CN104143648A - 利用微生物燃料电池去除及回收污水中氨氮的装置及方法 - Google Patents

利用微生物燃料电池去除及回收污水中氨氮的装置及方法 Download PDF

Info

Publication number
CN104143648A
CN104143648A CN201410371295.3A CN201410371295A CN104143648A CN 104143648 A CN104143648 A CN 104143648A CN 201410371295 A CN201410371295 A CN 201410371295A CN 104143648 A CN104143648 A CN 104143648A
Authority
CN
China
Prior art keywords
sewage
ammonia
ammonia nitrogen
chamber
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410371295.3A
Other languages
English (en)
Other versions
CN104143648B (zh
Inventor
冯春华
杨晓双
黄丽巧
李晨晨
吕志盛
韦朝海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201410371295.3A priority Critical patent/CN104143648B/zh
Publication of CN104143648A publication Critical patent/CN104143648A/zh
Application granted granted Critical
Publication of CN104143648B publication Critical patent/CN104143648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于污水处理技术领域,公开了一种利用微生物燃料电池去除及回收污水中氨氮的装置及方法。通过构建双室微生物燃料电池系统和氨气回收装置,向阳极室接种经过驯化的产电混合菌液,加入乙酸钠作为电子供体,用pH为7.0的磷酸盐缓冲溶液与培养液加满阳极室;阴极室加入含氨氮的污水,并通过曝气装置通入空气;氨气回收装置中加入0.1mol L-1的H2SO4,然后启动微生物燃料电池,阴极室的氨氮转化为气态的氨气从污水中去除并被氨气回收装置回收利用。通过本发明的装置及方法用于污水中氨氮的去除及回收,具有良好的经济效益和环保效益。

