CN104151434B - 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体 - Google Patents

预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体 Download PDF

Info

Publication number
CN104151434B
CN104151434B CN201410397286.1A CN201410397286A CN104151434B CN 104151434 B CN104151434 B CN 104151434B CN 201410397286 A CN201410397286 A CN 201410397286A CN 104151434 B CN104151434 B CN 104151434B
Authority
CN
China
Prior art keywords
light
antibody
tumor
tumour
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410397286.1A
Other languages
English (en)
Other versions
CN104151434A (zh
Inventor
傅阳心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shihuida Pharmaceuticals Group (JILIN) Ltd
Original Assignee
Suzhou Ding Fu Target Spot Bioisystech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Ding Fu Target Spot Bioisystech Co Ltd filed Critical Suzhou Ding Fu Target Spot Bioisystech Co Ltd
Priority to CN201410397286.1A priority Critical patent/CN104151434B/zh
Priority claimed from CN200910136143A external-priority patent/CN101822840A/zh
Publication of CN104151434A publication Critical patent/CN104151434A/zh
Application granted granted Critical
Publication of CN104151434B publication Critical patent/CN104151434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明涉及与LIGHT蛋白或LIGHT蛋白片段相连的肿瘤特异性抗体、含有该抗体的组合物、预防和治疗癌症的方法和用途。本发明的LIGHT-抗体和组合物可以用于预防或治疗原发性肿瘤和/或转移性肿瘤,降低、抑制、减少原发性肿瘤生长和/或癌症转移。

Description

预防和治疗原发和转移性癌症的LIGHT-抗肿瘤抗原抗体
本申请是申请号为200910136143.4、申请日为2009年5月4日、发明名称为“预防和治疗原发和转移性癌症的LIGHT-抗肿瘤抗原抗体”的中国发明专利申请的分案申请。
技术领域
本发明属于癌症预防和治疗领域。本发明涉及与LIGHT蛋白或其片段相连的肿瘤特异性抗体、含有该抗体的组合物、预防和治疗癌症的方法和用途。
背景技术
LIGHT(homologous to lymphotoxin,exhibits inducible expression,andcompetes with HSV glycoprotein D for herpes virus entry mediator,a receptorexpressed by T lymphocytes(与淋巴毒素同源,表现为诱导型表达,并与HSV糖蛋白D竞争疱疹病毒进入介体——T淋巴细胞表达的一种受体))是最近鉴定的TNF配体超家族II型跨膜糖蛋白。LIGHT(TNFSF 14)是肿瘤坏死因子(TNF)家族成员,其与分别主要表达在基质细胞和T细胞上的淋巴毒素β受体(LTβR,Lymphotoxinβreceptor)和疱疹病毒进入介体(HVEM,herpes virus entry mediator)相互作用。LTβR信号传导是形成有组织的淋巴结构所必需的,这可能至少部分归因于LTβR能够诱导趋化因子和粘着分子表达,而后两者可以吸引淋巴器官中的幼稚T细胞和树突细胞(DC)。体内LIGHT对基质细胞上的LTβR的刺激导致CCL21表达,在缺乏LTαβ(LTβR的另一配体)的情况下CCL21吸引脾脏T细胞区域中的幼稚T细胞。这些结果证实LIGHT能够与LTβR相互作用以调节CCL21趋化因子的表达。此外,LIGHT也表现出有力的、CD28非依赖性的、T细胞致敏和扩增共刺激活性,导致增强的抗肿瘤T细胞免疫和/或增强的自身免疫。通过LTβR的信号传导是有组织的淋巴组织形成所必需的。淋巴毒素β受体(LTβR)在淋巴结构的形成中起重要作用。LTβR被TNF家族的两个成员,即,淋巴毒素αβ和LIGHT,激活。LTβR在二级淋巴器官中T、B区的不同组织和LN的形成上起关键作用。通过LTβR的信号传导调节二级淋巴器官中趋化因子和粘着分子的表达。趋化因子和粘着分子控制脾脏中DC和淋巴细胞的迁移和定位。可溶性LT或TNF在非淋巴组织中的过表达足以促进功能性淋巴新生。
LIGHT在T细胞激活和淋巴组织形成中具有独特作用。LIGHT是LTβR及疱疹病毒进入介体(HVEM)的配体。LIGHT主要表达在淋巴组织上。LIGHT与LTβR的相互作用可以在LTα-/-小鼠脾脏中重建淋巴结构。此外,LIGHT的上调可以导致T细胞激活和迁移入非淋巴组织中并形成淋巴样结构。相反地,LIGHT-/-小鼠表现出受损的T细胞激活和延迟的心脏排斥。因此,LIGHT是有力的共刺激分子,其也可以促进淋巴组织形成以增强局部免疫应答。引流淋巴组织中有效的幼稚T细胞致敏的缺乏和肿瘤中肿瘤特异性T细胞的无法扩增会妨碍癌症的根除。
微转移瘤(显微镜下可见的癌细胞小聚积体)可以在异质性原发肿瘤发育的非常早阶段确立并在其被临床检测到前播种于远处组织。例如,乳腺癌中当原发性肿瘤体积很小时能够观察到可检测的转移。因此,诊断时,许多癌症患者已经发生显微转移,该观察结果已经导致针对实体瘤患者开发术后辅助治疗。尽管有这些进展,但是成功仍是有限的,而且转移性疾病的最佳治疗一直是癌症治疗中的一个显著挑战。
转移性疾病是癌症发病率和死亡率的主要原因。尽管手术、化疗或放疗常常能够控制原发性肿瘤生长,但是很少成功地根除已经散布的转移瘤。一个尚未解答的问题是这种应答是否允许对到来的CTL实行教导然后使之离开肿瘤部位。另一个尚未解答的问题是是否这些CTL然后能够在外围进行巡逻并有效地去除自发转移的肿瘤细胞。用LIGHT局部治疗肿瘤可以产生大量的肿瘤特异性CTL,这些CTL离开原发性肿瘤并浸润远端肿瘤以完全根除已经存在的自发转移瘤。
人体中天然发生的抗恶性肿瘤T细胞应答常常不足以造成肿瘤(原发性或转移性)消退。免疫治疗潜在地引起可以寻找并破坏已经散布的肿瘤抗原阳性癌细胞的肿瘤反应性T细胞,但是对携带肿瘤的宿主的自动免疫接种仅仅表现出有限的益处。在大多数肿瘤中由于缺乏充分确立的抗原从而限制了自动免疫接种或过继转移治疗。甚至在未确定特异肿瘤抗原的情况下仍然有效的免疫疗法将更为适用和更具有治疗可行性。免疫治疗常常在常规手术、放疗和化疗之后使用。手术可以减小肿瘤负担但也除去了肿瘤抗原的主要来源,这可能产生信号以导致免疫应答撤回,而放疗和化疗将进一步损害已有的免疫应答。仍不清楚何时及以何种方式来加强抗肿瘤自动免疫应答。
抗Her2/neu抗体可抑制和延迟Her2/neu+肿瘤的生长。适当的联合治疗可能诱导传统癌症治疗和LIGHT之间的协同作用,以根除已经建立的肿瘤。关键的选择是使用可以选择性地杀死肿瘤但不杀死免疫细胞的药剂。HER-2/neu(也称为HER2or c-erb-B2)是185-kDa的蛋白质受体,具有酪氨酸激酶活性,并与表皮生长因子(EGF)受体具有广泛的类似性。HER-2/neu在许多上皮肿瘤中表达,并且已知在全部卵巢癌和乳腺癌的大约20-25%、全部胰腺腺癌的35-45%和直肠结肠癌的高达90%中过量表达。HER-2/neu过表达是不良预后和癌症转移的标志。抗-Her2/neu抗体能够以依赖FcR的方式抑制肿瘤的生长(Clynes etal.,2000)。HER-2/neu阳性肿瘤细胞潜在地是已用于免疫治疗试验的肿瘤反应性细胞毒性T淋巴细胞的好靶标。重要的是抗Her2/neu(Herceptin)抗体已在若干临床试验中进行过测试,被证明是HER-2/neu阳性乳腺癌有效的辅助治疗方法(Piccart-Gebhart et al.,2005;Romond et al.,2005)。但是,长期(52周)使用伴随paclitaxel免疫接种常常导致心脏副作用。在患有HER-2/neu阳性肿瘤的患者中观察到T细胞和B细胞水平的天然免疫,确认了HER-2/neu的免疫原性(Ercolini et al.,2005;Kiessling et al.,2002)。对Herceptin有应答的患者的频率是有限的,大多数最初对Herceptin有应当的患者在治疗后一年内产生抗性(Kiessling et al.,2002)。因此,迫切需要开发新的策略来根除neu+肿瘤和neu-肿瘤。在本发明中,我们将LIGHT和抗neu治疗联合,以实现不仅对于neu而且对于其它肿瘤抗原产生长期免疫,以此可能有效根除原发性和/或远端肿瘤。用Herceptin处理的人neu+肿瘤细胞系显示更高比率被HER-2-特异性CTLs裂解(Kono et al.,2004)。因此,重要的是确定LIGHT和抗Her2抗体治疗之间是否存在协同作用以根除局部或远端癌症。
本发明提供了用抗体-LIGHT预防和治疗癌症(包括原发性肿瘤和转移瘤)的新的方法。抗肿瘤表面抗原的抗体将会把LIGHT带到肿瘤部位,以吸引更多的免疫细胞和杀死肿瘤。
发明内容
第一方面,本发明涉及与LIGHT蛋白或其片段相连的肿瘤特异性抗体。肿瘤特异性抗体与LIGHT蛋白或其片段相连构成复合物。该复合物至少包括两个成分,一个成分是肿瘤特异性抗体,另一个成分是LIGHT蛋白或其片段。
在本发明的复合物中,所述抗体和所述LIGHT蛋白或其片段可以通过形成融合蛋白、化学缀合、和形成免疫脂质体等方法中的一种或者多种方法相连。在一个优选实施方案中,所述抗体和所述LIGHT蛋白或其片段通过形成融合蛋白而相连。
在一个优选实施方案中,本发明涉及包含肿瘤特异性抗体与LIGHT蛋白或其片段的融合蛋白。
本发明的复合物和融合蛋白可以是分离的,例如可以是重组产生的,或者可以是经过至少部分纯化的。
当形成融合蛋白时,所述抗体和所述LIGHT蛋白或其片段之间可以包含(也可以不包含)连接接头。连接接头是由一个或多个(例如1-50个,1-20个,1-15个或者1-10个)氨基酸残基组成的氨基酸序列。例如,连接接头可以是图1A中所示的接头。
融合蛋白可以包含信号肽(导向肽)或者便于纯化的标签。
当形成融合蛋白时,所述抗体优选是单链抗体,优选是scFv。
在一个优选实施方案中,本发明融合蛋白由信号肽(导向肽)和/或者便于纯化的标签、肿瘤特异性抗体(单链抗体)、接头和LIGHT蛋白或其片段构成。在一个具体实施方案中,本发明融合蛋白由肿瘤特异性抗体(单链抗体)和LIGHT蛋白或其片段构成。在一个优选实施方案中,本发明融合蛋白由肿瘤特异性抗体(单链抗体)、接头和LIGHT蛋白或其片段构成。
在本发明的融合蛋白中,LIGHT蛋白或其片段可以在肿瘤特异性抗体(单链抗体)的上游(N端一侧)或者下游(C端一侧)。
所述抗体可以是人源化单克隆抗体、嵌合抗体、heterominibody、或单链抗体。本发明的抗体优选是肿瘤抗原特异性的抗体。在一个实施方案中,肿瘤抗原是肿瘤表面抗原。在一个实施方案中,所述抗体能特异识别和结合肿瘤表面抗原。
本发明的抗体可以是抗体片段。能够特异结合抗原的抗体片段是本领域知晓的。优选地,所述抗体是足以识别肿瘤抗原的抗体片段。
本发明复合物中的所述抗体包括但不限于对以下肿瘤抗原特异的抗体:HER2、HER4、HER8和/或EGFR,例如抗neu抗体和/或抗Her2抗体,或237和抗-pUA。本发明复合物中所用抗体还包括对肿瘤上过表达的蛋白质或者突变的跨膜蛋白特异的抗体。本发明复合物中所用抗体还包括对STEAP(前列腺的六次跨膜上皮抗原)、CD55特异的抗体。
一种抗-人Her2/neu scFv例子是7.16.4。另一种抗-人Her2/neu scFv例子是SEQ ID NO:5。
所述LIGHT蛋白和其片段优选是人的。野生型人类LIGHT DNA序列见SEQ ID NO:1。天然人LIGHT氨基酸序列见SEQ ID NO:2。
优选地,所述LIGHT蛋白片段足以刺激细胞毒性T淋巴细胞。
优选地,所述LIGHT蛋白片段包含或者是LIGHT蛋白胞外域的片段。
所述LIGHT蛋白的片段优选是包含LIGHT蛋白胞外域的片段。在一个具体实施方案中,LIGHT蛋白的片段可以是LIGHT蛋白胞外域。在一个实施方案中,LIGHT蛋白胞外域具有如下氨基酸序列:
QLHWRLGEMVTRLPDGPAGSWEQLIQERRSHEVNPAAHLTGANSSLTGSGGPLLWETQLGLAFLRGLSYHDGALVVTKAGYYYIYSKVQLGGVGCPLGLASTITHGLYKRTPRYPEELELLVSQQSPCGRATSSSRVWWDSSFLGGVVHLEAGEKVVVRVLDERLVRLRDGTRSYFGAFMV(SEQ ID NO:4)
(也参见gi|13124597|sp|O43557|TNF14_HUMAN[13124597]。
LIGHT蛋白的片段优选包含LIGHT的大约100-150个氨基酸。在一个优选实施方案中,所述LIGHT蛋白片段包含:LIGHT蛋白约第85-239位的氨基酸序列。
在一个优选实施方案中,LIGHT蛋白的片段包含:LIGHT蛋白约第85-239位的氨基酸序列、或LIGHT蛋白约第90-239位的氨基酸序列、或LIGHT蛋白约第90-235位的氨基酸序列。氨基酸的编号是指SEQ ID NO:2所示氨基酸序列的位置,或者与该氨基酸序列最佳比对后对应的氨基酸序列位置。
在另一个实施方案中,所述LIGHT蛋白片段包含LIGHT蛋白的保守结构域。
在另一个优选实施方案中,所述LIGHT蛋白或LIGHT蛋白片段是蛋白酶抗性LIGHT蛋白或LIGHT蛋白片段。
在一个优选实施方案中,所述LIGHT蛋白或LIGHT蛋白片段是人的LIGHT蛋白或LIGHT蛋白片段,在蛋白酶识别序列EQLI中包含突变,导致具有蛋白酶抗性。
作为举例说明,一种突变的人LIGHT氨基酸序列缺乏EQLI,其序列见SEQ ID NO:3。
在一个具体实施方案中,所述复合物包含或者具有如下序列或者由如下序列构成:抗体(例如抗-Her2抗体或者抗-237抗体)+LIGHT。
另一方面,本发明还涉及分离的核酸分子,其编码本发明的复合物,其中所述复合物是包含所述抗体和所述LIGHT蛋白或LIGHT蛋白片段的融合蛋白。
本发明还涉及分离的核酸分子,其编码本发明的包含肿瘤特异性抗体与LIGHT蛋白或其片段的融合蛋白。
本发明还涉及包含上述核酸分子的载体。该载体优选是表达载体,其能够在宿主细胞中表达所述核酸分子。
本发明还涉及包含上述载体的宿主细胞。宿主细胞包括动物细胞、植物细胞、微生物细胞,例如大肠杆菌细胞,动物细胞系,非生殖动物细胞系等。
本发明的复合物可以用于预防或治疗原发性肿瘤和/或转移性肿瘤,或者降低、抑制、或减少原发性肿瘤生长和/或癌症转移,或者刺激产生使幼稚T细胞致敏的趋化因子、粘着分子和共刺激性分子中的至少一种,或者刺激对抗所述肿瘤的肿瘤特异性T细胞。
另一方面,本发明涉及包含本发明复合物或者本发明核酸分子或者载体的组合物。
另一方面,本发明涉及用于预防或治疗原发性肿瘤和/或转移性肿瘤,或者降低、抑制、或减少原发性肿瘤生长和/或癌症转移的药物组合物,包含本发明复合物或者本发明核酸分子或者载体和可药用载体。
在一个实施方案中,本发明药物组合物优选是适用于静脉内给药的形式,例如注射液。
在优选实施方案中,本发明药物组合物通过刺激产生使幼稚T细胞致敏的趋化因子、粘着分子和共刺激性分子中的至少一种来降低癌症转移。
在优选实施方案中,本发明药物组合物通过刺激对抗所述肿瘤的肿瘤特异性T细胞来降低原发性肿瘤生长和/或癌症转移。
在另一个实施方案中,所述药物组合物用于和化疗剂和/或放射疗法联合给药。
另一方面,本发明涉及联合制剂,包含本发明与LIGHT蛋白或其片段相连的肿瘤特异性抗体和编码LIGHT蛋白或其片段的核酸分子.
另一方面,本发明涉及本发明复合物或者本发明核酸分子或者载体在制备药物中的用途,所述药物用于预防或治疗原发性肿瘤和/或转移性肿瘤,或者降低、抑制、或减少原发性肿瘤生长和/或癌症转移,或者刺激产生使幼稚T细胞致敏的趋化因子、粘着分子和共刺激性分子中的至少一种,或者刺激对抗所述肿瘤的肿瘤特异性T细胞。
本发明待预防和治疗的癌症/肿瘤包括但不限于乳腺癌,肺癌,前列腺癌,结肠癌,或皮肤癌。
另一方面,本发明涉及预防或治疗原发性肿瘤和/或转移性肿瘤,或者降低、抑制、或减少原发性肿瘤生长和/或癌症转移的方法,所述方法包括∶
给药本发明复合物或者本发明核酸分子或者载体的药物组合物;和
通过激活肿瘤特异性的抗肿瘤T细胞以降低所述原发性肿瘤的生长和/或癌症转移。
在上述方法的一个实施方案中,所述药物组合物是通过静脉内给药的。
在上述方法的一个实施方案中,药物组合物通过刺激产生使幼稚T细胞致敏的趋化因子、粘着分子和共刺激性分子中的至少一种来降低癌症转移
另一方面,本发明涉及预防或治疗原发性肿瘤和/或转移性肿瘤,或者降低、抑制、或减少原发性肿瘤生长和/或癌症转移的方法,所述方法包括∶
(A)给个体给药包含本发明复合物或者本发明核酸分子或者载体的药物组合物;
(B)通过刺激对抗所述肿瘤的肿瘤特异性T细胞来降低原发性肿瘤生长和/或癌症转移。
在一个优选实施方案中,所述核酸分子被递送至预先存在的肿瘤部位。
在一个优选实施方案中,所述核酸分子被递送至预先存在的肿瘤部位的远端部位。
在一个优选实施方案中,所述方法还包括给药化疗剂。
在一个优选实施方案中,所述方法还包括采用放射疗法。
在一个实施方案中,所述与LIGHT蛋白或其片段相连的肿瘤特异性抗体如上文所定义。
附图说明
图1显示抗体-LIGHT融合蛋白的构建。
图1A显示抗体-LIGHT融合蛋白的分子设计。上图是融合蛋白的总体策略。下图是LIGHT与抗her2抗体在基因水平上融合的具体实例。scFv(neu)是抗Her2单链Fv抗体,图中给出的该抗体的例子是7.16.4,在本发明中也可以利用其它抗Her2抗体,或者抗其它抗原的抗体。scFv(neu)的C端通过接头L2与LIGHT片段的N端相连。L2的非限制性例子有两个,其中L2short是长接头(CS),L2long是短接头(CL),ECD是LIGHT的胞外域,p3是载体的一部分。
图1B显示LIGHT-anti-Her2和它们的接头:抗Her2抗体和短接头(CS)或者长接头(CL)的序列,以及小鼠LIGHT的ECD。
图1C显示了一个抗人Her2/neu scfv,它可以用于本发明中,通过接头(或者不通过接头)和LIGHT或其片段融合,构成融合蛋白。
图2说明向neu+肿瘤中递送LIGHT能够增强抗neu免疫。Adv-mmlit(表达鼠突变LIGHT的腺病毒)可抑制neu+N202肿瘤生长。详见实施例2。
图3显示237-LIGHT结合Ag104Ld肿瘤细胞以及LTβR和HVEM。这些数据显示,237-LIGHT既可以结合Ag104肿瘤细胞,也可以结合LTβR和HVEM,提示237-LIGHT可以结合两个目标部位。使用各图上方所示试剂对大约4×105个Ag104Ld肿瘤细胞进行染色。通过峰标记FL2的平均荧光。最后三图是图上方所示两种染色的重叠图。
图4说明237-LIGHT可以对抗-CD3刺激的T细胞增殖产生共刺激作用。将大约3×105个混合的淋巴结细胞和脾细胞置于已经使用抗CD3和所示试剂包被的96孔板的每个孔中。刺激后48小时加入3H并在3H加入后18小时收获板子。很清楚,使用1ug/ml 237-LIGHT获得好得多的T细胞应答,与迄今为止最有效的抗共刺激分子——抗CD-28相当。因此,这些数据表明,本发明融合蛋白仍然保持LIGHT的功能。
图5显示全身性使用低剂量的237-LIGHT融合蛋白能够限制已经建立的原发性肿瘤的生长。以大约105个Ag104Ld肿瘤细胞于第0天皮下接种C3B6F1小鼠。给小鼠过继转移3x106活化的2C T细胞(体外以SIY肽活化)并静脉内注射10μg小鼠免疫球蛋白(mIg,作为对照)或237-LIGHT抗体。在第15天重复mIg或237-LIGHT给药。结果显示在图中。
图6是显示在除去原发性肿瘤后根除继发性肿瘤的结果图。在第一个部位给B6C3F1小鼠接种Ag104Ald肿瘤细胞作为原发性肿瘤。15天后在远端部位接种第二个肿瘤。然后在第15、29和36天用融合蛋白237-LIGHT按图中所示处理小鼠。
图7显示当以抗-Her2抗体或同种型IgG(Isotype IgG)给药时,移植的Her2+Tubo肿瘤的生长情况,其中发现,在最初抗Her2抗体处理后一些Tubo肿瘤生长消失,但是在处理停止后重新生长。经s.c.途径给BABL/c小鼠接种106Tubo肿瘤细胞。在肿瘤接种后第10天和第17天经i.p.途径注射100ug抗-Her2抗体(7.16.4)或者同种型IgG。在图中指明的时间点检测肿瘤生长。结果显示,在用抗Her2抗体处理的5只小鼠中有3只出现肿瘤重新生长。
图8显示当以Ad-LIGHT单独给药、抗-Her2单独给药以及以Ad-LIGHT和抗-Her2联合给药时,肿瘤的生长情况。给BABL/c小鼠s.c接种106Tubo肿瘤细胞。在肿瘤接种后第18天向肿瘤内注射1e10Ad-LIGHT或Ad-LacZ病毒颗粒(VP)。在肿瘤接种后第18和25天i.p.注射50ug抗-Her2抗体或者同种型IgG。在图中指明的时间点检测肿瘤生长。在第21天后,所有治疗组均和同种型IgG组有显著差别。在第25天后,Ad-LIGHT和抗Her2联合治疗组与单Ad-LIGHT组或者单抗-Her2抗体组有显著差别。统计学分析是采用双尾student’s t检验进行的。数据表示为平均值+SEM。p<0.05被认为有显著差别。结果显示,抗-Her2抗体能够减缓肿瘤生长但不能根除肿瘤,只有在给予抗Her2抗体和ad-LIGHT两者时才会导致根除肿瘤。
图9显示通过联合治疗可在Her2/neu Tg小鼠中控制自发性肿瘤生长。在首次检测到肿瘤之后不久按图中所示处理小鼠。参见实施例6。在第0、1、2周以抗体(100ug)或腺病毒(VP:1010)处理带有自发性肿瘤的小鼠三次。在联合治疗组中,给予抗-her2单克隆抗体(mab)和表达鼠突变LIGHT的腺病毒(adv-mmlight)。
图10显示的是实施例7不同处理组的肿瘤体积。表明用抗体和融合蛋白抗HER抗体-LIGHT短期处理可消除原发性neu+TUBO肿瘤。“Ctrl”表示对照组。“Her2”表示抗HER抗体组。“Her2+Fab-LIGHT”表示抗HER抗体-LIGHT融合蛋白组。详见实施例7。
图11显示的是实施例8不同处理组的肺转移肿瘤计数。表明融合蛋白抗HER2抗体-LIGHT能够降低肺部转移肿瘤。未处理组是用PBS处理的对照组。7.16.4组是用抗neu抗体7.16.4单克隆抗体处理的组。Fab-LIGHT组是用抗HER2抗体-LIGHT融合蛋白处理的组。详见实施例8。
发明详述
在本发明中用LIGHT-抗体融合产物靶向肿瘤可以产生对抗原发性肿瘤和转移瘤的强免疫性。
肿瘤环境常常形成免疫屏障阻止足够水平的抗原或抗原呈递细胞进入引流淋巴结由此导致无效的T细胞致敏。为了开发新的实用性方法以产生抗肿瘤强免疫,本发明人直接用TNF超家族成员14(TNFSF14),LIGHT,靶向肿瘤组织,LIGHT可以直接向肿瘤部位募集更多免疫细胞并增强抗肿瘤免疫(Yu等,2004,Wang等,2006,Fan等,2006)。为了排除大的已经建立的肿瘤,开发了标准疗法和LIGHT相联合的疗法。用抗Her2靶向肿瘤可以有效地降低肿瘤负担但是不能完全地根除肿瘤,尤其是转移瘤。目前,本发明人证实,LIGHT-抗肿瘤抗原抗体可以减缓大块肿瘤(massive tumor)的生长。本发明人还证实,LIGHT和抗-Her/neu之间的协同作用比单种疗法可以更好地控制原发性肿瘤。重要的是,用LIGHT-抗her2/neu可根除转移性neu+肿瘤。本研究可以延伸到与抗其它肿瘤抗原的抗体连接的LIGHT,尤其是在微转移瘤治疗方面。同等重要的是,也可以将其它细胞因子与抗肿瘤抗原抗体连接,并使用其对抗微转移瘤。
早期转移可能是不活跃的或是生长缓慢的,这可能不能有效刺激免疫应答。如何根除这些微转移瘤成为了一个难题。本发明人的数据证实,对肿瘤特异的抗体可以更为有效地将LIGHT带入肿瘤部位从而抑制肿瘤生长。例如,使用可以将LIGHT带入远端肿瘤部位的抗neu的SvFc与LIGHT的融合物(Sv-Fc-neu-LIGHT),在术后治疗neu+肿瘤患者是可行的。以此方式,本发明人可以促进免疫细胞靶向微转移瘤。
通过LIGHT-抗体融合物或缀合物(conjugate)在肿瘤组织中诱导免疫应答可以产生足够的抗原特异性致敏效应T细胞,以离开肿瘤并在甚至除去肿瘤后根除转移瘤。将手术切除与使用TNFSF14(LIGHT)靶向原发性肿瘤相联合,是一种引发更好的免疫应答以根除自发性转移的新策略。抗体-LIGHT治疗减缓侵袭性肿瘤的生长。
治疗肿瘤(尤其是微转移瘤(micrometastasis),此时的肿瘤通过成像方式是无法看见的)的一个新方法是:通过使用突变LIGHT分子,创建淋巴样微环境,该淋巴样微环境可以表达导致幼稚T细胞致敏和导致活化的T细胞扩增所需的趋化因子、粘着分子及共刺激分子。可产生更宽的抗肿瘤T细胞。直接递送将LIGHT(或其它免疫刺激剂)与抗肿瘤抗原抗体连接在一起的融合蛋白或者两者的缀合物可以有效地抗肿瘤和肿瘤转移。本发明人的数据清楚地显示,与对照处理的肿瘤相比,当以LIGHT-抗体缀合物或融合产物靶向肿瘤时,体内肿瘤体积减小。在全身性治疗原发肿瘤后,可减少远端肿瘤或者转移瘤。
本发明以下具体公开的核酸分子编码包括了细胞外域的重组人LIGHT:
QLHWRLGEMVTRLPDGPAGSWEQLIQERRSHEVNPAAHLTGANSSLT
GSGGPLLWETQLGLAFLRGLSYHDGALVVTKAGYYYIYSKVQLGGVG
CPLGLASTITHGLYKRTPRYPEELELLVSQQSPCGRATSSSRVWWDSSF
LGGVVHLEAGEKVVVRVLDERLVRLRDGTRSYFGAFMV(SEQ ID NO:4).
转移性疾病是导致癌症患者死亡的主要原因。转移瘤或小的原发性肿瘤的最初隐匿可以归因于可用于致敏CD8+T细胞的抗原的水平不足。利用与LIGHT偶联的识别肿瘤细胞表达的抗原的抗体(抗体-LIGHT)进行治疗的方法可以在通过静脉内(i.v.)注射全身性地引入该抗体-LIGHT后特异地并有效地靶向迁移的肿瘤细胞。
作为举例说明,在小鼠模型中,“237”(参见文献A Mutant Chaperone Converts aWild-Type Protein into a Tumor-Specific Antigen.Andrea Schietinger等,SCIENCE,13 OCTOBER 2006,VOL 314,Pages 304-308;P.L.Ward,H.Koeppen,T.Hurteau,H.Schreiber,J Exp Med 170,217(1989))是一种抗Ag104肿瘤细胞的高亲和性单克隆抗体,其在静脉注射后以高浓度在体内聚积在肿瘤内。Heterominibody237-LIGHT(通过缀合或遗传连接方式连接)允许LIGHT在其系统性引入后被特异地递送入位于各种远端位置的肿瘤组织中。LIGHT-抗体偶联物(例如,LIGHT-抗体融合蛋白)选择性地聚积在肿瘤组织内并在体外特异地结合Ag104肿瘤。
利用与LIGHT偶联的、识别肿瘤细胞表达的抗原的抗体(抗体-LIGHT)的治疗方法被设计成在通过静脉内注射而全身引入该抗体-LIGHT后特异和有效地靶向迁移的肿瘤细胞(策略见图1)。识别任何肿瘤抗原的任何肿瘤特异性抗体都适于与LIGHT或其功能性片段偶联。
LIGHT在肿瘤细胞上的表达可以促进肿瘤排斥。肿瘤Ag104A及其衍生物被用作我们的肿瘤模型之一。Ag104A最初来源于C3H(H-2k)小鼠的自发性骨肉瘤,甚至非常低剂量的Ag104A(104)也能够在C3H或B6C3F1小鼠(Jackson laboratory,Maine USA)中侵袭性生长并伴随非常小的浸润。当将强抗原Ld(allogenic antigen)引入肿瘤中后,肿瘤仍保持对免疫识别具有抵抗性,提示可能存在强的肿瘤屏障。局部表达的突变LIGHT可以成为一种强共刺激分子,其可以增强肿瘤抗原向抗原特异性T细胞的直接呈递并防止肿瘤微环境中浸润的T细胞的无免疫反应性。看来LIGHT在介导肿瘤免疫方面具有多种功能。LIGHT也可以增强体内肿瘤凋亡。
通过目前现有的癌症治疗方法很少成功根除转移瘤。在手术切除前于原发性肿瘤组织中引起免疫应答可以产生足以根除远端转移瘤的肿瘤特异性效应T细胞。通过例如在原发性肿瘤中递送LIGHT-抗体来致敏肿瘤特异性CD8+T细胞,可以促进细胞毒性T淋巴细胞(CTL)的随后离开,该CTL可向远端肿瘤归巢。在手术切除前靶向原发性肿瘤可以通过免疫介导方式根除自发性转移瘤。
已经散布的转移的肿瘤细胞能够在手术切除原发性肿瘤后数月或甚至数年保持隐匿并在临床上无法检测到,这导致随后的临床疾病复发。免疫治疗策略适于消除此微转移疾病(micrometastatic disease)。例如,将LIGHT-抗体递送入原发性肿瘤中可以防止转移形成并对外周组织中已经建立的转移瘤产生排斥作用。例如,将LIGHT以抗体-LIGHT融合蛋白形式直接递送至肿瘤(例如,原发性肿瘤)可以从肿瘤组织中产生足够数量的可移动至远端位置的效应/记忆T细胞,导致免疫应答强度的整体增加、炎性细胞因子的产生增加、以及自发性转移瘤的根除。
在存在位于肿瘤表面的LIGHT时,CTL可以有效地被致敏并随后通过循环浸润LIGHT阴性的远端肿瘤。没有原发性肿瘤中存在LIGHT时带来的好处,预期在继发性肿瘤位置将几乎没有活化T细胞。可能的是,在LIGHT存在时在局部肿瘤位置产生的这些效应/记忆T细胞能够离开肿瘤并在外周巡查和鉴别转移的肿瘤细胞。近来已经证实,趋化因子受体(CCR7)是T细胞离开外周组织,包括炎症部位,并前往引流LN的关键分子。
本文中,单克隆抗体包括“嵌合”抗体,其中该抗体的重链和/或轻链的一部分与来源于特定物种或属于特定抗体类型或亚类的抗体中的相应序列相同或同源,而所述链的剩余部分则与来源于另一物种或属于另一抗体类型或亚类的抗体中的相应序列相同或同源;该术语也包括“嵌合”抗体的片段,只要所述片段表现出期望的生物学活性即可(见美国专利4,816,567;和Morrison等,Proc.Natl.Acad.Sci.USA,81:6851-6855(1984))。本文中有意义的嵌合抗体包括含有来源于非人灵长类动物的可变区抗原结合序列和人恒定区序列的“灵长类化”抗体("primatized"antibodies)。
“抗体片段”包括完整抗体的一部分,例如完整抗体的抗原结合区或可变区。抗体片段的例子包括Fab、Fab’、F(ab’)2、单链Fv和Fv片段;diabody;线性抗体(linearantibodies)(见美国专利5,641,870;Zapata等,Protein Eng.8(10):1057-1062(1995));单链抗体分子;和从抗体片段形成的多特异性抗体。
已经开发了多种技术用于生产抗体片段。传统地,通过蛋白酶水解消化完整抗体来获得这些片段。然而,这些片段也可以通过重组宿主细胞直接生产。Fab、Fv和ScFv抗体片段均能够在大肠杆菌(E.coli)中表达和分泌,由此使得可以容易地生产大量的这些片段。可以从抗体噬菌体文库分离抗体片段。抗体片段也可以是“线性”抗体,例如,美国专利5,641,870中描述的。此线性抗体片段可以是单特异性的或双特异性的。
抗体与共刺激分子如LIGHT的缀合物(Conjugates)可以使用各种双官能蛋白质偶联剂来制备,所述偶联剂如N-琥珀酰亚胺基-3-(2-吡啶基二硫基)丙酸酯(SPDP)、琥珀酰亚胺基-4-(N-马来酰亚胺基甲基)环己烷-1-羧酸酯、iminothiolane(IT)、亚氨酸酯的双官能衍生物(如己二酰亚氨酸二甲基酯HCL)、活性酯(例如辛二酸二琥珀酰亚胺酯)、醛类化合物(例如戊二醛)、二叠氮基化合物(如,二(对叠氮基苯甲酰基)己二胺)、双重氮衍生物(如,双-(对重氮化苯甲酰基)-乙二胺))、二异氰酸酯(如甲苯2,6-二异氰酸酯)、和双活性氟化合物(如1,5-二氟-2,4-二硝基苯)。LIGHT的细胞外域或其片段与特异于肿瘤抗原(优选表面肿瘤抗原)的抗体或抗体片段缀合。
或者,可以例如通过重组技术或肽合成法,制备包含抗肿瘤抗原抗体和LIGHT的融合蛋白。此DNA的长度可以包括编码该缀合物的这两个部分的相应区域,其中所述的这两个部分可以彼此相邻或者被编码不会破坏该缀合物的期望性质的接头肽的区域分开。
图1说明融合蛋白或者缀合物的可能结构。我们还给出了一个融合蛋白序列作为通用策略的例子,用于指导抗体-LIGHT的构建。
本文公开的LIGHT-抗体复合物也可以配制成免疫脂质体(immunoliposomes)的形式。“脂质体”是由各种脂质、磷脂和/或表面活性剂构成的小泡,其对于将药物递送给哺乳动物是有用的。脂质体的成分通常排列为双层形式,类似于生物膜的脂质排列方式。含有抗体的脂质体可以通过本领域已知的方法,例如美国专利4,485,045和4,544,545和WO97/38731(1997年10月23日公布)描述的方法制备。美国专利5,013,556中公开了具有增加的循环时间的脂质体。
对于疾病的预防或治疗,施用的剂量和方式可以由临床医师根据已知标准选择。LIGHT-抗体缀合物或融合产物的适宜剂量可以取决于待治疗的癌症类型、疾病的严重性和病程、肿瘤大小、转移程度、施用抗体的目的是预防性的还是治疗性的、先前的治疗、患者的临床病史及对抗体的应答、以及主治医师的判断。LIGHT-抗体组合物适于一次性或通过一系列治疗的方式施用给患者。优选地,通过静脉内灌注或皮下注射施用该组合物。根据疾病的类型和严重性,可以将大约1μg/kg至大约50ug/kg体重(例如,大约0.1-15mg/kg/剂)的抗体作为最初候选剂量,通过例如一次施用或多次分开施用或者持续灌注施用给患者。本发明融合蛋白的一个优点是使用的剂量比单给予抗体的剂量低得多。给药方案可以包括施用大约0.01mg/kg的初始承载剂量(loading dose)、之后大约0.22mg/kg抗Her2-LIHGTfusion的每周维持剂量。然而,其它剂量方案也可能是有用的。典型的每日剂量可以从大约1μg/kg至0.1mg/kg或更多,这取决于上述因素。对于持续几天或更长时间的重复施用,根据情况,可以维持该治疗直到疾病症状获得期望的抑制,例如肿瘤大小/体积的减小和转移的减小。可以通过常规方法和分析试验,基于医师或本领域其它技术人员已知的标准,监测该治疗的过程。
可以使用LIGHT-抗体融合物或缀合物靶向的适宜肿瘤表面抗原包括表皮生长因子受体家族(EGFR),包括HER1、HER2、HER4和HER8(Nam,N.H.,& Parang,K.(2003),Currenttargets for anti-cancer drug discovery.Current Drug Targets,4(2),159-179)、STEAP(前列腺的六次跨膜上皮抗原;Hubert等,STEAP:a prostate-specific cell-surface antigen highly expressed in human prostate tumors.,Proc.Natl.Acad.Sci.USA.1999;96(25):14523-8.)、CD55(Hsu等,Generation andcharacterization of monoclonal antibodies directed against the surfaceantigens of cervical cancer cells.,Hybrid Hybridomics.2004:23(2):121-5)。
本发明的抗体可以采用本领域已知的方法制备。例如,抗neu/Her2抗体的制备可参见如下文献:A B7.1-antibody fusion protein retains antibody specificity andability to activate via the T cell costimulatory pathway.Challita-Eid PM等,JImmunol.1998Apr 1,160(7):3419-26;以及HER-2/neu-specific monoclonal antibodiescollaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulatingfactor secreting whole cell vaccination to augment CD8+T cell effectorfunction and tumor-free survival in Her-2/neu-transgenic mice.Wolpoe ME等,JImmunol.2003Aug 15,171(4):2161-9。
实施例
下面结合实施例进一步说明本发明的详细内容及其有关效果,但是应该明白,这些实施例仅是为举例说明本发明,而不在任何方面构成对本发明范围的限制。
材料和方法
抗体-LIGHT融合蛋白的制备
使用标准方案,构建了融合蛋白237-LIGHT构建体,该构建体允许抗体237特异地靶向Ag104A,同时携带LIGHT到肿瘤区。LIGHT采用胞外域(其序列见图1B中的ECD)。
类似地,构建了融合蛋白7.16.4-LIGHT构建体。7.16.4是抗-her2单克隆抗体(Anti-her2)。LIGHT采用胞外域(ECD)。融合蛋白7.16.4-LIGHT的构建和序列见图1。
图1提供了详细策略和相关序列。
scFv-LIGHT融合蛋白的制备和测试(请参见图1)
●所用表达系统
真核表达载体:pFLAG-CMV-1(sigma)或者pSecTag(invitrogen)
细胞系:CHO或293细胞
纯化方法:抗-FLAG系统或者Ni-NTA系统
其中,Diabody系统在IRES系统中构建。
●完整策略
1、N-端或C-端LIGHT构建体的抗原结合试验
(1)scFv-LIGHT基因构建体的重叠PCR
(2)在pComb3X载体中克隆LIGHT-scFv
(3)在E.coli Top10F’中表达
(4)用Ni-NTA系统纯化
(5)抗-uPA活性试验:用HT1080细胞进行FACS
2、N-端或C-端LIGHT构建体的T细胞结合试验
(1)将scFv-LIGHT融合构建体转移到真核载体中
(2)瞬时转染到CHO或者293细胞
(3)用抗FLAG或者Ni-NTA系统纯化
(4)LIGHT功能测试以及抗uPA:FACS
小鼠、细胞系和试剂
雌性C3HXC57BL/6F1(C3B6F1)小鼠,4-8周龄,购自National Cancer Institute,Frederick Cancer Research Facility,(Frederick,MD)。C57BL/6-RAG-1缺陷(RAG-1-/-)小鼠购自Jackson实验室(Bar Harbor,ME)。具有RAG-2缺陷/B6背景的H-Y TCR转基因小鼠(H-Y小鼠)购自Taconic Farms(Germantown,NY)。具有经10代育种至B6中的RAG-1缺陷背景的2C TCR转基因小鼠(2C小鼠)由J.Chen(Massachusetts Institute of Technology,Boston,MA)提供。OT-1TCR转基因小鼠(OT-1小鼠)由A.Ma(The University of Chicago)提供。RAG-1-/-、H-Y、2C、OT-1小鼠在芝加哥大学的特殊无病原体设施中繁殖和维持。根据机构的制度护理和使用动物。
AG104A纤维肉瘤自发地在衰老的C3H小鼠中长出,按已有描述的方法(Ward1989JEM)适应性培养。先前已经描述过表达鼠H-2Ld的AG104A(AG104-Ld),AG104A细胞的转染子。这些肿瘤细胞系维持在补充了10%FCS(Sigma-Aldrich)、100U/ml青霉素和100μg/ml链霉素(BioWhittaker)的DMEM(Mediatech)中。产生抗Ld(克隆30-5-7)和抗2C TCR(1B2)抗体的杂交瘤细胞系分别获自D.Sachs(National Institute of Health,Bethesda,MD)和T.Gajweski(The University of Chicago)。
使用蛋白G柱通过标准方案从培养物上清液中纯化杂交瘤产生的单克隆抗体。通过芝加哥大学的单克隆抗体机构(the Monoclonal Antibody Facility),将1B2抗体与FITC或生物素缀合。偶联PE的抗CD8抗体、偶联Cy-Chrome(CyC)的链霉亲和素、偶联CyC的抗CD44抗体、偶联PE的抗CD62L抗体和偶联PE的Th1.2抗体购自BD Biosciences。缀合了FITC的山羊抗小鼠IgG购自Caltag。偶联PE的链霉亲和素购自Immunotech。偶联PE的驴抗人IgG购自Jackson Immunological Research Lab(West grove,PA)。生物素化的山羊抗SLC抗体购自R&D system Inc.(Minneapolis,MN)。缀合了AP的兔抗山羊Ig抗体购自VectorLaboratories Inc.(Burlingame,CA)。经纯化的山羊抗SLC抗体购自Pepro Tech(Rockhill,NJ)。胶原酶(4型)购自Sigma-Aldrich。CFSE购自Molecular Probes。用于本研究的HVEM-Ig和LTβR-Ig融合蛋白先前已经描述过。
体内肿瘤生长
将肿瘤细胞皮下注射至小鼠背的下部,即,尾根部以上0.5-1cm处。每3至4天利用游标卡尺测量肿瘤生长。通过公式V=πabc/6(其中,a,b和c是三个正交的直径),计算大小(单位:立方厘米)。
组织学
在所述时间收集用于组织学检查的肿瘤组织,并在10%中性缓冲的福尔马林中固定、经石蜡包埋处理、并用苏木精和伊红染色。对于SLC的免疫组织化学染色,收获肿瘤组织、包埋在OCT化合物(Miles-Yeda,Rehovot,Israel)中,-70℃冰冻。在PBS中的冷的2%福尔马林内固定冰冻切片(5-10μm厚),用0.1%皂苷/PBS透化处理。湿室中在0.1%皂苷/PBS中用5%山羊血清室温预封闭切片半小时。为了对SLC进行染色,首先在封闭缓冲液中与1/25稀释的生物素化山羊抗SLC抗体(R&D systems Inc.Minneapolis,MN)孵育。2小时后加入碱性磷酸酶缀合的兔抗山羊Ig抗体(Vector Laboratories Inc.Burlingame,CA)。为了进行免疫荧光染色,用PBS中的2%正常小鼠血清、兔血清和山羊血清在湿室中室温封闭切片半小时。将封闭液更换为50μl以1/100稀释在封闭液中的一抗,PE缀合的抗Th1.2(BDPharMingen)或PE缀合的抗CD8(BD PharMingen),湿室中室温孵育切片1小时。在含有10%1,4-二氮杂二环[2.2.2]辛烷的Mowiol 4-88(BD Biosciences,La Jolla,CA)中封固样本。48小时内用Zeiss Axioplan显微镜(Zeiss,Oberkochen,德国)和Photometrics PXL CCD相机(Photometrics,Tucson,AZ)分析样品。使用Openlab v2.0.6(Improvision,Lexington,MA)进行非邻反卷积计算(No-Neighbor deconvolution)。
CCL21的ELISA
预备肿瘤匀浆物并分析CCL21。从肿瘤携带小鼠收集相似量的肿瘤组织,并称重,在含有蛋白酶抑制剂的PBS中匀浆,离心收集上清液。用PBS中2μg/ml的山羊抗小鼠CCL21包被聚苯乙烯96孔微量滴定板(Immulon 4,Dynatech Laboratories,Chantilly,VA),然后用PBS中0.1%牛血清白蛋白(BSA)室温封闭30分钟。洗涤后,加入已知浓度的标准物(重组CCL21,50ng/ml,R&D)的系列稀释物和样品,室温温育2小时。3次洗涤后,向孔中加入生物素化的兔抗SLC Ab。2小时温育和洗涤后,加入50μl1/1000稀释的碱性磷酸酶缀合的亲和素(Dako)温育1小时,然后显色。在自动的板读数器(Spectra-Max 340,Molecular Devices,Sunnyvale,CA)上405nm测量显色的颜色,通过ELISA从标准曲线确定CCL21的量并根据组织重量进行标化。数据为平均值±s.d.
T细胞共刺激试验
按照厂商说明书(Miltenyi Biotec,Auburn,California)在磁场中通过负选择法纯化T细胞。使用抗CD3单克隆抗体通过流式细胞计数评价分离的T细胞的纯度为大于95%。用0.2g/ml抗CD3单克隆抗体包被的板子进一步用突变的LIGHT-flag于37℃包被4小时。洗涤后,在孔中培养纯化的T细胞(1×106个细胞/ml)。使用可溶性形式的抗CD28单克隆抗体(1μg/ml)。在所有试验中,在3天培养期的最后15小时通过添加1Ci/孔3H-胸苷评价T细胞增殖。在TopCount微量板闪烁计数器(Packard instrument,Meriden,CT)中测量3H-胸苷的掺入。
从肿瘤组织分离细胞
首先对小鼠进行放血以减少肿瘤组织的血液污染。收集肿瘤组织,在PBS中洗涤,切成块,重悬浮在补充了2%FCS和1.25mg/ml胶原酶D(胶原酶D溶液)的DMEM中于37℃振荡培养箱中温育40分钟。40分钟后收集单细胞悬浮液,在胶原酶D溶液中再消化细胞团块40分钟直到所有肿瘤组织均分解为单细胞悬浮液。
药物组合物
本文所用的治疗组合物可以配制成含有适于期望的递送方法的载体的药物组合物。适宜的载体包括当与所述治疗组合物联合时保留该治疗组合物的抗肿瘤功能的物质。实例包括,但不限于,各种标准的药物载体,例如无菌磷酸缓冲盐水、抑菌水等。可以溶解治疗性制剂,并通过适于将该治疗组合物递送至肿瘤部位的任何途径施用该制剂。潜在的有效施用途径包括,但不限于,静脉内、肠胃外、腹膜内、肌内、肿瘤内、皮内、器官内、同位(orthotopic)等途径。用于静脉内注射的制剂包含处于防腐的抑菌水溶液、无菌的非防腐水中的、和/或稀释在含有用于注射的无菌氯化钠的聚乙烯氯化物或聚乙烯袋中的治疗组合物。对于治疗性蛋白质制品,可以进行冻干并以无菌粉末形式,优选地在真空下保存,之后在注射前于抑菌水(含有例如苄基醇防腐剂)或无菌水中重配。使用本文公开的方法进行癌症治疗时的剂量和给药方案可以随着所述方法和目标癌症而改变,而且一般取决于本领域已知和明了的各种因素。
脾和肿瘤中细胞因子的测定
按所述(Yu等,2003)制备肿瘤和脾匀浆物。简而言之,收集相似量的肿瘤或脾组织,称重并在含有蛋白酶抑制剂的PBS中匀浆,离心收集上清液。使用Cytometric beadarray试剂盒(CBA)(BD Biosciences)在配备有CellQuestPro和CBA软件(BectonDickinson)的FACS Caliber细胞计数器上根据厂商说明书,定量上清液中的细胞因子量。
肿瘤生长差异的统计学分析
由于对相同小鼠持续一段时间重复观察肿瘤生长,故使用纵向数据随机效应模型分析该数据。对于每一实验,均假定肿瘤的生长取决于处理方法并在一段时间遵循线性生长速率。该模型针对每一组的线性生长的截距和斜率给出了总体估计。截距和斜率被允许在小鼠个体之间发生变化。比较斜率,即,生长速率,其在不同处理组中是不同的。实际的肿瘤生长可能不在整个随访期均遵循线性生长趋势。一些实验中肿瘤的生长在早期增加缓慢,在后期变快。在以上随机效应模型中在随访时间上添加了二次项。
野生型人类LIGHT DNA序列(加下划线显示编码蛋白酶位点EQLI的序列):
5’-ATGGAGGAGAGTGTCGTACGGCCCTCAGTGTTTGTGGTGGATGG
ACAGACCGACATCCCATTCACGAGGCTGGGACGAAGCCACCGGAG
ACAGTCGTGCAGTGTGGCCCGGGTGGGTCTGGGTCTCTTGCTGTTG
CTGATGGGGGCTGGGCTGGCCGTCCAAGGCTGGTTCCTCCTGCAG
CTGCACTGGCGTCTAGGAGAGATGGTCACCCGCCTGCCTGACGGA
CCTGCAGGCTCCTGGGAGCAGCTGATACAAGAGCGAAGGTCTCAC
GAGGTCAACCCAGCAGCGCATCTCACAGGGGCCAACTCCAGCTTGA
CCGGCAGCGGGGGGCCGCTGTTATGGGAGACTCAGCTGGGCCTGG
CCTTCCTGAGGGGCCTCAGCTACCACGATGGGGCCCTTGTGGTCAC
CAAAGCTGGCTACTACTACATCTACTCCAAGGTGCAGCTGGGCGGT
GTGGGCTGCCCGCTGGGCCTGGCCAGCACCATCACCCACGGCCTC
TACAAGCGCACACCCCGCTACCCCGAGGAGCTGGAGCTGTTGGTCA
GCCAGCAGTCACCCTGCGGACGGGCCACCAGCAGCTCCCGGGTCT
GGTGGGACAGCAGCTTCCTGGGTGGTGTGGTACACCTGGAGGCTG
GGGAGAAGGTGGTCGTCCGTGTGCTGGATGAACGCCTGGTTCGAC
TGCGTGATGGTACCCGGTCTTACTTCGGGGCTTTCATGGTGTGA-3’(SEQ ID NO:1)
天然人LIGHT氨基酸序列(加下划线显示蛋白酶消化位点):
MEESVVRPSVFVVDGQTDIPFTRLGRSHRRQSCSVARVGLGLLLLLMG
AGLAVQGWFLLQLHWRLGEMVTRLPDGPAGSWEQLIQERRSHEVNP
AAHLTGANSSLTGSGGPLLWETQLGLAFLRGLSYHDGALVVTKAGYY
YIYSKVQLGGVGCPLGLASTITHGLYKRTPRYPEELELLVSQQSPCGRA
TSSSRVWWDSSFLGGVVHLEAGEKVVVRVLDERLVRLRDGTRSYFGA
FMV(SEQ ID NO:2)
一种突变的人LIGHT氨基酸序列(缺乏EQLI,以点表示):
MEESVVRPSVFVVDGQTDIPFTRLGRSHRRQSCSVARVGLGLLLLLMG
AGLAVQGWFLLQLHWRLGEMVTRLPDGPAGSW….QERRSHEVNPAA
HLTGANSSLTGSGGPLLWETQLGLAFLRGLSYHDGALVVTKAGYYYI
YSKVQLGGVGCPLGLASTITHGLYKRTPRYPEELELLVSQQSPCGRAT
SSSRVWWDSSFLGGVVHLEAGEKVVVRVLDERLVRLRDGTRSYFGAF
MV(SEQ ID NO:3)
一种抗-人Her2/neu scFv的序列
CATATGCAGGTGCAGCTGTTGCAGTCTGGGGCAGAGTTGAAAAAAC
CCGGGGAGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTT
TACCAGCTACTGGATCGCCTGGGTGCGCCAGATGCCCGGGAAAGG
CCTGGAGTACATGGGGCTCATCTATCCTGGTGACTCTGACACCAAA
TACAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGTCGACAAGT
CCGTCAGCACTGCCTACTTGCAATGGAGCAGTCTGAAGCCCTCGGA
CAGCGCCGTGTATTTTTGTGCGAGACATGACGTGGGATATTGCAGT
AGTTCCAACTGCGCAAAGTGGCCTGAATACTTCCAGCATTGGGGCC
AGGGCACCCTGGTCACCGTCTCCTCAGGTGGAGGCGGTTCAGGCG
GAGGTGGCTCTGGCGGTGGCGGATCGCAGTCTGTGTTGACGCAGC
CGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTCACCATCTCCTG
CTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTAC
CAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATCTATGGTCACA
CCAATCGGCCCGCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTC
TGGCACCTCAGCCTCCCTGGCCATCAGTGGGTTCCGGTCCGAGGAT
GAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAGTGGTT
GGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTAGCGGCC
GC(SEQ ID NO:5)
实施例1:LIGHT表达与肿瘤靶向剂(tumor targeting agent)的偶联或缀合
一方面,为了能够递送突变LIGHT表达递送系统或等价的递送系统,可以将突变LIGHT与肿瘤靶向剂例如肿瘤特异性抗体偶联或缀合。例如,可以将肿瘤特异性抗体与LIGHT缀合,由此选择性地将该融合蛋白递送至肿瘤部位。此外,可以设计肿瘤特异性抗体使之在病毒递送系统的表面表达,或者可以用肿瘤特异性抗体包被脂质体小泡。表达突变LIGHT并包含肿瘤靶向剂的递送运载体将首先靶向特异的肿瘤细胞,然后转化肿瘤细胞以在肿瘤细胞表面表达突变的LIGHT。突变LIGHT的这种靶向地在肿瘤表面的表达将在围绕肿瘤的基质细胞上诱导趋化因子以吸引T细胞并导致T细胞的初始致敏。这种治疗适用于所有的肿瘤,尤其是实体瘤。使用ad-LIGHT已经治疗了4T1、MC38、B16和肥大细胞瘤,结果显示出原发性和/或继发性肿瘤的减小。因此,可以使用LIGHT-抗体靶向各种肿瘤,尤其是它们的转移瘤。例如,通过全身性注射,抗her2/neu抗体-LIGHT可以将LIGHT带至表达her2/neu的转移性肿瘤部位,然后可以产生局部免疫应答以清除肿瘤。因此,可以通过任何全身的和局部的途径递送该融合蛋白,而且由于抗体或其它药剂对肿瘤抗原的特异性,该融合蛋白将更多地定位于肿瘤部位。
实施例2:Adv-LIGHT能够促进Her2+肿瘤的排斥
将表达LIGHT的腺病毒局部递送给Her2+肿瘤以测试局部给药LIGHT是否能够促进Her2+肿瘤的排斥。
图2说明向neu+肿瘤中递送LIGHT能够增强抗neu免疫。Adv-mmlit(表达鼠突变LIGHT的腺病毒)可抑制neu+N202肿瘤生长,甚至在Her2转基因小鼠中。
表达Her2的转基因FBV小鼠在成年后产生乳腺肿瘤,类似于人乳腺癌,并且极难治疗,因为在转基因小鼠中先前已经存在Her2表达,可能已经发生对于Her2的耐受。在第18和20天向该肿瘤内注射大约2×1010病毒颗粒的adv-lacz或者adv-mmlit(表达鼠突变LIGHT的腺病毒,突变LIGHT是抗蛋白酶降解的LIGHT;adv-lacz和adv-mmlit的构建过程分别见TheJournal of Immunology,2007,179:1960–1968中关于ad-lacz和ad-mmLIGHT的构建)。每周监测肿瘤生长,测量肿瘤大小。与对照adv-lacz相比,在用adv-mmlit处理的组中肿瘤生长慢得多。
实施例3:LIGHT-抗体融合蛋白的功能活性
通过流式细胞计数,分别使用LTβR-Ig和HVEM-Ig测定了237-LIGHT(237抗体和LIGHT的融合蛋白,其构建见材料和方法)与LIGHT的受体(LTβR和HVEM)的结合能力(图3)。图3显示,这种融合蛋白仍然能够保持与肿瘤和LIGHT受体的结合能力。融合蛋白在结合肿瘤(237与Ag104特异结合)后能够结合LTβR和HVEM。为了测试这种融合蛋白是否仍然保持其激活T细胞的功能,我们首先体外测试237-LIGHT在次最佳剂量的与板子结合的抗CD3存在时共刺激T细胞的能力,由此确定其功能活性。结果显示,237-LIGHT的功能性与抗CD28的功能性相当(见图4)。因此,表明我们用于产生融合蛋白的策略是可行的。
为了测试237-LIGHT融合蛋白是否能够体内抑制肿瘤生长,给B6C3HF1小鼠持续10天皮下(s.c.)注射5×104个Ag104-肿瘤细胞,然后用10μg融合蛋白进行处理。小剂量的融合蛋白,即,10μg,显示了对肿瘤生长的抑制(见图5)。融合蛋白可以导致强的抗肿瘤免疫。
该实施例通过流式细胞计数分别使用LTβR-Ig和HVEM-Ig证明237-LIGHT能够结合LIGHT的受体,LTβR和HVEM,并证明与LIGHT偶联的肿瘤特异性抗体可以刺激免疫以降低肿瘤生长。
实施例4用LIGHT-抗体融合蛋白治疗手术切除后残余肿瘤
为了测试靶向剂抗体-LIGHT是否可以强有力地清除不能有效地刺激免疫系统的小数量转移肿瘤细胞或残余癌细胞,我们设计了二肿瘤模型来模拟临床情形。在两个位点接种Ag104Ld肿瘤细胞,其中一个位点的接种量为106个,另一位点的接种量为1×104个。两周后,用Ad-LIGHT(见上文adv-mmlight)处理较大的肿瘤(106),处理后10天通过手术除去该肿瘤。在第15、29和36天用237-LIGHT(见上文)以本文中描述的剂量全身性地处理小鼠。结果见图6,该图显示,LIGHT-抗体可用于在手术除去原发性肿瘤之后根除继发性肿瘤(实验设立的该情形与大多数癌症患者的情形类似)。这提示,全身性的抗体-LIGHT治疗能够产生强免疫应答,以强有力地清除不能有效地刺激免疫系统的小数量转移肿瘤细胞或残余癌细胞。
实施例5:抗-Her2抗体与LIGHT的协同作用
Tubo是来源于过表达突变型neu基因的Balb/c Tg小鼠的肿瘤系。我们观察到该肿瘤系对于体内和体外的抗-Her2抗体(7.16.4)治疗敏感。然而,当肿瘤完全建立时,抗体和LIGHT的效果都减少。而一旦抗-neu抗体治疗被中止,tubo将于3-4星期内重新生长(见图7)。
在另一实验中,10e6个tubo肿瘤细胞被s.c.接种到BABL/c小鼠。在肿瘤接种后的第18天,10e10个Ad-LIGHT或Ad-LacZ的VP(病毒颗粒)被注射入肿瘤。在肿瘤接种后的第18天和第25天,i.p.注射50ug抗-Her2抗体或同种型IgG。在指定的时间点检测肿瘤的生长。第21天以后,所有的治疗组与同种型IgG相比均具有显著性差异。第25天以后,无论与Ad-LIGHT(见上文adv-mmlight)单独给药组还是抗-Her单独给药组相比,Ad-LIGHT和抗-Her2联合给药组均具有显著性差异。以双尾Student氏t检验法进行统计学分析。显示的数据为平均值+SEM.p<0.05被认为具有显著性差异。结果如图8所示。明显的,在联合用药的情况下没有检测到肿瘤,相反,当使用单一治疗时肿瘤持续生长(见图8)。除联合用药外,其它各组每组全部五只小鼠均有肿瘤,并且所有小鼠都在2-3周内死亡。
实施例6:通过联合治疗在Her2/neu Tg小鼠中控制自发性肿瘤生长
Her2.neu Tg小鼠(即在第3-4周龄表达Her2/neu的转基因小鼠,非常类似于人乳腺癌)(FBV背景)常规在出生后4-5个月生长出乳腺癌(mammary carcinoma)。在Tg小鼠中的这些肿瘤是极难治疗的,因为Tg小鼠中这种肿瘤存在免疫逃避。发明人在三组小鼠中处理了这些小鼠:Anti-her2+ad-Laz、Anti-Her2+ad-LIGHT和无处理组。各组分别在第0、1、2周给予100ug抗-her2单克隆抗体(Anti-her2,为7.16.4)和1010VP(病毒颗粒)的表达鼠突变LIGHT的腺病毒(ad-LIGHT,其构建见The Journal of Immunology,2007,179:1960 1968)或者表达Laz的腺病毒(ad-Laz,其构建见The Journal of Immunology,2007,179:19601968),或者不给予处理。在联合治疗组中,给予抗-her2单克隆抗体(Anti-her2,为7.16.4)和表达鼠突变LIGHT的腺病毒(ad-LIGHT,其构建见上文)。不经治疗,小鼠会在首次检测到肿瘤块之后5-6周内死亡。重要的是,采用联合治疗处理的小鼠的肿瘤在处理过程中没有生长,在随后的6-7周内保持不变。如图9所示。
以上数据显示,用抗体-LIGHT全身性地靶向肿瘤也可以根除远端肿瘤。而且,ad-LIGHT和抗体能够具有协同作用,抑制自发性肿瘤生长。因此,抗体-LIGHT可用作治疗转移癌患者的药物。
实施例7:融合蛋白抗HER抗体-LIGHT对原发性neu+反应性肿瘤的治疗作用
本实施例证明,融合蛋白能够用于控制HER2/neu+反应性肿瘤。
与人HER-2/neu+肿瘤类似,TUBO能够在体外对抗neu抗体有反应。TUBO是一种来自neu Tg(转基因)小鼠的自发性肿瘤,TUBO细胞是从BALB-neuTg小鼠自发产生的乳腺小叶癌建立的体外克隆细胞系(Journal of Immunology,165:5133-42,2000)。在第0天,在Balb/c小鼠背上接种4x105TUBO。在抗HER抗体-LIGHT融合蛋白组(即Her2+Fab-LIGHT组;n=5/组),于第15、18和21天给予小剂量(每次50ug)抗neu抗体7.16.4,以降低肿瘤负担,然后,在第21、24和27天给予小剂量(每次20ug)的融合蛋白抗HER抗体-LIGHT(即Fab-LIGHT)。检测肿瘤生长。
在抗HER抗体组(即Her2组;N=5),于第15、18、21天各给予小剂量(50ug)抗neu抗体7.16.4。
对照组(即Ctrl组;N=5):未处理。
Fab-LIGHT是抗neu的scFv抗体和小鼠LIGHT第85-239位氨基酸的片段通过接头融合而成的融合蛋白,该融合蛋白的构建请参考图1融合蛋白的构建。
结果显示在图10中。结果显示,抗neu抗体能够轻微延迟肿瘤的生长(见图10的Her2组),但是,在接种肿瘤后3周再给予融合蛋白抗HER抗体-LIGHT则消除了肿瘤(见图10的Her2+Fab-LIGHT组)。因此,融合蛋白能够用于缩短抗HER2/neu抗体治疗,并消除剩余的肿瘤。
实施例8:抗HER2抗体-LIGHT融合蛋白对转移肿瘤的治疗效果
本实施例证明,融合蛋白能够用于减少转移性肿瘤。
4T1-neu是转染了neu的小鼠乳腺肿瘤4T1(Miller,F.R.,B.E.Miller,andG.H.Heppner.1983.Invasion Metastasis 3:22–31,1983),该肿瘤在皮下接种后10-12天自发转移。在第0天,给Balb/c小鼠(各组n=5)接种2x1054T1-neu。在第16、20和23天i.p.给予三次小剂量的抗neu抗体7.16.4单克隆抗体(剂量为每次注射100ug;7.16.4组)或融合蛋白抗HER2抗体-LIGHT“Fab-LIGHT”(剂量分别为20,50,50ug;Fab-LIGHT组),或者PBS(未处理组)。在第23天,在注射融合蛋白前除去原发性肿瘤。在第33天收集肺,并对肺部的转移肿瘤计数。
结果显示在图11中。数据显示,融合蛋白抗HER2抗体-LIGHT降低肺肿瘤转移的能力显著强于抗neu抗体(见图11)。因此,该融合蛋白能够用于降低或者清除远端转移肿瘤。
引用的出版物
通过引用将如下出版物并入本文,以这些出版物与本发明相关为限。
Ali等,Gene Therapy 1:367-384(1994).
Anderson,Science 256:808-813(1992).
Armentano等,J.Virol.71:2408-2416(1997).
Berkner等,Curr.Top.Microbiol.Immunol.158:39-61(1992).
Blank等,PD-L1/B7H-1inhibits the effector phase of tumor rejection byT cell receptor(TCR)transgenic CD8+T cells.Cancer Res64:1140-1145(2004).
Boon,T.& van der Bruggen,P.Human tumor antigens recognized by Tlymphocytes.J.
Exp.Med.183,725-29(1996).
Boyce,等,PNAS 93:2348-2352(1996).
Brandyopadhyay等,Mol.Cell.Biol.4:749-754(1984).
Cannon,R.E.等Induction of transgene expression in Tg.AC(v-Ha-ras)transgenic mice concomitant with DNA hypomethylation.Mol Carcinog 21,244-50(1998).
Carter,"The Growth Cycle of Adeno-Associated Virus,"in Handbook ofParvoviruses,vol.I,pp.155-168,Tijssen,ed.,CRC Press(1990).
Chen,L.,Linsley,P.S.& Hellstrom,K.E.Costimulation of T cells fortumor immunity.Immunol Today 14,483-6.(1993).
Chen等,Proc.Nat.Acad.Sci.USA 94:1645-1650(1997).
Cyster,J.G.Chemokines and cell migration in secondary lymphoidorgans.Science 286,2098-102.(1999).
Dougall,W.C.等RANK is essential for osteoclast and lymph nodedevelopment.Genes Dev 13,2412-24.(1999).
Engelhardt等,Hum.Gene Ther.5:1217-1229(1994).
Ettinger,R.The role of tumor necrosis factor and lymphotoxin inlymphoid organ development.Curr Top Microbiol Immunol 251,203-10(2000).
Fu,Y.X.&Chaplin,D.D.Development and maturation of secondary lymphoidtissues.Annu Rev Immunol 17,399-433(1999).
Glorioso等,Nature Med.7:33-40(2001).
Golasten等,New Engl.J.Med.309:288-296(1983).
Hofmann,等,PNAS 92:10099-10103(1995).
Hu and Pathak,Pharmacol Rev.52:493-512(2000).
Ishibashi等,J.Clin.Invest.92:883-893(1993).
Ishibashi等,J.Clin.Invest.93:1889-1893(1994).
Jooss等,Hum Gene Ther.7:1555-1566(1996).
Kang,H.S.等Signaling via LTbetaR on the lamina propria stromal cellsof the gut is required for IgA production.Nat Immunol 3,576-82(2002).
Kay等,Pro.Nat.Acad.Sci.USA 94:4686-4691.
Kim,D.等Regulation of peripheral lymph node genesis by the tumornecrosis factor family member TRANCE.J Exp Med 192,1467-78.(2000).
Kong,Y.Y.等Activated T cells regulate bone loss and joint destructionin adjuvant arthritis through osteoprotegerin ligand.Nature402,304-9.(1999).
Kuriyama等,Hum.Gene Ther.11:2219-2230(2000).
Leder,A.,Kuo,A.,Cardiff,R.D.,Sinn,E.& Leder,P.v-Ha-ras transgeneabrogates the initiation step in mouse skin tumorigenesis:effects of phorbolesters and retinoic acid.Proc.Natl.Acad.Sci.U.S.A.87,9178-82(1990).
Mauri,D.N.等LIGHT,a new member of the TNF superfamily,and lymphotoxinalpha are ligands for herpesvirus entry mediator.Immunity8,21-30.(1998).
Madzak等,J.Gen.Virol.73:153336(1992)
Melero,I.等Monoclonal antibodies against the 4-1BB T-cell activationmolecule eradicate established tumors.Nat Med 3,682-5.(1997).
Miller,Curr.Top.Microbiol.Immunol.158:1-24(1992).
Miller等,Nature 357:455-450(1992)
Moss等,Curr.Top.Microbiol.Immunol.158:2538(1992).
Margulskee,Curr.Top.Microbiol.Immunol.158:67-93(1992).
Muzyczka,Curr.Top.Microbiol.Immunol.158:97-123(1992).
Ochsenbein,A.F.等Roles of tumour localization,second signals andcross priming in cytotoxic T-cell induction.Nature 411,1058-64.(2001).
Ostrand-Rosenberg,S.等Cell-based vaccines for the stimulation ofimmunity to metastatic cancers.Immunol Rev 170,101-14.(1999).
Peace,D.J.等Lysis of ras oncogene-transformed cells by specificcytotoxic T lymphocytes elicited by primary in vitro immunization withmutated ras peptide.J Exp Med 179,473-9(1994).
Rooney,I.A.等The lymphotoxin-beta receptor is necessary andsufficient for LIGHT-mediated apoptosis of tumor cells.J Biol Chem 275,14307-15.(2000).
Rosenberg,S.A.Progress in human tumour immunology andimmunotherapy.Nature 411,380-4.(2001).
Ruddle,N.H.Lymphoid neo-organogenesis:lymphotoxin's role ininflammation and development.Immunol Res 19,119-25(1999).
Sarma,S.等Cytotoxic T lymphocytes to an unmutated tumor rejectionantigen P1A:normal development but restrained effector function in vivo.J ExpMed 189,811-20.(1999).
Schreiber,H.Tumor Immunology.in Fundamental Immunology(ed.Paul,W.E.)1247-1280(Lippincott Raven Press,New York,1999).
Schieder等,Nature Genetics 18:180-183(1998).
Sha,W.C.等Selective expression of an antigen receptor on CD8-bearingT lymphocytes in transgenic mice.Nature 335,271-4(1988).
Somia and Verma,Nature Rev.1:91-99(2000).
Tamada,K.等Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway.Nat Med6,283-9.(2000).
Tanzawa等,FEBS Letters 118(1):81-84(1980).
van Beusechem等,Gene Ther.7:1940-1946(2000).
Wang,J.等The complementation of lymphotoxin deficiency with LIGHT,anewly discovered TNF family member,for the restoration of secondary lymphoidstructure and function.Eur J Immunol 32:1969(2002).
Wang,J.等The regulation of T cell homeostasis and autoimmunity by Tcell derived LIGHT.J.Clinic.Invest.108:1771-1780(2001).
Watanabe,Atherosclerosis 36:261-268(1986).
Wick,M.等Antigenic cancer cells grow progressively in immune hostswithout evidence for T cell exhaustion or systemic anergy.J Exp Med 186,229-38.(1997).
Wilson,Nature 365:691-692(1993).
Wu,Q.等The requirement of membrane lymphotoxin for the presence ofdendritic cells in lymphoid tissues.J Exp Med 190,629-38(1999).
Ye,Q.等Modulation of LIGHT-HVEM costimulation prolongs cardiacallograft survival.J Exp Med 195,795-800.(2002).
Ye,Z.等Gene therapy for cancer using single-chain Fv fragmentsspecific for 4-1BB.Nat Med 8,343-8.(2002).
Yu,P.等,Complementary role of CD4+T cells and secondary lymphoidtissues for cross-presentation of tumor antigen to CD8+T cells.J Exp Med 197:985-995(2003).
P.等,Intratumor depletion of CD4+cells unmasks tumor immunogenicityleading to the rejection of late-stage tumors.J Exp Med 201:779-791(2005).
Zhai,Y.等LIGHT,a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via genetransfer.Journal of Clinical Investigation 102,1142-51(1998).
Zinkernagel,R.M.Immunity against solid tumors?Int J Cancer 93,1-5.(2001).
U.S.专利No.6,048,551
U.S.专利No.5,436,146
U.S.专利No.4,980,286
U.S.专利No.5,994,523
U.S.专利No.6,207,147
U.S.专利No.4,797,368
U.S.专利No.5,399,346.

Claims (14)

1.复合物,其包含肿瘤特异性抗体和与该抗体相连的LIGHT蛋白或LIGHT蛋白片段;其中所述LIGHT蛋白或LIGHT蛋白片段是人的LIGHT蛋白或LIGHT蛋白片段,其中所述抗体是抗neu/Her2抗体;且其中所述LIGHT蛋白片段包含:LIGHT蛋白胞外域SEQ ID NO:4,LIGHT蛋白第85-239位的氨基酸序列,LIGHT蛋白第90-239位的氨基酸序列,或LIGHT蛋白第90-235位的氨基酸序列。
2.权利要求1的复合物,其中所述抗体和所述LIGHT蛋白或LIGHT蛋白片段通过形成融合蛋白相连。
3.权利要求1-2中任一项的复合物,其中所述抗体是scFv。
4.权利要求1-2中任一项的复合物,其中所述LIGHT蛋白或LIGHT蛋白片段是蛋白酶抗性LIGHT蛋白或LIGHT蛋白片段。
5.权利要求1-2中任一项的复合物,其中所述LIGHT蛋白或LIGHT蛋白片段在蛋白酶识别序列EQLI中包含突变。
6.权利要求5所述的复合物,其中所述LIGHT蛋白或LIGHT蛋白片段的序列如SEQ IDNO:3所示。
7.权利要求1的复合物,其中所述抗体是7.16.4或者SEQ ID NO:5所示的抗体。
8.包含权利要求1-7中任一项的复合物的组合物。
9.用于预防或治疗原发性肿瘤和/或转移性肿瘤,或者降低原发性肿瘤生长和/或癌症转移的药物组合物,其包含权利要求1-7中任一项的复合物和可药用载体。
10.权利要求9的药物组合物,其是适用于静脉内给药的形式。
11.权利要求9的药物组合物,其中所述肿瘤或癌症是乳腺癌,肺癌,前列腺癌,结肠癌或皮肤癌。
12.权利要求1-7任一项的复合物在制备药物中的用途,所述药物用于:预防或治疗原发性肿瘤和/或转移性肿瘤,降低原发性肿瘤生长和/或癌症转移,刺激产生使幼稚T细胞致敏的趋化因子、粘着分子和共刺激性分子中的至少一种,或者刺激对抗所述肿瘤的肿瘤特异性T细胞。
13.权利要求12的用途,其中所述药物用于和化疗剂和/或放射疗法联合给药。
14.权利要求12的用途,其中所述肿瘤或癌症是乳腺癌,肺癌,前列腺癌,结肠癌或皮肤癌。
CN201410397286.1A 2008-05-07 2009-05-04 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体 Active CN104151434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410397286.1A CN104151434B (zh) 2008-05-07 2009-05-04 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN200810095645 2008-05-07
CN2008100956452 2008-05-07
CN200810095645.2 2008-05-07
CN200910136143A CN101822840A (zh) 2008-05-07 2009-05-04 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体
CN201410397286.1A CN104151434B (zh) 2008-05-07 2009-05-04 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200910136143A Division CN101822840A (zh) 2008-05-07 2009-05-04 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体

Publications (2)

Publication Number Publication Date
CN104151434A CN104151434A (zh) 2014-11-19
CN104151434B true CN104151434B (zh) 2018-12-04

Family

ID=51877078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410397286.1A Active CN104151434B (zh) 2008-05-07 2009-05-04 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体

Country Status (1)

Country Link
CN (1) CN104151434B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116789849B (zh) * 2023-04-12 2024-03-08 南京紫珑生物科技有限公司 一种嵌合抗原受体及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040307A2 (en) * 2001-07-27 2003-05-15 Human Genome Sciences, Inc. Heteromultimeric tnf ligand family members
US20050025754A1 (en) * 2003-06-11 2005-02-03 Yang-Xin Fu Increased T-cell tumor infiltration by mutant light
US20070071675A1 (en) * 2005-08-19 2007-03-29 Chengbin Wu Dual variable domain immunoglobulin and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040307A2 (en) * 2001-07-27 2003-05-15 Human Genome Sciences, Inc. Heteromultimeric tnf ligand family members
US20050025754A1 (en) * 2003-06-11 2005-02-03 Yang-Xin Fu Increased T-cell tumor infiltration by mutant light
US20070071675A1 (en) * 2005-08-19 2007-03-29 Chengbin Wu Dual variable domain immunoglobulin and uses thereof

Also Published As

Publication number Publication date
CN104151434A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
ES2433967T3 (es) Productos de fusión anticuerpo-LIGHT como productos terapéuticos de cáncer
US10167328B2 (en) Methods for cancer therapy using mutant light molecules with increased affinity to receptors
ES2255027T3 (es) Antagonistas de factores de crecimiento de celulas endotheliales vasculares.
JP2007277265A (ja) 抗腫瘍免疫性の強化と遺伝子治療のための組成物及び方法
CN108727504A (zh) 一种ifn与抗pd-l1抗体的融合蛋白及其应用
Seavey et al. An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model
CZ291047B6 (cs) Farmaceutický prostředek obsahující antagonisty faktoru růstu vaskulárních endoteliálních buněk
CN101160321A (zh) Q3 sparc缺失突变体及其用途
JP2012507299A (ja) Light標的分子およびその使用
JP2012520661A (ja) 抗血管新生融合タンパク質
CN106999552A (zh) 治疗癌症的方法和组合物
Aurisicchio et al. Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9
DE602004011061T2 (de) Erhöhte t-zell tumor-eindringung durch light- mutanten
CN104151434B (zh) 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体
CN101822840A (zh) 预防和治疗原发和转移性癌症的light-抗肿瘤抗原抗体
NZ506637A (en) Tumor associated antigen 791tgp72
WO2005001048A2 (en) Preparation and application of anti-tumor bifunctional fusion proteins
Seavey et al. An Anti-VEGFR2/Flk-1 Listeria monocytogenes Anti-Angiogenesis Cancer Vaccine for the Treatment of Primary and Metastatic Her-2/neu Positive Breast Tumors in a Mouse Model6

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: DINGFU BIOTARGET CO., LTD.

Free format text: FORMER OWNER: FU YANGXIN

Effective date: 20141029

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; TO: 215125 SUZHOU, JIANGSU PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20141029

Address after: 215125 biological nanometer garden, Suzhou Industrial Park, Jiangsu, Suzhou A6-402

Applicant after: DINGFU BIOTARGET Co.,Ltd.

Address before: Illinois Instrunment

Applicant before: Fu Yangxin

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240910

Address after: No. 999, High tech Industrial Park, Baishan City, Jilin Province, China

Patentee after: SHIHUIDA PHARMACEUTICALS GROUP (JILIN) Ltd.

Country or region after: China

Address before: 2nd and 3rd floors, auxiliary building, Wanlong Building, No. 29 Xinfa Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province, China 215127

Patentee before: DINGFU BIOTARGET Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right