CN104112724A - 散热元件 - Google Patents

散热元件 Download PDF

Info

Publication number
CN104112724A
CN104112724A CN201310140834.8A CN201310140834A CN104112724A CN 104112724 A CN104112724 A CN 104112724A CN 201310140834 A CN201310140834 A CN 201310140834A CN 104112724 A CN104112724 A CN 104112724A
Authority
CN
China
Prior art keywords
ruton
film
road
heat dissipation
dissipation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310140834.8A
Other languages
English (en)
Inventor
吴明修
官大勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asustek Computer Inc
Original Assignee
Asustek Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asustek Computer Inc filed Critical Asustek Computer Inc
Priority to CN201310140834.8A priority Critical patent/CN104112724A/zh
Priority to US13/964,118 priority patent/US20140311713A1/en
Publication of CN104112724A publication Critical patent/CN104112724A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20454Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff with a conformable or flexible structure compensating for irregularities, e.g. cushion bags, thermal paste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/064Fluid cooling, e.g. by integral pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种散热元件包含第一薄膜、第二薄膜与工作流体。第二薄膜与第一薄膜部分连接以形成多条脉络通道。脉络通道包含主脉络通道与多条支脉络通道,且主脉络通道与支脉络通道彼此连通。工作流体容置于脉络通道中。由于散热元件包含第一薄膜与第二薄膜,具有可弯折的特性,因此可轻易组装及贴合于电子元件上。此外,脉络通道包含主脉络通道与支脉络通道,且工作流体容置于脉络通道中,因此当散热元件接触热源时,工作流体可凭借相变产生的压力差与重力作用在脉络通道中流动,便可将热源的热传导至整个第一薄膜与第二薄膜。另外,第一薄膜与第二薄膜本身的材质也能导热,因此可加快传热速率。

