏编码UPL4蛋白质的基因在所述植物中表达的步骤。
根据本发明,“表达受损”指功能性UPL4蛋白质和包含与其具有超过40%、50%、60%、70%、80%、90%、95%序列同一性的氨基酸序列的其变体不存在的或存在减少。其也指本文所述包括至少一个Pfam HECT结构域(PF00632)和至少一个超家族ARM重复(模型SSF48371)的蛋白质不存在或存在减少。本领域技术人员熟知本领域其可获得许多机制,以在例如转录水平或翻译水平破坏基因的表达。
在另一个方面,提供一种用于增强植物抗旱性的方法,所述方法包括破坏基因在所述植物中表达的步骤,其中所述基因编码的氨基酸序列(或蛋白质)包括至少一个Pfam HECT结构域(PF00632)和至少一个超家族ARM重复(模型SSF48371),如下所述确定的。应当理解,短语“至少一个超家族ARM重复模型SSF48371”包括来自图3的氨基酸序列的UPL4基因的四个犰狳(Armadillo)重复序列。因此,短语“至少一个超家族ARM重复模型SSF48371”指包括四个犰狳重复序列。
如本文使用的“Pfam”或“PFAM”指涵盖许多常见蛋白质家族的多重序列比对和隐Markov模型的大集合,可从http://pfam.sanger.ac.uk/获得。Pfam数据库含有蛋白质家族的大集合,每个代表多重对比。这些比对常用于每个蛋白质结构域家族的隐马尔可夫模型(HMM)。该比对代表进化保守结构,并且感兴趣的蛋白质中结构域的存在可以指示其生物功能。由Pfam比对构建的分布型谱隐马尔可夫模型(profile HMM)用于自动识别属于现有蛋白质家族的新蛋白质,即使通过排列比对的同源性似乎是低的。通过使用HMMER软件,查询针对Hidden Markov Model的蛋白质序列的氨基酸序列识别同一蛋白质家族中的其它蛋白质。HMMER软件(来自http://hmmer.janelia.org/,版本3.0)能够使用该HMM在新序列中搜索该结构域的存在。通过考虑仅HMMER在其序列的命中数(其高于默认包含阈值),获得可能的候选蛋白质命中数。
Pfam version 24.0(2009年10月)含有11912个蛋白质家族的比对和模型(参见The Pfam protein families database:R.D.Finn等,Nucleic Acids Research(2010)DatabaseIssue 38:D211-222)。Pfam是基于称为Pfamseq的序列数据库,其是基于UniProt release15.6(Swiss-Prot release 57.6和SP-TrEMBL release 40.6)。
Pfam数据库中的比对代表可能与蛋白质功能相关的进化保守结构。从Pfam比对构建的该隐马尔可夫模型(HMM)用于确定蛋白质是否属于现有蛋白质家族。这就是事实,即使比对的同源性/同一性很低。例如,一旦参与某些特性(例如对干旱的敏感性)的蛋白质被识别出,并且例如破坏其表达将赋予增强的特性(例如增强抗旱性),本领域技术人员可以通过使用HMMER软件(http://hmmer.janelia.org/’version.HMMER version 3.0公布于2010年3月28日),针对表征Pfam结构域的隐马尔可夫模型(本发明中的Pfam HECT PF00632模型),比较蛋白质(和候选DNA编码的)的氨基酸序列,确定同一蛋白质家族中的其它蛋白质。
在确定存在上述Pfam HECT结构域(PF00632)之后,候选蛋白质还必须满足要求:包含至少一个超家族ARM重复(HMM模型SSF48371;http://supfam.org/SUPERFAMILY/cgi-bin/scop.cgi?ipid=SSF48371,如可以通过例如使用InterProScan应用程序(http://www.ebi.ac.uk/Tools/pfa/iprscan/;Quevillon等,(2005)33(2)W116-W120;E.M.Zdobnov and R.Apweiler(2001)Bioinformatics,17,847–848)确定。Quevillon及其同事描述了InterProScan是一种将来自InterPro集团成员数据库的不同蛋白质特征(signature)识别方法合并成一个资源(应用中具有不同的公开可用的数据库)的工具。可以分析蛋白质以及DNA序列。基于网页的版本是学术和商业组织从EBI(http://www.ebi.ac.uk/InterProScan/)可访问的。
SUPERFAMILY注释(annotation)是基于隐马尔可夫模型的集合,其代表SCOP超家族水平的结构蛋白结构域。超家族将具有进化关系的结构域聚合在一起。针对隐马尔可夫模型从超过1,400个全序列基因组扫描蛋白质序列而产生注释。
所有软件都以默认设置使用。
总之,对于HECT结构域的隐马尔可夫模型(PF00632模型http://pfam.sanger.ac.uk/family?acc=PF00632)是从Pfam数据库(版本24,来自http://pfam.sanger.ac.uk/)获得的,并放入单独的文件中。使用HMMER软件确定特征为Pfam HECT结构域的氨基蛋白序列。另外,通过使用来自InterProScan application(http://www.ebi.ac.uk/Tools/pfa/iprscan/)的超家族程序包(使用SSF48371模型http://supfam.org/SUPERFAMILY/cgi-bin/scop.cgi?ipid=SSF48371)进一步减少过滤的蛋白质集合(Quevillon等),以查找ARM重复。此外,使用MUSCLE多重对比工具对序列比对。使用来自PHYLIP程序包的protpars算法推测系统树。满足两个要求(具有Pfam HECT PF00632结构域和超家族SSF48371模型Arm重复)的(植物)蛋白质是根据本发明的蛋白质;并且破坏其表达可在对植物提供改善的/增强的抗旱性方面是有用的,本文公开了这样的蛋白质和cDNA的实例。本领域技术人员熟知如何基于上述提供的信息进行测定和检测。
不受理论的束缚,本发明人推测根据本发明的蛋白质中存在这一结构域组合增强了植物对于干旱的敏感性,而破坏具有这些结构域的这类蛋白质的表达改善了植物的抗旱性。
转录水平的破坏可能是在转录调控序列(包括启动子、增强子、起始子、终止子或内含子剪切序列)中引入一个或多个突变的结果。这些序列通常位于根据本发明的基因的编码序列的5'、3'或该编码序列内。也可以通过基因编码区中核苷酸的缺失、取代、重排或插入独立地或同时地提供表达的破坏。