Description

利用微生物燃料电池去除及回收污水中氨氮的装置及方法
技术领域
本发明属于污水处理技术领域,具体涉及一种利用微生物燃料电池去除及回收污水中氨氮的装置及方法。
背景技术
废水处理一直是高能耗的行业。据统计,仅我国每年用于废水处理的耗电量就占全国总发电量的1%,而美国等发达国家更高达3%。而废水除氨氮更是废水处理中重要的一部分。随着能源短缺的日益加剧,节能已经成为废水处理行业急需解决的问题。目前,废水除氨可供选择的方法通常有物理、化学及生物处理法等。物理法有反渗透、蒸馏、氨吹脱、土壤灌溉;化学法有离子交换、折点加氯、含氨副产品生产、焚烧、催化裂解、电渗析、电化学处理;生物法有藻类养殖、生物消化等。虽然许多方法都能在理论上有效地去除氨氮,但仅有少数几种方法能在工程上真正用于含氨氮废水的处理。氨氮废水处理技术的选择主要取决于废水的组成、要求达到的处理效果及经济性。
近年来,由于生物技术的不断发展,污水的生物处理成为了污水处理领域的主要技术,得到了研究者的广泛重视。由于微生物燃料电池高效、清洁、环保的优势,利用微生物燃料电池技术处理含氨氮废水也将快速发展。
因此为实现废水中氨氮去除,同时回收电能及氨氮、实现资源的有效利用,我们利用传统微生物燃料电池的方式,来实现氨氮去除,同时回收能量和氨氮,为拓展传统水处理方式和微生物燃料电池提供了新的思路。
发明内容
为了解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种利用微生物燃料电池去除及回收污水中氨氮的装置。
本发明的另一目的在于提供一种利用上述装置去除及回收污水中氨氮的方法。
本发明目的通过以下技术方案实现:
一种利用微生物燃料电池去除及回收污水中氨氮的装置,由双室微生物燃料电池装置和氨气回收装置组成,双室微生物燃料电池装置包括阳极室和阴极室,阳极室和阴极室通过阳离子交换膜分隔开,阳极室设置电池阳极加液口和阳极电极,阴极室设置曝气装置、氨气出口和阴极电极,曝气装置设置在阴极室底部,阳极电极和阴极电极通过外电路连接,外电路设置负载电阻和电路开关;氨气回收装置与阴极室的氨气出口相连。
所述的阳极电极和阴极电极的材料优选碳纸、碳布、石墨毡、不锈钢网或泡沫镍;更优选经过预处理的石墨毡,所述的预处理方法为将石墨毡置于质量分数为10%的双氧水溶液中,在温度为90℃条件下水浴煮2h,接着用去离子水在同一温度下水浴煮2h,再用烘箱烘干。
所述的负载电阻的电阻值优选50Ω~1000Ω。
一种利用上述装置去除及回收污水中氨氮的方法,包括以下操作步骤:
向阳极室接种经过驯化的产电混合菌液,加入乙酸钠作为电子供体,用pH为7.0的磷酸盐缓冲溶液与培养液加满阳极室;阴极室加入含一定浓度氨氮的污水,并通过曝气装置通入空气;氨气回收装置中加入0.1mol L-1的H2SO4,然后闭合电路开关连通外电路,微生物燃料电池运行启动,阴极室的氨氮转化为气态的氨气从污水中去除并被氨气回收装置回收。
所述的产电混合菌取自废水处理好氧池的活性污泥,所述的驯化是指在30℃恒温恒湿培养箱中,用20mmol L-1的乙酸钠进行驯化。
所述乙酸钠的浓度优选为20mmol L-1
所述的培养液成分包括1.0g L-1NaHCO3、0.10g L-1FeSO4、0.10g L-1KCl、0.015g L-1CaCl2、0.25g L-1NH4Cl、10mL L-1矿物质溶液和10mL L-1维他命。
所述矿物质溶液成分包括1.5g L-1C6H6NO6·3Na·12H2O、0.13g L-1ZnCl2、3.0g L-1MgSO4、0.01g L-1CuSO4·5H2O、0.5g L-1MnSO4·H2O、0.01g L-1AlK(SO4)2·12H2O、1.0g L-1NaCl、0.01g L-1H3BO3、0.1g L-1FeSO4·7H2O、0.025g L-1Na2MoO4、0.1g L-1CaCl2·2H2O、0.024g L-1NiCl2·6H2O、0.1g L-1CoCl2·6H2O和0.025g L-1Na2WO4·2H2O。
所述的氨气回收装置是指装有0.1mol L-1硫酸的装置。
本发明的原理为:
通过构建具有阳极室和阴极室的微生物燃料电池,阳极室中的产电菌利用乙酸钠产生电子和质子,电子依次通过阳极电极、外电路和阴极电极进入阴极室中,与曝气的O2结合产生OH-,使阴极室中的pH增大,废水中的氨氮转化为氨气析出,析出的氨气通过回收系统回收;同时质子通过阳离子交换膜进入阴极室,使得阳极室pH保持恒定,确保产电混合菌的生存环境。