Description

散热元件
技术领域
本发明涉及一种散热元件。
背景技术
目前应用于消费电子产品的热管或热板通常以铜作为壳体,以水作为工作流体。工作流体通过毛细结构在壳体中循环不息地以气、液态的相变传热,来降低接触热管或热板的电子元件的温度。
现有的移动装置越来越轻薄(如笔记本电脑、平板电脑或手机),因此大都采用超薄型热管(ultrathin heatpipe)或热板。然而,不论热管或热板仍常因厚度太厚而难以装入移动装置,或者造成移动装置的整体厚度无法达到要求,因此会造成设计上的不便。
此外,热管与热板在制作完成后,均属刚性不可挠曲的结构,因此不易组装及贴合于不规则形状的电子元件上。若强行利用外力弯折,则会破坏热管与热板内的毛细结构,而降低热管与热板的传热效率。近年来,虽然可采用石墨片或其他高导热复合材料来克服挠曲及贴附问题,但石墨片或高导热复合材料的热传导系数(例如200至1800W/mK)远低于热管或热板的热传导系数(例如10,000至50,000W/mK)。也就是说,使用于移动装置中的已知热管或热板对于传热效率与空间运用并无法兼顾。
发明内容
本发明提供一种散热元件,包含第一薄膜、第二薄膜与工作流体。第二薄膜与第一薄膜部分连接以形成多条脉络通道。脉络通道包含主脉络通道与多条支脉络通道,且主脉络通道与支脉络通道彼此连通。工作流体容置于脉络通道中。
由于散热元件包含第一薄膜与第二薄膜,具有可弯折的特性,因此可轻易组装及贴合于电子元件上。此外,脉络通道包含主脉络通道与支脉络通道,且工作流体容置于脉络通道中,因此当散热元件接触热源时,工作流体可凭借相变产生的压力差与重力作用在脉络通道中流动,便可将热源的热传导至整个第一薄膜与第二薄膜。另外,第一薄膜与第二薄膜本身的材质也能够导热,因此可加快传热速率。
附图说明
图1为根据本发明第一实施方式的散热元件的俯视图。
图2为图1的散热元件沿线段2-2的剖面图。
图3为图2的散热元件的另一实施方式。
图4为图1的散热元件组装在电路板上时的示意图。
图5为根据本发明第二实施方式的散热元件的俯视图。
图6为图5的散热元件沿线段6-6的剖面图。
图7为图6的脉压产生器施压于主脉络通道时的剖面图。
图8为根据本发明第三实施方式的散热元件的俯视图。
图9为根据本发明第四实施方式的散热元件的俯视图。
图10为根据本发明第五实施方式的散热元件的俯视图。
图11为根据本发明第六实施方式的散热元件的俯视图。
具体实施方式
以下将以附图公开本发明的多个实施方式,为明确说明起见,许多具体细节将在以下叙述中一并说明。然而,应了解到,这些具体的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些具体细节是非必要的。此外,为简化附图起见,已知惯用的结构与元件在附图中将以简单示意的方式标示。
图1为根据本发明第一实施方式的散热元件100的俯视图。图2为图1的散热元件100沿线段2-2的剖面图。同时参阅图1与图2,散热元件100包含第一薄膜110、第二薄膜120与工作流体140。其中,第二薄膜120与第一薄膜110部分连接以形成多条脉络通道130。
脉络通道130指第一薄膜110与第二薄膜120之间的空间。脉络通道130包含主脉络通道132与多条支脉络通道134,且主脉络通道132与支脉络通道134彼此连通。脉络通道130相对于第一薄膜110与第二薄膜120的连接处可以呈凸状,使得工作流体140可容置于脉络通道130中,本发明不以此为限。
在本实施方式中,支脉络通道134的宽度W2小于主脉络通道132的宽度W1,但在其他实施方式中,支脉络通道134的宽度W2可等于主脉络通道132的宽度W1,依照设计者需求而定。
在本实施方式中,第一薄膜110与第二薄膜120可以为金属薄膜或外镀金属层的非金属薄膜。金属薄膜例如铝薄膜、铜薄膜,外镀金属层的非金属薄膜例如表面镀铝的塑料(例如PET)薄膜或表面镀铜的塑料薄膜,均具有导热的特性,本发明不以此为限。
散热元件100的厚度H可介于60至100μm,因其厚度薄而具有可弯折的特性,但并不以此范围限制本发明。如此一来,散热元件100不仅能组装在形状规则电子元件(例如电脑主板)或壳体(例如电脑外壳的内表面)上,还可以组装在形状不规则的电子元件或壳体上。
此外,工作流体140可以为纯水、酒精、丙酮或其他挥发性液体,本发明不以此为限。举例来说,工作流体140为甲氧基甲烷类的液体时,由于甲氧基甲烷类的液体沸点低(例如30至70℃),挥发性高,当散热元件100的主脉络通道132接触热源时,主脉络通道132内的工作流体140可凭借相变产生的压力差将主脉络通道132的热传送至支脉络通道134。支脉络通道134的热亦可由第一薄膜110与第二薄膜120扩散至整个散热元件100,因此能有效降低热源的温度。然而,热源接触散热元件100的位置并不以主脉络通道132为限,例如亦可接触支脉络通道134。另外,当散热元件100以直立方式使用时(例如贴附于台式计算机的侧盖时),工作流体140还可凭借重力作用在脉络通道130中流动并传热。
在本实施方式中,支脉络通道134相对于主脉络通道132大致呈放射状排列,且脉络通道130呈交错排列,但支脉络通道134与主脉络通道132在第一薄膜110与第二薄膜120上的排列方式并不以此限制本发明。