例如,在编码区中,核苷酸可以被取代、插入或缺失,导致引入一个、两个或更多个过早(premature)终止密码子。而且,插入、缺失、重排或取代可以导致编码的氨基酸序列中的修饰,从而提供功能性UPL4蛋白质的受损表达。甚至更大部分的基因可以被移除,例如至少10%、20%、30%、40%、50%、60%、70%、80%、90%或者甚至100%的基因(编码区)被从植物中存在的DNA中移除,从而破坏功能性UPL4蛋白质的表达。
备选地,可以将一个、两个、三个或更多个核苷酸引入编码UPL4蛋白质的一个或多个基因中,其导致例如移码,或导致引入编码另外的氨基酸的序列,或引入不编码氨基酸的序列,或引入大的插入片段,从而破坏功能性UPL4蛋白质的提供/表达。
换句话说,如上所述编码UPL4蛋白质的核苷酸序列中核苷酸的缺失、取代或插入可导致例如移码、引入终止密码子、或引入无义密码子。特别地,通常接受引入终止密码子和引入移码突变作为有效的方式,以产生敲除种植,即具有特定蛋白质的表达和/或活性降低、被抑制或缺失的敲除植物的有效方式。
移码突变(也称为框架错误或阅读框移位)是一种由核苷酸序列中不能被3可整除的大量核苷酸的indel(插入或缺失)导致的遗传突变。由于基因表达利用密码子的三联体性质,插入或缺失可改变读码框(密码子组),导致与原始完全不同的翻译。序列中缺失或插入发生的越早,生成蛋白质的改变越多。移码突变通常将导致对突变之后密码子的阅读,以编码不同的氨基酸,但是可能存在由遗传密码冗余造成的例外。此外,原始序列中终止密码子(“UAA”、“UGA”或“UAG”)不会被阅读,替代的终止密码子可产生较早或更迟的终止位点。生成的蛋白质可异常短或异常长。
在编码如本文定义的UPL4蛋白质的核苷酸序列中引入终止密码子可导致转录过早终止,其通常产生缩短的、不完整的或无功能的UPL4蛋白质。优选地,最初在转录方向引入终止密码子。在核苷酸序列中引入终止密码子越早,生成蛋白质越短,并且改变越多。在编码UPL4蛋白质的核苷酸序列中引入无义密码子可产生转录mRNA,其中,例如一个密码子不再编码UPL4中天然存在的氨基酸,例如通常编码UPL4蛋白质的功能必要的氨基酸的密码子。因此,这样的UPL4蛋白质可能没有功能。
换句话说,破坏可包括使本文公开的基因中的一个或多个核苷酸突变,导致蛋白质表达产物较少或甚至完全不存在(即,不存在当没有如上述修饰的根据本发明的基因时将获得蛋白质),或导致存在无功能的蛋白质。
因此,在本文公开的方法的一个实施方式中,破坏是所述基因中一个或多个突变的结果,导致较少的蛋白质表达产物的存在或不存在蛋白质表达产物。
如本文较少使用的术语抑制/存在指与其中表达未受损的对照植物相比,蛋白质表达降低至少10%、20%、30%、40%、50%、60%、70%、80%、90%或甚至99%。术语“蛋白质表达不存在”指实际上不存在任何表达产物,例如与对照相比少于5%、4%、3%、2%或甚至少于1%。
如本领域技术人员理解,通过使用诱变化合物(例如甲磺酸乙酯(EMS)或能够在核苷酸序列中(随机)引入突变的其它化合物)也可以在编码如本文定义的UPL4的核苷酸序列中引入突变。所述诱变化合物或所述其它化合物可用作产生具有在编码UPL4蛋白质的核苷酸序列中的突变的植物的工具。
备选地,在编码根据本发明的(UPL4)蛋白质的核苷酸序列中引入的突变可能受在编码这样的蛋白质的核苷酸序列中引入的转移-DNA(T-DNA)的影响,例如某些细菌种属(例如根癌土壤杆菌(Agrobacterium tumefaciens))的肿瘤-诱导(Ti)质粒的T-DNA。T-DNA元件可以被引入所述核苷酸序列中,产生无功能的蛋白质或蛋白质的表达缺失,因此减小了根据本发明的方法获得的植物对水的需要(参见例如Krysan等,1999The Plant Cell,Vol 11.2283~2290)。使用转座因子插入可以获得同样的优点(参见,例如Kunze等,(1997)Advances in Botanical Research 27341-370或Chandlee(1990)Physiologia Planta 79(1)105–115)。
在一个实施方式中,通过靶核苷酸交换(TNE)进行在编码根据本发明的蛋白质的核苷酸序列中突变的引入,例如像WO2007073170中所述。通过使用TNE,可以改变编码UPL4的核苷酸序列中的特定核苷酸,由此,例如可以引入终止密码子,其可例如产生编码根据本发明具有活性降低或消失的缩短的蛋白质的核苷酸序列。
在另一个实施方式中,提供一种如上面公开的方法,其中功能性UPL4蛋白质的表达破坏是通过无功能的蛋白质表达引起的。如上述,本领域技术人员在确定根据本发明的基因的功能性方面没有问题。例如,可以通过将没有任何修饰的对照基因引入其中根据本发明的蛋白质的表达已经受损植物中进行补充研究,并且研究抗旱性。
备选地,可以进行类似于如下实施例中所述那些实验的实验,并通过与合适的对照/野生型植物相比较,测定其中将一个或多个突变引入根据本发明的基因中的植物的抗旱性。
也可以在翻译水平提供破坏,例如通过引入过早终止密码子或通过影响(例如蛋白质折叠的)的翻译后修饰。
与机制无关,通过功能性UPL4蛋白质不存在或存在减少而表示根据本发明的破坏。相反,无功能的UPL4蛋白质可以以正常水平存在。如上面解释,如本文使用的术语表达抑制或存在减少指与其中表达未受损的对照植物相比,蛋白质表达降低至少10%、20%、30%、40%、50%、60%、70%、80%、90%或甚至99%。术语“蛋白质表达不存在”指实际上不存在任何表达产物,例如与对照相比少于5%、4%、3%、2%或甚至少于1%。
根据另一个实施方式,破坏是由基因沉默引起的,例如使用RNA干扰或RNA沉默。
借助于本领域技术人员容易获得的分子生物学方法,基因的破坏也可以通过基因沉默实现,例如使用RNA干扰技术、dsRNA或其它表达沉默技术(参见例如,Kusaba等,(2004)Current Opinion in Biotechnology 15:139–143,or Preuss and Pikaard(2003)in RNA Interference(RNAi)~Nuts&Bolts of siRNA Technology(pp.23-36),byDNA Press,LLC Edited by:David Engelke,Ph.D.)或,如上已经讨论的敲除。
在另一个优选的实施方式中。且如上已经讨论的,提供一种根据本发明的方法,其中所述破坏是由至少一个核苷酸的插入、缺失和/或取代引起的。例如,在根据本发明的基因中可以插入、缺失或取代1、2、3…10、40、50、100、200、300、1000或甚至更多的核苷酸。还预期所述基因的编码区或非编码区中插入、缺失和/或取代的组合。.