电极的材料优选经过预处理的石墨毡,石墨毡具有较高的比表面积、良好的生物相容性及合理的价格,将石墨毡进行预处理有利于提高其稳定性和导电性。
氨气回收装置中的硫酸可与析出的氨气进行反应,形成农业肥料的的主要成分(NH4)2SO4
通过本发明的方法及装置具有如下优点及有益效果:
(1)本发明采用微生物燃料电池来实现污水中氨氮的回收,一方面可以实现氨氮的去除,另一方面在去除氨氮的同时产生电能,达到回收能源资源的作用;
(2)本发明采用硫酸回收氨气,吸收氨气后形成农业肥料的主要成分硫酸铵,可用于农业施肥;
(3)本发明通过特定的培养液成分培养的产电混合菌,具有显著的产电效率及氨氮去除效率;
(4)本发明所述装置除了用于处理氨氮污水,还可以用于处理含氮量极高的人与动物的尿液。
附图说明
图1是实施例1的一种利用微生物燃料电池去除及回收污水中氨氮的装置结构示意图,图中标记说明如下:1-双室微生物燃料电池装置;2-氨气回收装置;3-阳极室;4-阴极室;5-阳离子交换膜;6-电池阳极加液口;7-阳极电极;8-曝气装置;9-氨气出口;10-阴极电极;11-外电路;12-负载电阻;13-电路开关;14-管道。
图2~5分别为实施例1(图中a)、实施例3(图中b)、对比实施例1(图中c)和对比实施例3(图中d)中阳极室pH值、阴极室pH值、污水中氨氮浓度和氨气回收装置中氨氮浓度随时间的变化曲线;
图6~9分别为实施例2(图中e)、实施例4(图中f)、对比实施例2(图中g)和对比实施例4(图中h)中阳极室pH值、阴极室pH值、污水中氨氮浓度和氨气回收装置中氨氮浓度随时间的变化曲线。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例中所使用的产电混合菌通过以下方法筛选及驯化:
取废水处理好氧池的活性污泥(广东省韶关市焦化厂)10mL,加入到双室微生物燃料电池的阳极,其中电池的容量为200mL,阳极室和阴极室各100mL;向上述电池阳极室中加入2mL乙酸钠作为电子供体,然后用pH7.0的磷酸缓冲溶液与培养液的混合液加满阳极,最后用橡胶塞塞住加液口,另外一个加液口用一个标准饱和甘汞参比电极塞住,以便形成三电极体系;向上述电池阴极加入pH7.0的磷酸盐缓冲溶液,然后曝氧气;将上述组装好的电池放入30℃恒温恒湿培养箱中,电池阳极、阴极、参比电极分别接入工作线、对电极线以及参比电极线,同时施加0.2Vvs.SCE电位进行驯化。
实施例1
如图1所示,本实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置,由双室微生物燃料电池装置1和氨气回收装置2组成,双室微生物燃料电池装置包括阳极室3和阴极室4,阳极室和阴极室通过阳离子交换膜5分隔开,阳极室设置电池阳极加液口6和阳极电极7,阴极室设置曝气装置8、氨气出口9和阴极电极10,阳极电极和阴极电极通过外电路11连接,外电路设置50Ω的负载电阻12和电路开关13;氨气回收装置与阴极室的氨气出口通过管道14相连。
本实施例的装置用于去除及回收污水中氨氮的方法,具体步骤为:向阳极室接种10mL经过驯化的产电混合菌液,加入乙酸钠作为电子供体,用pH为7.0的磷酸盐缓冲溶液与培养液的混合液加满阳极室,阳极室中乙酸钠的浓度为20mmol L-1;阴极室加入NH4 +浓度为200mg L-1的氨氮污水90ml,并通过曝气装置通入空气;氨气回收装置中加入0.1mol L-1的H2SO4,然后闭合电路开关连通外电路,微生物燃料电池运行启动,阴极室的氨氮转化为气态的氨气从污水中去除并被氨气回收装置回收。所述的pH为7.0的磷酸盐缓冲溶液与培养液的混合液成分包括22.2g L-1Na2HPO4、5.92g L-1NaH2PO4、1.0g L-1NaHCO3、0.10g L-1FeSO4、0.10g L-1KCl、0.015g L-1CaCl2、0.25g L-1NH4Cl、10mL L-1矿物质溶液和10mL L-1维他命。
实施例2
本实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置和方法,与实施例1相比,不同之处在于外电路设置1000Ω的负载电阻,其余部分完全相同。
实施例3