图3为图2的散热元件100的另一实施方式。与图2实施方式不同的地方在于:散热元件100还包含多个毛细体150,且工作流体140可以为水。同时参阅图1与图3,毛细体150位于脉络通道130中(即主脉络通道132与支脉络通道134中),且附着于脉络通道130的内表面上。其中,毛细体150可以为金属烧结物、微沟槽或金属网。脉络通道130经抽真空工艺,气压会小于1个大气压,因此工作流体140的沸点得以降低(例如50至70℃)。在本实施方式中,工作流体140可凭借相变产生的压力差及毛细效应在脉络通道130中流动并传热。也就是说,当主脉络通道132接触热源时,散热元件100通过热管传热原理将热传送至支脉络通道134。
图4为图1的散热元件100组装在电路板210上时的示意图。电路板210具有主要热源212及其他次要热源(例如电容或各类适配卡)。热源212例如为中央处理器或显示芯片。在组装时,由于散热元件100具柔性,因此可同时接触电路板210的多个电子元件。工作流体140(见图2与图3)可凭借相变产生的压力差、重力作用与毛细效应,使热源212的热由主脉络通道132传送至支脉络通道134。接着,支脉络通道134的热可由第一薄膜110与第二薄膜120扩散至整个散热元件100,因此能有效降低热源212的温度。
在以上叙述中,散热元件100均为被动式散热元件,也就是工作流体140是借由热源212的热而流动。在以下叙述中,将说明其他形式的散热元件。
图5为根据本发明第二实施方式的散热元件100a的俯视图。图6为图5的散热元件100a沿线段6-6的剖面图。同时参阅图5与图6,散热元件100包含第一薄膜110、第二薄膜120与工作流体140。与图1实施方式不同的地方在于:散热元件100a还可包含脉压产生器160与温控装置170,且散热元件100a为主动式散热元件。其中,脉压产生器160位于主脉络通道132上,可施压于主脉络通道132内的工作流体140。脉压产生器160可以包含陶片162与压电材料164(例如Ni-Fe镍铁合金)。温控装置170位于第一薄膜110或第二薄膜120上,且通过导线166电性连接脉压产生器160。温控装置170可控制压电材料164的弯曲程度,使位于压电材料164下方的主脉络通道132压缩与舒张。
图7为图6的脉压产生器160施压于主脉络通道132时的剖面图。同时参阅图6与图7,在本实施方式中,工作流体140可以为水,且脉络通道130(见图5)不需经抽真空工艺。当温控装置170感测到高于设定温度的温度时(例如高于70℃),温控装置170可启动脉压产生器160,使脉压产生器160的弯折方向改变。
举例来说,图6的主脉络通道132为舒张状态,图7的主脉络通道132为压缩状态。当热源接触主脉络通道132且温度上升时,脉压产生器160可由温控装置170启动,使主脉络通道132由舒张状态转换为压缩状态。如此一来,原本位于主脉络通道132中的工作流体140便可流动至支脉络通道134(见第5图)中,且支脉络通道134的热亦可由第一薄膜110与第二薄膜120扩散至整个散热元件100a,因此能通过水冷效果降低热源的温度。
之后,当主脉络通道132由压缩状态转换为舒张状态时,支脉络通道134(见图5)中的工作流体140便可凭借大气压力流回主脉络通道132中。脉压产生器160可周期性的施压于主脉络通道132内的工作流体140,以提升散热元件100a的散热效率。
应了解到,在以上叙述中,已叙述过的元件连接关系将不在重复赘述。在以下叙述中,将说明其他支脉络通道134与主脉络通道132在第一薄膜110与第二薄膜120上的排列方式。
图8为根据本发明第三实施方式的散热元件100b的俯视图。与图1实施方式不同的地方在于:脉络通道130还包含多条旁支脉络通道134a。主脉络通道132、支脉络通道134与旁支脉络通道134a彼此连通,形成树枝状通道。在本实施方式中,旁支脉络通道134a的宽度W4小于支脉络通道134的宽度W3,且,旁支脉络通道134a与支脉络通道134的夹角θ介于5至85度,但此角度范围并不限制本发明。在其他实施方式中,主脉络通道132可设置图5的脉压产生器160,本发明不以此为限。
图9为根据本发明第四实施方式的散热元件100c的俯视图。与图1实施方式不同的地方在于:支脉络通道134大致呈平行排列,且主脉络通道132连接于平行的支脉络通道134的同侧端。在其他实施方式中,主脉络通道132可设置图5的脉压产生器160,本发明不以此为限。
图10为根据本发明第五实施方式的散热元件100d的俯视图。与图9实施方式不同的地方在于:散热元件100d的整体面积较大,且部分的支脉络通道134呈横向排列,另一部分的支脉络通道134呈纵向排列,使支脉络通道134可彼此垂直连接。此外,主脉络通道132亦可设置图5的脉压产生器160,依设计者需求而定。
图11为根据本发明第六实施方式的散热元件100e的俯视图。与图10实施方式不同的地方在于:部分倾斜排列的支脉络通道134交错于另一部分平行排列的支脉络通道134。此外,主脉络通道132可设置图5的脉压产生器160,依设计者需求而定。
与现有的热管或热板相比,本发明的散热元件包含第一薄膜与第二薄膜,具有可弯折的特性,因此可轻易组装及贴合于电子元件上。此外,脉络通道包含主脉络通道与支脉络通道,且工作流体容置于脉络通道中,因此当散热元件接触热源时,工作流体可选择性地凭借相变产生的压力差、重力作用、毛细效应与脉压产生器产生的压力差在脉络通道中流动,使热源的热传导至整个散热元件。另外,第一薄膜与第二薄膜本身的材质也能够导热,因此可加快传热速率。
虽然本发明已经以实施例公开如上,然其并非用以限定本发明,任何所属技术领域中具有一般常识的人员,在不脱离本发明的精神和范围内,当可作各种变动与润饰,因此本发明的保护范围当视权利要求所界定者为准。

Claims (11)

1.一种散热元件,其特征在于,包含:
第一薄膜;
第二薄膜,其与上述第一薄膜部分连接以形成多条脉络通道,上述这些脉络通道包含主脉络通道与多条支脉络通道,且上述主脉络通道与这些支脉络通道彼此连通;以及
工作流体,容置于上述这些脉络通道中。
2.如权利要求1所述的散热元件,其特征在于,所述工作流体为纯水、酒精、丙酮或其他挥发性液体。
3.如权利要求1所述的散热元件,其特征在于,还包含:
脉压产生器,其位于所述主脉络通道上,用以施压于所述主脉络通道内的工作流体。
4.如权利要求1所述的散热元件,其特征在于,所述这些支脉络通道相对于所述主脉络通道呈放射状排列。
5.如权利要求3所述的散热元件,其特征在于,还包含:
温控装置,其位于所述第一薄膜或第二薄膜上,且电性连接所述脉压产生器。
6.如权利要求1所述的散热元件,其特征在于,所述这些支脉络通道呈平行排列。
7.如权利要求1所述的散热元件,其特征在于,所述这些支脉络通道呈交错排列。
8.如权利要求1所述的散热元件,其特征在于,所述支脉络通道的宽度等于所述主脉络通道的宽度。
9.如权利要求1所述的散热元件,其特征在于,所述支脉络通道的宽度小于所述主脉络通道的宽度。
10.如权利要求1所述的散热元件,其特征在于,还包含:
多个毛细体,其位于所述这些脉络通道中,且附着于所述这些脉络通道的内表面上。
11.如权利要求1所述的散热元件,其特征在于,所述第一薄膜及第二薄膜为金属薄膜或外镀金属层的非金属薄膜。
CN201310140834.8A 2013-04-22 2013-04-22 散热元件 Pending CN104112724A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310140834.8A CN104112724A (zh) 2013-04-22 2013-04-22 散热元件
US13/964,118 US20140311713A1 (en) 2013-04-22 2013-08-12 Heat dissipation component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310140834.8A CN104112724A (zh) 2013-04-22 2013-04-22 散热元件

Publications (1)

Publication Number Publication Date
CN104112724A true CN104112724A (zh) 2014-10-22

Family

ID=51709460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310140834.8A Pending CN104112724A (zh) 2013-04-22 2013-04-22 散热元件

Country Status (2)

Country Link
US (1) US20140311713A1 (zh)
CN (1) CN104112724A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333441A (zh) * 2017-07-24 2017-11-07 苏州天脉导热科技有限公司 脉络均热板及使用该均热板的电视机
CN115426847A (zh) * 2022-09-14 2022-12-02 联想(北京)有限公司 散热结构及电子设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454454B2 (en) 2012-03-12 2022-09-27 Cooler Master Co., Ltd. Flat heat pipe structure
US20140318758A1 (en) * 2013-04-29 2014-10-30 Toyota Motor Engineering & Manufacturing North America, Inc. Composite laminae having thermal management features and thermal management apparatuses comprising the same
US10028413B2 (en) 2014-07-25 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Heat transfer management apparatuses having a composite lamina
CN106152846B (zh) * 2016-07-09 2017-04-05 南京艾科美热能科技有限公司 一种自循环气液两相流相变换热器
KR102608789B1 (ko) 2017-02-24 2023-12-04 다이니폰 인사츠 가부시키가이샤 베이퍼 챔버, 전자 기기, 베이퍼 챔버용 금속 시트및 베이퍼 챔버의 제조 방법
US11320211B2 (en) 2017-04-11 2022-05-03 Cooler Master Co., Ltd. Heat transfer device
JP7205745B2 (ja) * 2018-04-17 2023-01-17 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用金属シートおよびベーパーチャンバの製造方法
US20190368823A1 (en) * 2018-05-29 2019-12-05 Cooler Master Co., Ltd. Heat dissipation plate and method for manufacturing the same
US11913725B2 (en) 2018-12-21 2024-02-27 Cooler Master Co., Ltd. Heat dissipation device having irregular shape
US11153965B1 (en) * 2019-11-14 2021-10-19 Rockwell Collins, Inc. Integrated vapor chamber printed circuit board (PCB) assembly
CN113766796A (zh) * 2020-06-01 2021-12-07 华为技术有限公司 均温板和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725049A (en) * 1995-10-31 1998-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capillary pumped loop body heat exchanger
US6827128B2 (en) * 2002-05-20 2004-12-07 The Board Of Trustees Of The University Of Illinois Flexible microchannel heat exchanger
TWI273210B (en) * 2004-12-30 2007-02-11 Delta Electronics Inc Heat-dissipation device and fabricating method thereof
JP4781097B2 (ja) * 2005-12-05 2011-09-28 ルネサスエレクトロニクス株式会社 テープキャリアパッケージ及びそれを搭載した表示装置
WO2008014389A2 (en) * 2006-07-26 2008-01-31 Board Of Governors For Higher Education State Of Rhode Island And Providence Plantations Streaming-based micro/mini channel electronic cooling techniques
US8561673B2 (en) * 2006-09-26 2013-10-22 Olantra Fund X L.L.C. Sealed self-contained fluidic cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333441A (zh) * 2017-07-24 2017-11-07 苏州天脉导热科技有限公司 脉络均热板及使用该均热板的电视机
CN115426847A (zh) * 2022-09-14 2022-12-02 联想(北京)有限公司 散热结构及电子设备

Also Published As

Publication number Publication date
US20140311713A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
CN104112724A (zh) 散热元件
Yu et al. A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods
Bar-Cohen et al. Two-phase thermal ground planes: technology development and parametric results
Koşar et al. Thermal-hydraulic performance of MEMS-based pin fin heat sink
Wang et al. 3D integrated circuit cooling with microfluidics
US9717162B2 (en) Electronic device and heat dissipating casing thereof
Ansari et al. Performance analysis of double-layer microchannel heat sinks under non-uniform heating conditions with random hotspots
CN205430849U (zh) 柔性均温板
Hsieh et al. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe
CN106794656B (zh) 真空增强散热器
Salimpour et al. Constructal optimization of microchannel heat sinks with noncircular cross sections
Lu et al. Experimental investigation of Cu-based, double-layered, microchannel heat exchangers
US20120325438A1 (en) Heat pipe with flexible support structure
Kewalramani et al. Empirical correlation of laminar forced convective flow in trapezoidal microchannel based on experimental and 3D numerical study
Zhuang et al. Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger
CN105188302A (zh) 手持电子装置散热结构
CN205546384U (zh) 均温板及其上壳构件
Dang et al. The effects of configurations on the performance of microchannel counter-flow heat exchangers–An experimental study
Nemati et al. Experimentally validated numerical model of a fully-enclosed hybrid cooled server cabinet
Pety et al. Design of redundant microvascular cooling networks for blockage tolerance
Grabowski et al. Heat transfer coefficient identification in mini-channel flow boiling with the hybrid Picard–Trefftz method
TWM487609U (zh) 手持電子裝置散熱結構
Górecki et al. Cooling systems of power semiconductor devices—A Review
Zhang et al. Numerical simulation of fluid flow and heat transfer in U-shaped microchannels
Cao et al. Testing and design of a microchannel heat exchanger with multiple plates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141022

WD01 Invention patent application deemed withdrawn after publication