在本文公开的方法的另一个实施方式中,所述方法包括破坏所述植物中编码UPL4蛋白质的超过1个、例如2、3、4、5或所有基因的表达的步骤。
在该实施方式中,如上所述且存在于具体植物中超过一个基因的表达受损。例如,如存在于植物中的编码UPL4蛋白质的一个、两个、三个、四个或所有基因的表达受损。通过同时破坏上述多个基因(当植物中存在时)的表达,可以获得更加改善的抗旱性。
在另一个实施方式中,根据本发明的方法提供的植物可用于生产其它植物和/或由其衍生的植物产品。术语“植物产品”指可以从生长的植物获得的那些材料,并且包括压碎的、磨碎的或仍完整的、与其它材料混合的、干燥的、冷冻等的果实、叶子、植物器官、植物脂肪、植物油、植物淀粉、植物蛋白质级分。通常,如上述,可通过例如本文所公开的修饰为使功能蛋白的表达受损的基因的存在识别这样的植物产品。
优选地,在属于十字花科(包括甘蓝型油菜(油菜籽)、茄科(包括番茄)、或葫芦科(包括甜瓜和黄瓜)、或禾本科(包括稻属(包括水稻)或玉米属(包括玉蜀黍(玉米)))、或豆科(包括豆类、豌豆或菜豆)的植物中,根据本发明的UPL4蛋白质的表达和/或活性受损(例如降低、抑制或缺失)。优选地,根据本发明的方法应用于番茄、水稻、玉蜀黍、甜瓜或黄瓜,从而提供与相应未转化的植物相比具有对水的需求减小或抗旱性改善的植物。还提供通过根据本发明的方法可获得的植物细胞、植物或植物产品,其中所述植物细胞、植物或植物产品显示与没有经根据本发明的方法的对照植物相比功能性UPL4蛋白质的表达降低。
还提供植物细胞、植物或植物产品,特征在于在所述植物细胞、植物或植物产品中,编码UPL4蛋白质的至少一个(优选所有)基因的表达受损,例如其中对应于从所述至少一个基因转录的mRNA的cDNA序列包括SEQ ID NO:1所示的序列,和其中对应于从所述至少一个基因转录的mRNA序列的cDNA序列包括具有与SEQ IDNO:1的核苷酸序列至少40%、50%、60%、70%、80%、90%、95%同一性的序列和/或其中由所述至少一个基因编码的氨基酸序列包括SEQ ID NO:2所示的序列,或其中所述至少一个基因编码的氨基酸序列包括具有与SEQ ID NO:2的氨基酸序列至少40%、50%、60%、70%、80%、90%、95%同一性和/或其中由所述至少一个基因编码的氨基酸序列包括如上定义的至少一个Pfam HECT结构域(PF00632)和至少一个超家族ARM重复(模型SSF48371)。优选地,所述植物不是如下实施例中所述的拟南芥突变体、或短柄草属T-DNA插入突变体、或玉米T-DNA插入突变体、或水稻T-DNA插入突变体。
在另一个方面,本发明涉及其中基因用于向植物提供提高的抗旱性的用途,其中对应于从所述基因转录的mRNA序列的cDNA序列包括SEQ ID NO:1和图2所示序列,和其中对应于从所述基因转录的mRNA序列的cDNA序列包括与其至少40%、50%、60%、70%、80%、90%、95%同一性的基因,和/或其中由所述基因编码的氨基酸序列包括SEQ ID NO:2所示序列和与其大于35%、40%、50%、60%、70%、80%、90%、95%同一性的氨基酸序列,和/或其中由所述基因编码的氨基酸序列包括如上定义的至少一个Pfam HECT结构域(PF00632)和至少一个超家族ARM重复(模型SSF48371)。
在该实施方式中,根据本文公开的内容,所述基因可用作改善植物抗旱性的靶标,或者所述基因可用于鉴别参与干旱敏感性和抗性的新的蛋白质。
在另一个实施方式中,提供具有拟南芥种属的SEQ ID No.1或2的UPL4序列在拟南芥植物抗旱性筛选中的用途。另外,提供其中UPL4序列为与其它植物种属的SEQID No.1或2类似的序列并且其中在其它植物种属的植物中筛选的用途。此外,提供用于筛选具有改善的抗旱性的植物或植物细胞的方法,所述方法包括步骤:
-提供拟南芥种属的植物细胞或植物的异质种群;
-提供具有SEQ ID No.1或2的UPL4序列;
-测定所述植物细胞或植物的UPL4基因的至少一部分的序列;
-比较由所述植物细胞或植物测定的UPL4序列与提供的UPL4序列;
-鉴别其中UPL4序列包括突变的植物细胞或植物。
备选地,在该方法中,提供的植物细胞或植物属于其它种属,并且其中提供的UPL4基因序列为其它种属的相似序列。
因此,通过使用拟南芥种属的UPL4序列SEQ ID No.1或SEQ ID No.2或来自其它种属的相似序列,可以鉴别可提供改善的抗旱性的植物种属中突变的UPL4序列。拟南芥种属的UPL4序列SEQ ID No.1或SEQ ID No.2在其它种属中的相似序列定义为与其具有至少35%、40%、50%、60%、70%、75%、80%、85%、90%、95%或至少99%序列同一性的序列。相似的UPL4蛋白质可以具有与SEQ ID No.1或SEQ IDNo.2基本上相同的功能。
在该方法中,提供所述种属的植物细胞或植物的异质种群。所述异质种群可以例如通过如下提供:使植物细胞接受引入随机突变的诱变剂,从而提供植物细胞的异质种群。因此,所述异质种群可以来源于单个植物品种,其接受随机诱变以便后代获得多种突变,从而提供异质种群。许多诱变剂是本领域已知的,例如离子辐射、UV-射线、和诱变化学物(例如叠氮化物、溴化乙锭或甲磺酸乙酯(EMS))。因此,本领域技术人员知道如何提供植物或植物细胞的异质种群。而且,本领域技术人员也可提供多种植物作为异质种群,即来自多个种属的非单一品种。多种植物显示遗传多样性,它们遗传上是不同的,但是因为植物来自同一种属,所以它们是基本上相同的。在任何情况下,植物细胞或植物的异质种群可以具有至少95%、96%、97%、98%、99%、99.5%或至少99.9%的序列同一性。
通过测定含有来自异质种群的植物或植物细胞的序列的UPL4基因序列的至少一部分序列,然后比较这些序列与提供的UPL4基因序列(对照),可以鉴别包括UPL4基因序列突变的植物细胞或植物。应理解,可以通过序列的比对进行这样的比较,并且突变为在植物种属的相似(对照)UPL4序列中至少一个核酸或氨基酸位置的不同。这样,鉴别具有可以提供改善的抗旱性的UPL4基因突变(例如,插入、缺失、取代)的植物或植物细胞。
优选地,选择具有将导致功能性UPL4蛋白质的表达破坏的突变的植物,例如上述已经列举的。将破坏功能性UPL4蛋白质表达的突变可以是如下突变:破坏开放读码框(引入移码或终止密码子),或通过改变编码蛋白质的正常功能必需的氨基酸的密码子中核苷酸来破坏或以其它方式改变编码蛋白质功能,从而导致与非改变的蛋白质相比对干旱(draught)的抗性改善(例如增强)。该方法也可用于例如筛选和选择已经经靶向上述UPL4序列的遗传修饰的植物。而且,所述UPL4序列也可用于筛选检测其中经历干旱的植物的(异基因)种群。
在另一个实施方式中,提供具有拟南芥种属的SEQ ID No.1或SEQ ID No.2的UPL4的至少一部分作为培育抗旱拟南芥植物的标记物的用途。而且,所述UPL4序列可以是其它种属的相似序列,其中所述标记物用于培育其它种属的抗旱植物。