本实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置,由双室微生物燃料电池装置和氨气回收装置组成,双室微生物燃料电池装置包括阳极室和阴极室,阳极室和阴极室通过阳离子交换膜分隔开,阳极室设置电池阳极加液口和阳极电极,阴极室设置曝气装置、氨气出口和阴极电极,阳极电极和阴极电极通过外电路连接,外电路设置50Ω的负载电阻和电路开关;氨气回收装置与阴极室的氨气出口通过管道相连。所述的阳极电极和阴极电极的材料为经过预处理的石墨毡,所述预处理过程为:将石墨毡置于质量分数为10%的双氧水溶液中,在90℃下水浴煮2h,接着用去离子水在同一温度下水浴煮2h,再用烘箱烘干,将石墨毡剪成长7cm×宽4cm大小并用钛丝将其穿好固定。
本实施例的装置用于去除及回收污水中氨氮的方法,具体步骤为:向阳极室接种10mL经过驯化的产电混合菌液,加入乙酸钠作为电子供体,用pH为7.0的磷酸盐缓冲溶液与培养液的混合溶液加满阳极室,阳极室中乙酸钠的浓度为20mmol L-1;阴极室加入NH4 +浓度为200mg L-1的氨氮污水90ml,并通过曝气装置通入空气;氨气回收装置中加入0.1mol L-1的H2SO4,然后闭合电路开关连通外电路,微生物燃料电池运行启动,阴极室的氨氮转化为气态的氨气从污水中去除并被氨气回收装置回收。所述的pH为7.0的磷酸盐缓冲溶液与培养液的混合液成分包括22.2g L-1Na2HPO4、5.92g L-1NaH2PO4、1.0g L-1NaHCO3、0.10g L-1FeSO4、0.10g L-1KCl、0.015g L-1CaCl2、0.25g L-1NH4Cl、10mL L-1矿物质溶液和10mL L-1维他命。所述矿物质溶液成分包括1.5g L-1C6H6NO6·3Na·12H2O、0.13g L-1ZnCl2、3.0g L-1MgSO4、0.01g L-1CuSO4·5H2O、0.5g L-1MnSO4·H2O、0.01g L-1AlK(SO4)2·12H2O、1.0g L-1NaCl、0.01g L-1H3BO3、0.1g L-1FeSO4·7H2O、0.025g L-1Na2MoO4、0.1g L-1CaCl2·2H2O、0.024g L-1NiCl2·6H2O、0.1g L-1CoCl2·6H2O和0.025g L-1Na2WO4·2H2O。
实施例4
本实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置和方法,与实施例3相比,不同之处在于外电路设置1000Ω的负载电阻,其余部分完全相同。
对比实施例1
本对比实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置和方法,与实施例1相比,不同之处在于外电路的电路开关处于开路,其余部分完全相同。
对比实施例2
本对比实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置和方法,与实施例2相比,不同之处在于外电路的电路开关处于开路,其余部分完全相同。
对比实施例3
本对比实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置和方法,与实施例1相比,不同之处在于阳极室中未接种经过驯化的产电混合菌液,其余部分完全相同。
对比实施例4
本对比实施例的一种利用微生物燃料电池去除及回收污水中氨氮的装置和方法,与实施例2相比,不同之处在于阳极室中未接种经过驯化的产电混合菌液,其余部分完全相同。
上述实施例及对比实施例中的装置及方法用于污水中氨氮去除的效果比较:
实施例1(图中a)、实施例3(图中b)、对比实施例1(图中c)和对比实施例3(图中d)中阳极室pH值、阴极室pH值、污水中氨氮浓度以及氨气回收装置中氨氮的浓度随时间的变化分别如图2、图3、图4和图5所示。
实施例2(图中e)、实施例4(图中f)、对比实施例2(图中g)和对比实施例4(图中h)中阳极室pH值、阴极室pH值、污水中氨氮浓度以及氨气回收装置中氨氮的浓度随时间的变化分别如图6、图7、图8和图9所示。
通过附图结果可以看出:本发明的利用微生物燃料电池去除及回收污水中氨氮的装置在运行过程中不需要添加pH调节剂,由体系自身维持pH恒定;由附图2~5可知,电池阴极中通入氧气,氧气在阴极得电子产生OH-,则阴极pH升高,从而使得阴极中的氨氮转化成氨气析出;阳极中产生的质子通过阳离子交换膜进入阴极,从而维持阳极pH的稳定;与阳极中不加产电菌和电池开路相比,实验组中阴极中的氨氮浓度降低速率加快,同时吸收瓶中的氨氮浓度增加也较为明显,这说明在阳极产电菌的作用下,电子传递速率加快,从而使得阴极中氧气得电子速率加快,取得了良好的氨氮去除及回收效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种利用微生物燃料电池去除及回收污水中氨氮的装置,其特征在于:所述装置由双室微生物燃料电池系统和氨气回收装置组成,双室微生物燃料电池系统包括阳极室和阴极室,阳极室和阴极室通过阳离子交换膜分隔开,阳极室设置电池阳极加液口和阳极电极,阴极室设置曝气装置、氨气出口和阴极电极,曝气装置设置在阴极室底部,阳极电极和阴极电极通过外电路连接,外电路设置负载电阻和电路开关;氨气回收装置与阴极室的氨气出口通过管道相连。
2.根据权利要求1所述的一种利用微生物燃料电池去除及回收污水中氨氮的装置,其特征在于:所述的阳极电极和阴极电极的制备材料为碳纸、碳布、石墨毡、不锈钢网或泡沫镍。
3.根据权利要求2所述的一种利用微生物燃料电池去除及回收污水中氨氮的装置,其特征在于:所述的石墨毡为经过预处理的石墨毡,所述的预处理方法为将石墨毡置于质量分数为10%的双氧水溶液中,在温度为90℃条件下水浴煮2h,接着用去离子水在同一温度下水浴煮2h,再用烘箱烘干。
4.根据权利要求1所述的一种利用微生物燃料电池去除及回收污水中氨氮的装置,其特征在于:所述的负载电阻的电阻值为50Ω~1000Ω。
5.一种利用权利要求1~4任一项所述的装置去除及回收污水中氨氮的方法,其特征在于包括以下操作步骤:
向阳极室接种经过驯化的产电混合菌液,加入乙酸钠作为电子供体,用pH为7.0的磷酸盐缓冲溶液与培养液的混合溶液加满阳极室;阴极室加入含氨氮的污水,并通过曝气装置通入空气;然后闭合电路开关连通外电路,微生物燃料电池运行启动,阴极室的氨氮转化为气态的氨气从污水中去除并被氨气回收装置回收。
6.根据权利要求5所述的去除及回收污水中氨氮的方法,其特征在于:所述的产电混合菌取自废水处理好氧池的活性污泥;所述的驯化是指在30℃恒温恒湿培养箱中,用20mmol L-1的乙酸钠进行驯化。
7.根据权利要求5所述的去除及回收污水中氨氮的方法,其特征在于:阳极室中乙酸钠的浓度为20mmol L-1
8.根据权利要求5所述的去除及回收污水中氨氮的方法,其特征在于:所述的培养液成分包括1.0g L-1NaHCO3、0.10g L-1FeSO4、0.10g L-1KCl、0.015gL-1CaCl2、0.25g L-1NH4Cl、10mL L-1矿物质溶液和10mL L-1维他命。
9.根据权利要求8所述的去除及回收污水中氨氮的方法,其特征在于:所述矿物质溶液成分包括1.5g L-1C6H6NO6·3Na·12H2O、0.13g L-1ZnCl2、3.0g L-1MgSO4、0.01g L-1CuSO4·5H2O、0.5g L-1MnSO4·H2O、0.01g L-1AlK(SO4)2·12H2O、1.0g L-1NaCl、0.01g L-1H3BO3、0.1g L-1FeSO4·7H2O、0.025g L-1Na2MoO4、0.1g L-1CaCl2·2H2O、0.024g L-1NiCl2·6H2O、0.1g L-1CoCl2·6H2O和0.025g L-1Na2WO4·2H2O。
10.根据权利要求5所述的去除及回收污水中氨氮的方法,其特征在于:所述的氨气回收装置是指装有0.1mol L-1硫酸的装置。
CN201410371295.3A 2014-07-30 2014-07-30 利用微生物燃料电池去除及回收污水中氨氮的装置及方法 Active CN104143648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410371295.3A CN104143648B (zh) 2014-07-30 2014-07-30 利用微生物燃料电池去除及回收污水中氨氮的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410371295.3A CN104143648B (zh) 2014-07-30 2014-07-30 利用微生物燃料电池去除及回收污水中氨氮的装置及方法

Publications (2)

Publication Number Publication Date
CN104143648A true CN104143648A (zh) 2014-11-12
CN104143648B CN104143648B (zh) 2016-08-24

Family

ID=51852775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410371295.3A Active CN104143648B (zh) 2014-07-30 2014-07-30 利用微生物燃料电池去除及回收污水中氨氮的装置及方法

Country Status (1)

Country Link
CN (1) CN104143648B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466212A (zh) * 2014-12-10 2015-03-25 哈尔滨工业大学宜兴环保研究院 一种基于微生物燃料电池的氨回收装置
CN104532286A (zh) * 2014-12-22 2015-04-22 中山大学 一种回收葡萄糖酸盐废水中葡萄糖酸的生物电化学方法
CN105047948A (zh) * 2015-08-19 2015-11-11 浙江大学 一种光催化燃料电池
CN106229535A (zh) * 2016-09-10 2016-12-14 华南理工大学 利用三电极储存生物电能的装置及其储存生物电能的方法
CN106745676A (zh) * 2016-11-25 2017-05-31 浙江工商大学 一种生态多阴极尿液处理装置和方法
CN108677008A (zh) * 2018-05-02 2018-10-19 江南大学 一种用于回收金属的装置
CN109148923A (zh) * 2018-08-14 2019-01-04 广东省微生物研究所(广东省微生物分析检测中心) 一种加速微生物燃料电池产电启动的方法
CN109607709A (zh) * 2019-01-12 2019-04-12 大连理工大学 一种电化学除氧器
CN109950585A (zh) * 2019-01-31 2019-06-28 华中科技大学 一种提升微生物燃料电池产电及传感性能的方法
CN111655629A (zh) * 2017-12-04 2020-09-11 新南创新有限公司 氨氮回收设备和方法
CN114628707A (zh) * 2022-04-01 2022-06-14 河南师范大学 一种微生物电芬顿燃料电池用改性碳刷阴极材料及其制备方法和应用
CN116143361A (zh) * 2023-02-27 2023-05-23 哈尔滨工业大学 一种利用碱预处理结合电发酵系统同步回收厌氧污泥中蛋白和氨的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105854A1 (en) * 2012-01-10 2013-07-18 Stichting Wetsus Centre Of Excellence For Sustainable Water Technology Method for nitrogen recovery from an ammonium comprising fluid and bio-electrochemical system
CN103367766A (zh) * 2013-07-31 2013-10-23 华南理工大学 微生物燃料电池用石墨烯/导电聚合物阳极的制备方法
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105854A1 (en) * 2012-01-10 2013-07-18 Stichting Wetsus Centre Of Excellence For Sustainable Water Technology Method for nitrogen recovery from an ammonium comprising fluid and bio-electrochemical system
CN103367766A (zh) * 2013-07-31 2013-10-23 华南理工大学 微生物燃料电池用石墨烯/导电聚合物阳极的制备方法
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466212A (zh) * 2014-12-10 2015-03-25 哈尔滨工业大学宜兴环保研究院 一种基于微生物燃料电池的氨回收装置
CN104466212B (zh) * 2014-12-10 2016-08-17 哈尔滨工业大学宜兴环保研究院 一种基于微生物燃料电池的氨回收装置
CN104532286A (zh) * 2014-12-22 2015-04-22 中山大学 一种回收葡萄糖酸盐废水中葡萄糖酸的生物电化学方法
CN105047948A (zh) * 2015-08-19 2015-11-11 浙江大学 一种光催化燃料电池
CN106229535B (zh) * 2016-09-10 2019-04-09 华南理工大学 利用三电极储存生物电能的装置及其储存生物电能的方法
CN106229535A (zh) * 2016-09-10 2016-12-14 华南理工大学 利用三电极储存生物电能的装置及其储存生物电能的方法
CN106745676A (zh) * 2016-11-25 2017-05-31 浙江工商大学 一种生态多阴极尿液处理装置和方法
CN106745676B (zh) * 2016-11-25 2020-07-17 浙江工商大学 一种生态多阴极尿液处理装置和方法
CN111655629A (zh) * 2017-12-04 2020-09-11 新南创新有限公司 氨氮回收设备和方法
CN108677008A (zh) * 2018-05-02 2018-10-19 江南大学 一种用于回收金属的装置
CN109148923A (zh) * 2018-08-14 2019-01-04 广东省微生物研究所(广东省微生物分析检测中心) 一种加速微生物燃料电池产电启动的方法
CN109607709A (zh) * 2019-01-12 2019-04-12 大连理工大学 一种电化学除氧器
CN109950585A (zh) * 2019-01-31 2019-06-28 华中科技大学 一种提升微生物燃料电池产电及传感性能的方法
CN109950585B (zh) * 2019-01-31 2020-12-08 华中科技大学 一种提升微生物燃料电池产电及传感性能的方法
CN114628707A (zh) * 2022-04-01 2022-06-14 河南师范大学 一种微生物电芬顿燃料电池用改性碳刷阴极材料及其制备方法和应用
CN116143361A (zh) * 2023-02-27 2023-05-23 哈尔滨工业大学 一种利用碱预处理结合电发酵系统同步回收厌氧污泥中蛋白和氨的方法
CN116143361B (zh) * 2023-02-27 2024-02-09 哈尔滨工业大学 一种利用碱预处理结合电发酵系统同步回收厌氧污泥中蛋白和氨的方法

Also Published As

Publication number Publication date
CN104143648B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN104143648A (zh) 利用微生物燃料电池去除及回收污水中氨氮的装置及方法
Qin et al. Self-supplied ammonium bicarbonate draw solute for achieving wastewater treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system
CN103922487B (zh) 一种实现污水处理和二氧化碳还原制甲醇的方法
CN108275776B (zh) 厌氧流化床串联人工湿地型微生物燃料电池装置及方法
CN108448144B (zh) 一种微生物燃料电池
CN111167513B (zh) 一种用于去除水中硝酸盐的柔性电催化膜及其制备方法和应用
CN105217796A (zh) 一种下行垂直流人工湿地耦合微生物电解池强化脱氮的方法及装置
CN103165931B (zh) 空气阴极微生物燃料电池处理餐厨垃圾回收电能的方法
CN105236584A (zh) 一种上行垂直流人工湿地耦合微生物电解池强化脱氮的方法及装置
CN110902895A (zh) 一种垃圾渗滤液中氨氮去除与回收的电化学膜分离方法
CN108862548A (zh) 一种微生物电解脱盐池反应器装置
CN101810983B (zh) 用于烟气脱硝中再生氮氧化物络合吸收液的方法
CN105217797A (zh) 一种复合垂直流人工湿地耦合微生物电解池强化脱氮的方法及装置
CN109628950B (zh) 一种微生物电解池原位回收高纯度鸟粪石的方法
Chen et al. Donnan dialysis-osmotic distillation (DD-OD) hybrid process for selective ammonium recovery driven by waste alkali
CN104478185A (zh) 一种利用mfc从污泥中回收磷的方法
CN104909526A (zh) 利用电动力学法去除污泥中重金属暨同步深度脱水装置
CN101550551A (zh) 一种利用蛋白质在微生物电解池中产氢的方法
CN105803001A (zh) 一种利用微生物电解池实现剩余污泥产氢的方法
Zhai et al. Microbial electrochemical technologies assisted nitrogen recovery from different wastewater sources: Performance, life cycle assessment, and challenges
CN103482830B (zh) 一种同步浓缩消化污泥并产电的装置
CN111115842A (zh) 一种高氯酸铵废水的处理方法
CN105198046B (zh) 一种Ti‑石墨烯电极高效去除地下水中硝酸盐的方法
CN107964552B (zh) 一种厌氧消化与mfc耦合提高甲烷合成效率的方法
Zhang et al. Enhanced ammonia recovery from strong ammonia wastewater via a transmembrane electro-chemisorption system with authigenic acid and base

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant