CN104157730A - 一种单晶硅衬底锗外延薄膜的制备方法 - Google Patents

一种单晶硅衬底锗外延薄膜的制备方法 Download PDF

Info

Publication number
CN104157730A
CN104157730A CN201410352977.XA CN201410352977A CN104157730A CN 104157730 A CN104157730 A CN 104157730A CN 201410352977 A CN201410352977 A CN 201410352977A CN 104157730 A CN104157730 A CN 104157730A
Authority
CN
China
Prior art keywords
germanium
thin film
preparation
monocrystalline silicon
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410352977.XA
Other languages
English (en)
Inventor
陈诺夫
牟潇野
杨博
辛雅焜
吴强
弭辙
付蕊
刘虎
仲琳
白一鸣
高征
刘海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201410352977.XA priority Critical patent/CN104157730A/zh
Publication of CN104157730A publication Critical patent/CN104157730A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供一种单晶硅衬底锗外延薄膜的制备方法,所述方法包括如下步骤:(1)以单晶硅片为衬底;(2)在单晶硅片衬底抛光面上利用磁控溅射方法沉积一层石墨过渡层,石墨过渡层厚度为20-100nm;(3)在石墨过渡层上利用化学气相沉积的方法制备锗薄膜,厚度为20-100μm。本发明的方法将石墨作为硅和锗之间的过渡层,不仅可以消除硅和锗之间的晶格失配,还可以减小由于热膨胀系数不匹配造成的锗薄膜质量的下降,降低锗薄膜的缺陷密度。本发明的方法利用磁控溅射方法、化学气相沉积法制备出锗薄膜,用于后续多节叠层电池的制作,大幅度的降低多节太阳能电池的生产成本,提高太阳能电池的效率。

Description

一种单晶硅衬底锗外延薄膜的制备方法
技术领域
本发明属于锗外延薄膜制备技术领域,具体涉及一种利用磁控溅射方法和化学气相沉积方法在单晶硅衬底上制备锗薄膜的方法。
背景技术
近年来,在高效叠层太阳电池的研制中,由元素周期表中III族元素与V族元素组成的III-V族太阳能电池得到了极大的青睐。其中,在锗单晶衬底上生长的三结太阳电池Ge\GaInAs\GaInP具有最高的光电转换效率,在标准太阳光强(AM1.5)下其转换效率已达到35%,在聚光条件下其转换效率已超过42%(AM1.5,454倍聚光)。但是由于锗是典型的烯散金属,全世界可供开采的锗资源比较匮乏,价格昂贵,因此三结太阳电池的应用受到限制。
硅在地壳中储量丰富,其各项性能研究与生产技术已非常成熟,广泛应用于太阳电池领域和微电子领域。因此,为了降低多结高效太阳电池的成本和解决锗材料匮乏的问题,可以在单晶硅衬底上外延锗薄膜,再制备出Si\Ge\GaInAs\GaInP多节太阳能电池,这样既能减小锗原料的使用量,又能降低太阳电池的成本。然而,由于硅和锗的晶格常数不同,直接在硅上外延锗会出现较多的晶体缺陷,因此很难生长出锗外延层。
石墨材料具有低成本、热膨胀系数与硅相近、耐高温、同时可用作掺杂元素及电极材料等优点。因此,将石墨作为硅和锗之间的过渡层,即在单晶硅衬底上先沉积一层石墨薄膜后再外延锗薄膜,不仅可以消除硅和锗之间的晶格失配,还可以减小由于热膨胀系数不匹配造成的锗薄膜质量的下降,降低锗薄膜的缺陷密度。
发明内容
本发明的目的在于提供一种在单晶硅衬底上沉积制备锗薄膜的方法。
为实现本发明的目的,技术方案如下:
一种单晶硅衬底锗外延薄膜的制备方法,包括如下步骤:
(1)以单晶硅片为衬底;
(2)在单晶硅片衬底抛光面上沉积一层石墨过渡层;
(3)在石墨过渡层上利用化学气相沉积的方法制备锗薄膜。
所述单晶硅衬底为单面抛光或双面抛光的开盒即用型单晶硅片,厚度为160-400μm。
步骤(2)中采用磁控溅射的方法在单晶硅衬底上沉积石墨过渡层,沉积温度为300-800℃。
所述石墨过渡层厚度为20-100nm。
步骤(3)中采用化学气相沉积的方法制备锗薄膜,沉积温度为1000-1200℃。
锗薄膜厚度为20-100μm。
本发明的方法将石墨作为硅和锗之间的过渡层,由于石墨是单分子层结构,在单晶硅衬底上生长一层石墨过渡层对锗薄膜的生长有一定的外延诱导作用,因此生长出的锗薄膜表面更加平整,表面粗糙度大大降低。过渡层的存在有效的遏制了单晶硅衬底和锗薄膜之间的晶格失配,位错密度大大降低,而且由于石墨过渡层极薄,锗薄膜也只有20-100μm,有利于与其他光电器件集成。整个制备过程工艺简单,可以减少太阳电池制备的时间,节约能耗,降低成本,提高太阳电池的整体效率。
附图说明
图1为在单晶硅片衬底上制备锗薄膜的过程示意图。
图2为锗薄膜AFM扫描图。
图3为锗薄膜AFM三维显示图。
具体实施方式
为了进一步说明本发明的技术方案,以下结合附图和具体实例对本发明作进一步的说明。
本发明一种以单晶硅为衬底沉积制备锗外延薄膜的方法和技术。本发明利用磁控溅射方法在单晶硅衬底上,沉积石墨过渡层,再利用化学气相沉积方法在石墨过渡层上沉积一定厚度的锗薄膜,制备出以石墨为过渡层的单晶硅衬底锗薄膜。
如图1所示,一种单晶硅衬底锗外延薄膜的制备方法,包括如下步骤:
步骤1:以单晶硅片为衬底,硅片单面抛光或双面抛光;
步骤2:在单晶硅片衬底抛光面上利用磁控溅射方法沉积一层石墨过渡层,石墨过渡层厚度为20-100nm;
步骤3:在石墨过渡层上利用化学气相沉积的方法制备锗薄膜,厚度为20-100μm。
实现发明的最好方式
1、实现发明的主要设备:磁控溅射设备和化学气相沉积设备。
2、根据制备工艺,并根据生长设备的个体情况进行适当调整,如单晶硅片的选择,源的纯度,沉积薄膜的温度、时间、功率、气体流量等。工艺参数、薄膜厚度等。
实施例1
步骤1:以单晶硅片为衬底,硅片单面抛光或双面抛光;
步骤2:在单晶硅片衬底抛光面上利用磁控溅射方法沉积一层石墨过渡层,石墨过渡层厚度为50nm;
步骤3:在石墨过渡层上利用化学气相沉积的方法制备锗薄膜,厚度为80μm。
原子力显微镜分析(如图2-3所示)表明,在高温条件下,在石墨过渡层上生长锗薄膜时,成膜粒子在石墨表面迁移率较大,易于形成表面光滑平整的锗薄膜,表面粗糙度仅为0.638nm。Sq(Root Mean Square)为表面形貌相对于基准面的均方根粗糙度。
X射线衍射数据分析表明,薄膜样品展现了非常明显的锗薄膜衍射峰,且其半高宽非常小,呈现高度的择优取向。说明锗薄膜已经晶华,大大有利于后续多节电池在其上的合成。
实施例2
步骤1:以单晶硅片为衬底,硅片单面抛光或双面抛光;
步骤2:在单晶硅片衬底抛光面上利用磁控溅射方法沉积一层石墨过渡层,石墨过渡层厚度为70nm;
步骤3:在石墨过渡层上利用化学气相沉积的方法制备锗薄膜,厚度为100μm。

Claims (6)

1.一种单晶硅衬底锗外延薄膜的制备方法,其特征在于,包括如下步骤:
(1)以单晶硅片为衬底;
(2)在单晶硅片衬底抛光面上沉积一层石墨过渡层;
(3)在石墨过渡层上利用化学气相沉积的方法制备锗薄膜。
2.根据权利要求1所述的制备方法,其特征在于,所述单晶硅衬底为单面抛光或双面抛光的开盒即用型单晶硅片,厚度为160-400μm。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中采用磁控溅射的方法在单晶硅衬底上沉积石墨过渡层,沉积温度为300-800℃。
4.根据权利要求1所述的制备方法,其特征在于,所述石墨过渡层厚度为20-100nm。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中采用化学气相沉积的方法制备锗薄膜,沉积温度为1000-1200℃。
6.根据权利要求1所述的制备方法,其特征在于,锗薄膜厚度为20-100μm。
CN201410352977.XA 2014-07-23 2014-07-23 一种单晶硅衬底锗外延薄膜的制备方法 Pending CN104157730A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410352977.XA CN104157730A (zh) 2014-07-23 2014-07-23 一种单晶硅衬底锗外延薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410352977.XA CN104157730A (zh) 2014-07-23 2014-07-23 一种单晶硅衬底锗外延薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN104157730A true CN104157730A (zh) 2014-11-19

Family

ID=51883185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410352977.XA Pending CN104157730A (zh) 2014-07-23 2014-07-23 一种单晶硅衬底锗外延薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN104157730A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823555A (zh) * 2021-09-03 2021-12-21 合肥安德科铭半导体科技有限公司 一种在绝缘体上制备锗薄膜的方法
WO2022222450A1 (zh) * 2021-04-21 2022-10-27 浙江水利水电学院 一种fbar谐振器及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370288A (en) * 1980-11-18 1983-01-25 Motorola, Inc. Process for forming self-supporting semiconductor film
CN103378223A (zh) * 2012-04-25 2013-10-30 清华大学 外延结构体的制备方法
US20130334568A1 (en) * 2012-06-14 2013-12-19 Tivra Corporation Multilayer substrate structure and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370288A (en) * 1980-11-18 1983-01-25 Motorola, Inc. Process for forming self-supporting semiconductor film
CN103378223A (zh) * 2012-04-25 2013-10-30 清华大学 外延结构体的制备方法
US20130334568A1 (en) * 2012-06-14 2013-12-19 Tivra Corporation Multilayer substrate structure and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUHKI ITOH ET AL.: "Structural transition in Ge groeth on Si mediated by sub-monolayer carbon", 《THIN SOLID FILMS》, 28 October 2013 (2013-10-28), pages 61 - 65 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222450A1 (zh) * 2021-04-21 2022-10-27 浙江水利水电学院 一种fbar谐振器及其制备方法与应用
CN113823555A (zh) * 2021-09-03 2021-12-21 合肥安德科铭半导体科技有限公司 一种在绝缘体上制备锗薄膜的方法
CN113823555B (zh) * 2021-09-03 2024-06-07 合肥安德科铭半导体科技有限公司 一种在绝缘体上制备锗薄膜的方法

Similar Documents

Publication Publication Date Title
CN105463580B (zh) 一种硒化镉或硫化镉二维单晶纳米片的制备方法
CN102102220B (zh) 金刚石(111)面上的石墨烯制备方法
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
CN102828251B (zh) 氮化铝单晶材料制备方法
CN105420815A (zh) 一种可控制备正交相硫化亚锡二维单晶纳米片的方法
CN101859814B (zh) 在硅衬底上生长InGaP/GaAs/Ge三结太阳能电池的方法
CN109461644A (zh) 透明单晶AlN的制备方法及衬底、紫外发光器件
CN103227194B (zh) 一种大尺寸石墨烯堆叠结构晶圆及其制备方法
CN105161578A (zh) Si衬底上GaN薄膜的生长方法及复合GaN薄膜
CN104766896B (zh) 一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法
CN101950762A (zh) 硅基太阳能电池及其制备方法
CN106601881B (zh) ZnO导电协变衬底垂直结构型GaN紫外LED
CN101794840B (zh) 柔性CdTe薄膜太阳能电池的制备方法
CN101207022A (zh) 一种在砷化镓衬底上外延生长锑化镓的方法
CN104157730A (zh) 一种单晶硅衬底锗外延薄膜的制备方法
CN106409958B (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN103943700A (zh) 一种生长在GaAs衬底上的InGaAsN薄膜及其制备方法
CN204315590U (zh) 一种双面生长的硅基四结太阳电池
CN104465809B (zh) 一种双面生长的硅基四结太阳电池
CN110534599A (zh) 一种柔性薄膜太阳能电池及其制备方法
CN102286741B (zh) 碲化镉薄膜制备方法
CN109166788B (zh) 一种在硅衬底上直接外延生长锗虚拟衬底的方法
CN203826398U (zh) 一种生长在GaAs衬底上的InGaAsN薄膜
CN103952675A (zh) 一种光伏材料硫化亚铜(Cu2S)薄膜的制备方法
CN100546017C (zh) 一种用于氧化锌外延薄膜生长的硅基可协变衬底材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141119

WD01 Invention patent application deemed withdrawn after publication