本发明还涉及其中功能性UPL4蛋白质的表达受损的植物、植物细胞或植物产品用于在干旱胁迫条件下生长的用途,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其得到与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物,其中所述干旱胁迫条件引起其中所述功能性UPL4蛋白质的表达未受损的对照植物、植物细胞或植物产品比其中功能性UPL4蛋白质的表达被破坏的植物、植物细胞或植物产品更早地显示干旱胁迫症状,例如枯萎症状。
在一个方面,本发明涉及通过本文教导的方法可获得的或获得的植物、植物细胞或植物产品。另外,本发明提供来源于这样的植物的种子。
本发明还涉及其中功能性UPL4蛋白质的表达受损的植物、植物细胞或植物产品,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其产生与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。所述植物、植物细胞或植物产品可以包括例如被破坏的内源性UPL4基因。
所述植物、植物细胞或植物产品可以是任何植物或植物细胞,或者可以来源于任何植物,例如单子叶植物或双子叶植物,但是所述植物最优选属于茄科。例如,植物可以属于茄属(包括番茄属(lycopersicum))、烟草属、辣椒属、碧冬茄属及其它属。可合适地使用下述宿主:烟草(烟草种,例如本生烟草(N.Benthamiana)、皱叶烟草(N.Plumbaginifolia)、普通烟草(N.Tabacum)等)、蔬菜种(例如番茄(Solanumlycopersicum)(例如,如樱桃番茄变种cerasiforme或醋栗番茄变种pimpinellifolium、或树番茄(S.betaceum,同种异名Cyphomandra betaceae))、马铃薯(Solanumtuberosum)、茄子(Solanum melongena)、茄瓜(Solanum muricatum)、可可果(Solanumsessiliflorum)和奎东茄(Solanum quitoense)、辣椒类(甜椒(Capsicum annuum)、小米椒(Capsicum frutescens)、风铃辣椒(Capsicum baccatum))、观赏物种(例如,矮牵牛(Petunia hybrida)、腋花矮牵牛(Petunia axillaries)、匍匐性青紫矮牵牛(P.integrifolia))。
备选地,所述植物可以属于任何其它科,例如葫芦科或禾本科。合适的宿主植物包括例如玉米/谷类(玉蜀黍种(Zea species)、小麦(小麦种(Triticum species)、大麦(例如大麦(Hordeum vulgare))、燕麦(例如燕麦(Avena sativa))、高粱(高粱(Sorghumbicolor))、黑麦(黑麦(Secale cereale))、大豆(野生大豆属种(Glycine spp),例如大豆(G.max))、棉花(棉属种(Gossypium species),例如陆地棉(G.hirsutum)、海岛棉(G.barbadense))、芸苔属种(Brassica spp.)(例如,甘蓝型油菜(B.napus)、芥菜(B.Juncea)、甘蓝(B.Oleracea)、芜菁(B.Rapa)等)、向日葵(Helianthus annus)、红花、山药、木薯、紫花苜蓿(Medicago sativa)、稻(稻属种(Oryza species),例如籼稻栽培种(O.sativa indica cultivar-group)或粳稻栽培种(japonica cultivar-group)、饲料草、珍珠稗(狼尾草属种(Pennisetum spp.),例如珍珠栗(P.glaucum),树种(松属(Pinus)、杨树、冷杉、车前草(plantain)等)、茶树、咖啡树、油棕、椰树,蔬菜种例如豌豆、西葫芦、豆类(例如菜豆属种(Phaseolus species))、黄瓜、朝鲜蓟、芦笋、西兰花、大蒜、韭菜、莴苣、洋葱、萝卜、芜菁、抱子甘蓝、胡萝卜、花椰菜、菊苣、芹菜、菠菜、菊苣、茴香、甜菜)、结肉质果植物(葡萄、桃子、李类(plums)、草莓、芒果、苹果、李树(plum)、樱桃、杏、香蕉树、黑莓、越橘、柑橘、猕猴桃、无花果、柠檬、酸橙、油桃、覆盆子、西瓜、橙子、葡萄柚等)、观赏物种(例如,玫瑰花、矮牵牛花、菊花、百合、大丁草属种)、草本类(薄荷、欧芹、罗勒、百里香、等)、木本树(例如,杨属种、柳属种、栎属种、桉属种)、纤维物种例如亚麻(Linumusitatissimum)和大麻(Cannabis sativa)、或者模式生物(例如拟南芥)。
优选的宿主是“作物植物”,即人类种植和培育的植物物种。可以种植作物植物用于食物目的(例如田间作物)、或用于观赏目的(例如,产生用于切枝的花、用于草坪的草等)。如本文定义的作物植物也包括从其中收获非食用产物的植物,例如用于燃料的油、塑料聚合物、药物制品、软木等。
优选地,本发明的植物、植物细胞或植物产品不是拟南芥或芜菁植物、植物细胞或植物产品。
本发明的植物、植物细胞或植物产品可以为例如番茄或芜菁植物、植物细胞或植物产品。
因此,本发明涉及例如其中功能性UPL4蛋白质的表达受损的番茄、陆地棉、大豆、小麦属植物、大麦、燕麦、高粱、黑麦或甘蓝型油菜植物、植物细胞或植物产品,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其产生与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。所述植物、植物细胞或植物产品可以包括被破坏的内源性UPL4基因。
文中列举的所有文献的全部内容均通过引用合并于此。
实施例
实施例1干旱实验
从诺丁汉拟南芥种子中心(NASC;School of Biosciences,University of Nottingham,Sutton Bonington Campus,Loughborough,LE125RD United Kingdom)获得用根癌土壤杆菌载体pROK2转化拟南芥(At)种子产生的功能性UPL4蛋白质缺失的(NASC ID:N655716,AGI代码AT5G02880和SALK_091246C;下文称为突变体种子或突变体植物)。使用At Col-0(Columbia,N60000)作为对照;下文称为对照种子或植物。
生长培养基:
使用包含一份沙和蛭石与两份堆肥的土壤混合物(沙:蛭石∶堆肥=1:1:2)。该混合物增加水渗透,因此促进每个盆均匀的水吸收和更好的排水。在播种之前,将种子在黑暗湿润的条件下于4℃下保持3天,进行层积处理。
将突变体和对照种子都种在含有~4cm直径的8×5=40个盆的长方形盘中,每个盆的密度为5株植物。在发芽(DAG)之后10天,从盘中盆的底部向所有植物提供营养液(EC=1.5),并且在15DAG,通过将盆转移到干的盘中而使植物经历干旱(15、16、17或18天)。然后,给植物加水,1周后观察植物恢复。
在预干旱筛选中,包括每个基因型三个盆平行测定。完成实验所需的总时间约为36~39天。
干旱测定检查
一旦植物达到2个真叶阶段,将其间苗保持严格每个盆5株植物。在10DAG,植物接受营养物(EC=1.5),并且在15DAG,将每个盆转移到干的盘。从这一天起,植物不再接受任何水。每天,观察植物,尤其是对照(或野生型)(Col-0)的枯萎症状。在干旱(DOD)第15天时,Col-0完全枯萎,并且加水时不能恢复。将这一天确定为其永久枯萎点(PWP)。从这一天起,向突变体的一个平行测定加水,观察恢复症状,并照相。与对照相比,突变体显示在干旱下多存活至少2天,并使其经进一步严格的筛选。
实施例2干旱实验
生长培养基:
在预筛选实验中,将与实施例1中相同的突变体和对照植物种植在如上所述类似的盘装置中。通过从15DAG中断供水而使植物受胁迫,直到对照植物达到其PWP。在该期间,每隔一天,将各盆在盘内随机摆放(shuffled),以减少位置效应且允许均匀蒸发。在第15DOD天,对照植物达到PWP,并且当加水时没有恢复。从15DOD开始,每天给来自突变体的一个盆平行测定加水,并检查干旱胁迫恢复。照相,并对恢复情况评分。突变体显示在对照达到其PWP之后至少3天以上才从干旱胁迫恢复。
图1显示比较突变体和对照的图片,表明突变体关于对干旱胁迫的抗性的优异效果。
实施例3干旱实验
材料和方法
植物材料.具有被破坏的AT5G02880(UPL4)基因(SALK_091246C)的TDNA插入系从诺丁汉拟南芥种子中心(NASC)获得。通过使用浸花法转化(floral diptransformation)稳定地转化拟南芥植株而产生互补系(Bent等,2006.Methods Mol.Biol.Vol.343:87-103)。由包括芜菁(卷心菜)、番茄(西红柿)和水稻(rice)和模式物种拟南芥(UPL3;AT4G38600)的几种作物品种鉴别拟南芥(AT5G02880)UPL4基因的同系物。
表1.拟南芥UPL4基因和UPL4蛋白质的同系物
表2.拟南芥UPL4cDNA序列(SEQ ID NO:1)和拟南芥(At4g38600(UPL3));SEQ ID NO:3)、芜菁(Br17038;SEQ ID NO:5 & Br47159;SEQ ID NO:7)、番茄(Slg98247;SEQ ID NO:9)、和水稻(Os05g03100;SEQ ID NO:11)的同系物的cDNA序列之间的核酸序列同一性的百分数(第一栏);和拟南芥UPL4蛋白质序列(SEQ IDNO:2)和拟南芥(At4g38600;SEQ ID NO:4)、芜菁(Br17038;SEQ ID NO:6 & Br47159;SEQ ID NO:8)、番茄(Slg98247;SEQ ID NO:10)和水稻(Os05g03100;SEQ ID NO:12)的同系物的蛋白序列之间的氨基酸序列同一性的百分数(第二栏)。
核苷酸序列 氨基酸序列
At4g38600 62 40
Br17038 86 81
Br47159 86 80
Slg98247 63 39
Os05g03100 61 36
干旱测定将野生型、TDNA敲除的和互补系以平行分组设计播种在含有以2:1:1混合的Metro-Mix 852无土培养基、细沙和蛭石的料的50孔的苗的盘中。将栽培植物的盘放置在4℃下三天以解除休眠,然后转移到生长室(16h,22/20℃,50%rH)进行发芽和培植。一旦互补系完全展开子叶,就向其喷雾草铵膦制剂(20mg草铵膦,20μL Silwet表面活性剂,200mL水)以确保仅选择转化系。在该处理之后,将各孔中的苗间苗化为单株植物。一旦植物达到4-6片真叶阶段,使其适应更大蒸气压差条件,以促进均匀的干旱胁迫(28/26℃,25%rH),并且在干旱处理之前,鉴别异常小的植株以移除。用水浸泡种植盘,然后让其排出,使所有孔处于盆容量(pot capacity)。一旦任何指定的盘中野生型植物的一半看来处于其永久凋萎点(干旱处理的1.5~2周),则灌溉所有盘。使植株恢复几天,并记录存活率,从进一步的测定中去除预先鉴定的异常小的植株。
统计分析.通过在统计软件程序R(http://www.r-project.org/)中应用相等或给定比例的检验,评价对于该干旱处理不同存活概率的统计显著性。使用函数prop.test检验突变型和野生型之间(单尾)或者包含或不包含互补转基因的插入突变系之间(双尾)的存活植物的比例相等的虚假设。
结果
图2显示与对照(野生型)植物的干旱敏感性表型相比,UPL4敲除(拟南芥At5g02880插入突变体)的抗旱表型。
拟南芥At5g02880插入突变体比野生(Col-0)植物或以及互补At5g02880(SEQ IDNO:1;阳性对照)的编码序列(CDS)和来自拟南芥(SEQ ID NO:3)、芜菁(SEQ IDNO:5或7)、番茄(SEQ ID NO:9)或水稻(SEQ ID NO:11)的同系物的At5g02880插入突变体抗旱存活显著地更好(p<0.05)。图3表明UPL4基因中的插入突变产生抗旱表型。而且,其还表明来自单子叶植物和双子叶植物物种的该基因同系物起作用,以恢复正常干旱-敏感性表型有作用。因此,这些同系物在它们各自作物物类中,在耐旱方面执行相同的功能。当插入拟南芥的UPL4插入突变体中时,观察到单子叶植物和双子叶植物的UPL4基因都可以恢复干旱敏感性,表明UPL4基因编码的蛋白质的活性降低,在整个植物界中产生耐旱表型。因此,预测UPL4(基于同源性研究和特征结构域[HECT]和犰狳重复序列)将能够鉴定植物物种中植物UPL4同系物。然后,人们可以使用众所周知的方法降低这些植物同系物的蛋白质活性(例如,诱变、TDNA或转座子插入、RNAi等),以得到抗旱植物。灰色条具有比黑色条显著更低的值(p<0.05)。
实施例4番茄中的抗旱性
植物材料.通过EMS筛选产生番茄基因Solyc10g055450(Slg98247;SEQ ID NO:9)的新突变。该突变包括缬氨酸(疏水性质)向谷氨酸(带负电的氨基酸)(蛋白质的158位)的氨基酸变化。对于所有干旱实验,使用含有纯合型、杂合型和野生型等位基因的分离M2种群。
在相同的番茄基因中鉴别第二个突变,其引起天门冬氨酸(带负电的氨基酸)向谷氨酸(带负电的氨基酸)(蛋白质的114位)的氨基酸变化。由于生化性质的相似性,该突变不可能引起蛋白质性质的显著变化,因此用作干旱测定的阴性对照。Sift(Ng andHenikoff,2003-Nucl.Acids Res.31:3812-3814)分析表明该突变可能是耐受性的。对于所有干旱实验,使用含有纯合型、杂合型和野生型等位基因的分离M2种群。
干旱测定.在生长箱(16h,22/20℃,50%rH)中,将所述V158E突变的纯合型、杂合型或野生型的番茄苗种植在含有2:1:1混合的Metro-Mix 852无土培养基、细沙和蛭石的2.5英寸塑料盆中。当培植时,秧苗适应更大的蒸气压差条件,以促进均匀的干旱胁迫(28/26℃,25%rH)。用水浸泡各盆,然后允许其排出,使所有植物处于盆容量。当评价存活率时,使植物受到干旱胁迫1周时间,然后灌溉,并且让其恢复24小时。
统计分析.通过统计软件程序R(http://www.r-project.org/)中应用相等或给定比例的检验,评价对于该干旱处理不同存活概率的统计显著性。使用函数prop.test检验纯合型和野生型突变体之间存活植物的比例(单尾)相等的虚假设。
结果
与野生型等位基因相比,携带Slg98247中V158E突变的纯合型番茄植物在干旱处理中存活显著地更好(p<0.1),表明蛋白质的这一改变引起番茄出现耐旱表型(图4)。如预期,Slg98247(D114E)中另外的突变没有显示任何干旱相关表型(来自分离M2种群的所有植物都同样不耐旱)。

Claims (19)

1.用于生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏植物中UPL蛋白质表达的步骤,和可选择地再生所述植物,所述UPL蛋白质包括包含至少一个根据PF00632的Pfam HECT结构域和至少一个根据模型SSF48371的超家族ARM重复的氨基酸序列。
2.用于生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏植物、植物细胞或植物原生质体中功能性UPL4蛋白质表达的步骤,和可选择地再生所述植物,其中所述功能性UPL4蛋白质包括包含与SEQ ID NO:2的氨基酸序列至少35%同一性的氨基酸序列。
3.根据权利要求2所述的方法,其中所述功能性UPL4蛋白质包括包含至少一个根据PF00632的Pfam HECT结构域和至少一个根据模型SSF48371的超家族ARM重复的氨基酸序列。
4.根据权利要求2或3中任一项所述的方法,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其产生与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。
5.用于生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏植物、植物细胞或植物原生质体中功能性UPL4蛋白质表达的步骤,和可选择地再生所述植物,其中所述功能性UPL4蛋白质包括具有至少一个根据PF00632的PfamHECT结构域和至少一个根据模型SSF48371的超家族ARM重复的氨基酸序列。
6.用于生产具有与对照植物相比改善的抗旱性的植物的方法,所述方法包括破坏功能性UPL4蛋白质的表达的步骤,和可选择地再生所述植物,其中所述功能性UPL4蛋白质由包括具有与SEQ ID NO:1的核酸序列至少60%同一性的核酸序列的核酸序列编码。
7.根据权利要求5~6中任一项所述的方法,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其产生与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。
8.根据权利要求2~7中任一项所述的方法,其中所述破坏功能性UPL4蛋白质的表达的步骤包括使编码所述功能性UPL4蛋白质的核酸序列突变。
9.根据权利要求8的方法,其中使所述核酸序列突变包括至少一个核苷酸的插入、缺失和/或取代。
10.根据权利要求1~8中任一项所述的方法,其中所述破坏表达的步骤包括基因沉默。
11.根据权利要求2~10中任一所述的方法,所述方法包括破坏所述植物中两种或更多种功能性UPL4蛋白质表达的步骤。
12.根据权利要求1~11中任一项所述的方法,所述方法进一步包括由具有改善的抗旱性的植物生产植物或植物产品的步骤。
13.与SEQ ID NO:2的氨基酸序列具有至少35%同一性的氨基酸序列或与SEQ IDNO:1的核酸序列具有至少60%同一性的核酸序列在植物抗旱性筛选中的用途。
14.具有SEQ ID NO:2的UPL4氨基酸序列或SEQ ID NO:1的UPL4核酸序列在拟南芥植物抗旱性筛选中的用途。
15.SEQ ID NO:1的UPL4核酸序列的至少一部分或SEQ ID NO:2的UPL4氨基酸序列的至少一部分作为培育抗旱性拟南芥植物的标记物的用途。
16.如权利要求2~7中任一项所定义的功能性UPL4蛋白质用于调节、优选地增强植物抗旱性的用途。
17.其中功能性UPL4蛋白质的表达受损的植物、植物细胞或植物产品用于在干旱胁迫条件下生长的用途,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其产生与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物,其中所述干旱胁迫条件引起其中所述功能性UPL4蛋白质的表达未受损的对照植物、植物细胞或植物产品比其中功能性UPL4蛋白质的表达被破坏的植物、植物细胞或植物产品更早地显示的干旱胁迫症状,例如枯萎症状。
18.其中功能性UPL4蛋白质的表达被破坏的番茄、陆地棉、大豆、小麦属植物、大麦、燕麦、高粱、黑麦或甘蓝型油菜植物、植物细胞或植物产品,其中所述功能性UPL4蛋白质为如下蛋白质:当在具有被破坏的内源性UPL4基因的拟南芥T-DNA插入系中表达时,其产生与其中所述功能性UPL4蛋白质未表达、具有被破坏的内源性UPL4基因的所述拟南芥T-DNA插入系的抗旱性相比抗旱性受损的植物。
19.根据权利要求18所述的番茄、陆地棉、大豆、小麦属植物、大麦、燕麦、高粱、黑麦或甘蓝型油菜植物、植物细胞或植物产品,包含被破坏的内源性UPL4基因。
CN201380009859.2A 2012-02-17 2013-02-18 改善植物抗旱性:upl4 Active CN104160030B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261599963P 2012-02-17 2012-02-17
US61/599,963 2012-02-17
PCT/NL2013/050100 WO2013122471A1 (en) 2012-02-17 2013-02-18 Improving drought resistance in plants: upl4

Publications (2)

Publication Number Publication Date
CN104160030A true CN104160030A (zh) 2014-11-19
CN104160030B CN104160030B (zh) 2022-01-11

Family

ID=47884467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380009859.2A Active CN104160030B (zh) 2012-02-17 2013-02-18 改善植物抗旱性:upl4

Country Status (12)

Country Link
US (2) US10308952B2 (zh)
EP (1) EP2814966A1 (zh)
JP (1) JP6280873B2 (zh)
CN (1) CN104160030B (zh)
AU (1) AU2013221024B2 (zh)
BR (1) BR112014019593B1 (zh)
CA (1) CA2861106C (zh)
EA (1) EA201491536A1 (zh)
IN (1) IN2014MN01570A (zh)
MX (1) MX369883B (zh)
UA (1) UA115442C2 (zh)
WO (1) WO2013122471A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660238A (zh) * 2018-04-04 2018-10-16 山西省农业科学院生物技术研究中心 基于gbs技术的燕麦抗旱性相关snp分子标记及其应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160030B (zh) 2012-02-17 2022-01-11 凯金公司 改善植物抗旱性:upl4
EP2814968A1 (en) 2012-02-17 2014-12-24 Keygene N.V. Improving drought resistance in plants: pectinesterase
EP2814967A1 (en) * 2012-02-17 2014-12-24 Keygene N.V. Improving drought resistance in plants: upl3
WO2018087301A1 (en) 2016-11-10 2018-05-17 Keygene N.V. Methods for improving drought resistance in plants - kgdr06, kgdr26, kgdr25, kgdr42 and kgdr37
CN114010283A (zh) * 2021-11-17 2022-02-08 中国人民解放军联勤保障部队第九二〇医院 一种用于ct引导下经皮肺跨层面穿刺的激光定位装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035798A2 (en) * 2002-10-18 2004-04-29 Cropdesign N.V. Identification of e2f target genes and uses thereof
CN102140443A (zh) * 2010-02-03 2011-08-03 中国科学院遗传与发育生物学研究所 植物抗逆相关蛋白及其编码基因与应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US195908A (en) * 1877-10-09 Improvement in boat-knees
US20040031072A1 (en) 1999-05-06 2004-02-12 La Rosa Thomas J. Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement
US20110131679A2 (en) 2000-04-19 2011-06-02 Thomas La Rosa Rice Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement
WO2002083911A1 (en) 2001-04-12 2002-10-24 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Production of plants with increased tolerance to drought stress or with increased transpiration
WO2003020015A2 (en) 2001-08-30 2003-03-13 Purdue Research Foundation Methods to produce transgenic plants resistant to osmotic stress
EP1288301A1 (en) 2001-08-31 2003-03-05 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Berlin Plant-derived resistance gene
WO2003081988A2 (en) 2002-03-27 2003-10-09 Agrinomics Llc Generation of plants with improved drought tolerance
JP2005185101A (ja) 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences 植物の全長cDNAおよびその利用
US7754945B2 (en) 2003-06-24 2010-07-13 Agrigenetics Inc. Generation of plants with improved drought tolerance
US7968768B2 (en) 2003-06-24 2011-06-28 Dow Agrosciences Llc Generation of plants with improved drought tolerance
US20060150283A1 (en) 2004-02-13 2006-07-06 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
US20100212050A1 (en) 2007-03-29 2010-08-19 Cbd Technologies Ltd. Plants over-expressing pme
US20110099668A1 (en) 2007-05-01 2011-04-28 Jasbir Singh Expressing GLK in plants
US8362325B2 (en) 2007-10-03 2013-01-29 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
WO2010083178A1 (en) 2009-01-16 2010-07-22 Monsanto Technology Llc Isolated novel nucleic acid and protein molecules from corn and methods of using those molecules to generate transgenic plants with enhanced agronomic traits
EP2482638A4 (en) 2009-09-28 2013-08-07 Fbsciences Holdings Inc METHODS TO REDUCE PLANT STRESS
US20120260373A1 (en) 2009-10-07 2012-10-11 Nestor Apuya Transgenic plants having enhanced biomass composition
US20110214205A1 (en) 2010-02-26 2011-09-01 Monsanto Technology Llc. Isolated Novel Nucleic Acid and Protein Molecules from Foxtail Millet and Methods of Using Those Molecules to Generate Transgenic Plants with Enhanced Agronomic Traits
CN104160030B (zh) 2012-02-17 2022-01-11 凯金公司 改善植物抗旱性:upl4
EP2814968A1 (en) 2012-02-17 2014-12-24 Keygene N.V. Improving drought resistance in plants: pectinesterase
EP2814967A1 (en) * 2012-02-17 2014-12-24 Keygene N.V. Improving drought resistance in plants: upl3

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035798A2 (en) * 2002-10-18 2004-04-29 Cropdesign N.V. Identification of e2f target genes and uses thereof
CN102140443A (zh) * 2010-02-03 2011-08-03 中国科学院遗传与发育生物学研究所 植物抗逆相关蛋白及其编码基因与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRAIN P. DOWNES, ET AL.: "The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development", 《THE PLANT JOURNAL》 *
宁约瑟 等: "泛素连接酶E3介导的植物干旱胁迫反应", 《植物学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660238A (zh) * 2018-04-04 2018-10-16 山西省农业科学院生物技术研究中心 基于gbs技术的燕麦抗旱性相关snp分子标记及其应用

Also Published As

Publication number Publication date
CA2861106C (en) 2023-03-28
CN104160030B (zh) 2022-01-11
MX369883B (es) 2019-11-25
US20160010106A1 (en) 2016-01-14
UA115442C2 (uk) 2017-11-10
AU2013221024A1 (en) 2014-08-28
US20190249186A1 (en) 2019-08-15
JP2015508649A (ja) 2015-03-23
JP6280873B2 (ja) 2018-02-14
BR112014019593B1 (pt) 2022-05-24
BR112014019593A2 (pt) 2017-06-27
US10308952B2 (en) 2019-06-04
AU2013221024B2 (en) 2018-07-26
IN2014MN01570A (zh) 2015-05-08
US10961545B2 (en) 2021-03-30
CA2861106A1 (en) 2013-08-22
EP2814966A1 (en) 2014-12-24
MX2014009902A (es) 2014-11-13
WO2013122471A1 (en) 2013-08-22
EA201491536A1 (ru) 2014-11-28

Similar Documents

Publication Publication Date Title
CN104204207A (zh) 改善植物抗旱性:upl3
CN104204208A (zh) 改善植物抗旱性:果胶酯酶
US10961545B2 (en) Drought resistance in plants: UPL4
CN108368515A (zh) 耐旱玉米
CN104004767A (zh) Wrky转录因子多肽基因应用的载体和方法
US20240141329A1 (en) Methods for improving traits in plants
CN104725495A (zh) 棉花GhWRKY51转录因子及其编码基因与应用
JP7148206B2 (ja) 線虫抵抗性
CN106701895A (zh) 与玉米抗旱性相关的单体型及其分子标记
WO2018087301A1 (en) Methods for improving drought resistance in plants - kgdr06, kgdr26, kgdr25, kgdr42 and kgdr37
Herbert et al. Transcriptional changes suggest a major involvement of Gibberellins in Trifolium pratense regrowth after mowing
Hervé et al. GM technology for drought resistance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant