CN104108845B - 一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法 - Google Patents

一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法 Download PDF

Info

Publication number
CN104108845B
CN104108845B CN201410375536.1A CN201410375536A CN104108845B CN 104108845 B CN104108845 B CN 104108845B CN 201410375536 A CN201410375536 A CN 201410375536A CN 104108845 B CN104108845 B CN 104108845B
Authority
CN
China
Prior art keywords
sludge
fuel cell
electrogenesis
microbiological fuel
excess sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410375536.1A
Other languages
English (en)
Other versions
CN104108845A (zh
Inventor
肖本益
刘俊新
陈霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN201410375536.1A priority Critical patent/CN104108845B/zh
Publication of CN104108845A publication Critical patent/CN104108845A/zh
Application granted granted Critical
Publication of CN104108845B publication Critical patent/CN104108845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种微生物燃料电池同步产电和产甲烷的污泥处理方法和工艺。该工艺主要由污泥厌氧消化和微生物产电两部分组成,其操作方法是将剩余污泥先进行浓缩,与厌氧消化污泥进行混合,调节其pH值到合适值后,然后加入到微生物燃料电池阳极室中,控制阳极室混合污泥的混合、温度,进行厌氧消化和产电。本发明的工艺简单、操作和控制简便和运行费用低、能耗低,能同步实现污泥的产电和产甲烷,污泥产电输出电压比只产电情况下提高0.02-0.10V,产电功率提高10~20%,而产甲烷不受影响,甚至能提高5-10%,处理后污泥中残留的有机物可比传统厌氧消化降低20-30%,有利于提高污泥资源化和减量化效率。

Description

一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法
技术领域
本发明属于污水处理技术领域,特别涉及一种微生物燃料电池同步产电和产甲烷的污泥处理方法和工艺。
背景技术
剩余污泥是伴随着污水生物处理而产生的一种副产物,是一种重要有机废弃物,需要进一步处理。在污水的生物处理过程中会产生大量污泥,据估计,污水处理厂污泥的产率可达0.52~1.22kg SS/kg BOD5。近几年,我国经济和人民生活都保持着高速的增长,随着我国城市化和工业化进程的加快,导致城市污水处理量也随之大幅增加,同时污水处理后产生的剩余污泥也大量增加,这些剩余污泥的处理已成为困扰政府有关部门的一个难题。据统计,截至2013年9月底,全国设市城市、县累计建成城镇污水处理厂3501座,污水处理能力约1.47亿立方米/日,比2012年底新增污水处理厂161座,新增处理能力约450万立方米/日,年产生含水量80%的污泥3500多万吨。而且随着我国城市污水排放量的增加、污水处理设施的普及、处理率和处理标准的提高及处理功能的拓展,污泥的产生量仍还将大幅度增加。如何处理污泥,是每个污水处理厂不得不面对的问题。由于污泥的处理处置费用很高,剩余污泥的处理处置费用占污水厂运行费用的25%~40%,有的甚至高达60%,因此解决污泥处理问题十分紧迫。大量产生的剩余污泥的处理处置已成为城市污水处理厂的重大问题,剩余污泥的处理已经成为制约污水处理事业发展的瓶颈问题。
剩余污泥中含有大量的有机质、氮、磷、钾等植物需要的养分,其含量高于常用牛羊猪粪等农家肥,可以与菜籽饼、棉籽饼等优质的有机农肥相媲美。在目前资源日益枯竭的情况下,通过各种物理、化学和生物技术,回收污泥中的有效成分,或将其转化成其它能量形式,获得再利用的价值,并消除污泥的二次污染,使其资源化,是未来污泥处理处置的主流发展方向。
微生物燃料电池技术是近年来兴起的一种利用微生物作为催化剂的燃料电池技术,由于可以同步实现污水处理和发电,它成为一种全新的污水处理技术。成为当前环境污染治理的热门课题之一。除用于污水处理外,微生物燃料电池也可应用于固体废弃物的处理、污染土壤修复、污染河道底泥修复等。将剩余污泥作为燃料,利用微生物燃料电池MFC技术处理剩余污泥,是资源化利用剩余污泥的一种新技术。此方法一方面可以使污泥减量化,另一方面可以将污泥中丰富的有机质能转化为电能,从而实现污泥的减量化与资源化利用,降低污泥的处理处置费用。
通常微生物燃料电池同时存在着两个不同区域:厌氧区(阳极室)和好氧区(阴极室)。由于阳极室的厌氧环境十分适合产甲烷菌生长,在微生物燃料电池阳极室中,产甲烷是一个常见现象。通常认为产甲烷过程会与产电过程竞争质子,从而降解电池的产电效率。例如,Shae等(Shae K-J,CHoi M-J,Kim K-Y,et al.Methanogenesis control by employing variousenvironmental stress conditions in two-chambered microbial fuel cells.Bioresource Technology.2010,101:5350-5357)发现阳极室发生甲烷化会明显降低微生物燃料电池的产电性能,当用0.10–0.27mM2-溴基乙烷磺酸抑制甲烷化时,微生物燃料电池的库仑效率从35%提高到70%。然而,在目前的关于微生物燃料电池中的产甲烷影响产电的研究中,所利用的产电燃料(底物)基本上都是简单、易降解的化合物或物质,如乙酸、乙酸钠、葡萄糖、纤维素等,而关于复杂化合物或物质,如污泥的研究非常少。与简单化合物不同,污泥中有机物含量尽管丰富,但大部分都为微生物细胞物质,微生物利用缓慢。目前已有研究表明,微生物燃料电池可以利用污泥有机物作为产电燃料进行产电,但产电效率相对较低,污泥有机物的利用效率不高,如何提高微生物燃料电池利用污泥有机物效率是目前研究的一个重点。厌氧消化是一种利用污泥有机物产能的一种传统方法。通过厌氧消化,一方面能达到污泥减量化、无害化和稳定化的效果,另一方面以甲烷形式部分回收污泥中有机质的生物质能。然而污泥经过厌氧消化后,仍然有大量有机物存在于污泥中,如何进一步降低污泥中有机物含量、进一步提高污泥资源化效率,是一个值得关注和研究的问题。
发明内容
本发明的目的在于提供一种工艺简单、操作方便、能耗低、同步实现污泥产电和产甲烷方法。本发明是为了克服传统污泥厌氧消化存在的残留有机物含量高和微生物燃料电池利用污泥产电的效率低等不足,结合微生物燃料电池和污泥厌氧消化技术,利用产电微生物和产甲烷微生物的协同作用,来同步产电和产甲烷,提高污泥的产电效率和污泥有机物的转化率,从而提高污泥资源化和污泥减量效率。
为了达到上述目的,本发明的技术路线是提供一种将微生物燃料电池和厌氧消化技术相结合的方法。采用的微生物燃料电池可以是两室微生物燃料电池或单室微生物燃料电池。采用两室微生物燃料电池时,两室间用质子交换膜或阳离子交换膜进行分隔,阳极室采用磁力搅拌器或其它形式进行搅拌混合,阴极室采用空气压缩机进行曝气充氧。采用单室微生物燃料电池时,阳极室同样需要搅拌混合,而阴极采用空气阴极。通过相应的控制手段来实现微生物燃料电池同步利用污泥产电和产甲烷。
本发明具体的技术方案如下:
自污水处理厂取得剩余污泥,经沉淀、浓缩后,调节污泥浓度至5~60g/L,10~35g/L最佳,得到浓缩污泥。
将浓缩污泥与取自厌氧消化装置的厌氧污泥(浓度为6~15g/L最佳)按1-10:1(体积比)进行混合后,加入到微生物燃料电池的阳极室中。为了加速和提高阳极室混合污泥的甲烷化,浓缩污泥与厌氧污泥的混合比例以1-2:1最佳。
为了加速和提高污泥产电和产甲烷,可以将取自污水处理厂的剩余污泥进行预处理,预处理方法优选热处理、超声波、酸碱处理、微波处理其中一种或两种以上方法联合。
调节浓缩污泥与厌氧消化的混合污泥初始pH值至6.5-8.5,6.8-7.5最佳。并在产电和产甲烷期间,通过间隙添加1M NaOH或1M HCl控制混合污泥pH值在6.5-7.5之间,最佳范围为6.8-7.2,从而促进产电和产甲烷微生物的混合生长。
所采用的微生物燃料电池可以是两室型或单室型。
两室型微生物燃料电池的阴极室中加入磷酸盐缓冲液或稀释的浓缩污泥,且采用稀释的浓缩污泥电池产电效果更佳。
阴阳极材料均可为石墨板、碳毡、碳纸、碳刷等,以碳刷和碳毡最佳。
为加速产电,可在阴极上镀0.25-0.5g/cm2的铂。
在外电路中,用导线将阴、阳两电极与500~1000Ω电阻相连。
为了加速和提高微生物燃料电池阳极室中产甲烷微生物和产电微生物的混合生长和增殖,电池装置的运行环境温度控制在30-40℃,36-38℃最佳。
为了进一步促进和提高微生物燃料电池阳极室中产甲烷微生物和产电微生物的混合生长和增殖,向阳极的混合污泥中添加一定量的微量元素,这些元素包括铁、钴、镍,添加量为Fe2+:1-2mmol/L混合污泥、Ni2+:100nmol/L混合污泥、Co2+:50nmol/L混合污泥,并添加10μmol/L混合污泥的金属离子螯合剂氨三乙酸,以提高这些金属离子促进效果。
有益效果:
本发明能同步实现污泥的产电和产甲烷,一方面可以显著提高以污泥为燃料的微生物燃料电池的产电效果,产生了电压更高、功率密度更大的电能,以污泥为燃料的微生物燃料电池的输出电压提高0.02-0.10V,产电功率提高10~20%,另一方面污泥产甲烷基本不受影响,甚至能提高5-10%。经处理后污泥中残存有机物显著降低,污泥的有机物利用效率提高20-30%,从而提高了污泥资源化效率,为污泥资源化提供了一个新的模式。同时,由于将污泥中有机物转化为有用资源化,使污泥体积减少,可以减轻污泥对环境的污染,具有较强的社会效益。
附图说明
图1:两室型微生物燃料电池及其控制设备;
图2:单室型微生物燃料电池及其控制设备;
其中,1-阳极;2-阴极;3-电阻;4-搅拌子;5-质子交换膜;6-曝气条;7-pH控制器;8-pH值探头;9-温度控制器;10-温度探头;11-加热棒。
具体实施方式
下面通过具体的实施方案对本发明作进一步说明,这些实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。
实施例1
采用两室型微生物燃料电池,两室的体积均为500ml,两室用质子交换膜隔开,阴阳两电极均为碳毡,阴极上镀0.25-0.5g/cm2的铂。将取自污水处理厂的剩余污泥,经沉淀、浓缩后,调节浓度至15g/L,之后将它与取自污泥厌氧消化池的厌氧污泥(浓度15g/L)按10:1进行混合,调节混合污泥的pH值至7.0±0.1,并加入1mmol/L Fe2+(加FeCl2)、100nmol/LNi2+(加NiCl2)、50nmol/L Co2+(加CoCl2),并添加10μmol/L的金属离子螯合剂氨三乙酸。混合污泥准备好后,加入到微生物燃料电池的阳极室中,而阴极室加入浓度为10g/L的浓缩污泥。阳极室充氮气排空5min后密封,两电极外接1000Ω电阻。之后将该微生物燃料电池置于35℃恒温环境中,阳极室用磁力搅拌器进行搅拌混合,而阴极室通过空气曝气供氧。采用pH值控制器控制阳极室混合污泥的pH值在7.0±0.1。同时,为了进行比较,做2组对照微生物燃料电池,其中一组在阳极室加入产甲烷菌特异性抑制剂—2-溴乙烷磺酸钠来抑制产甲烷过程,使之不产甲烷(不产甲烷组);而另一组两电极之间不外接电阻,使之不产电(不产电组),2组对照微生物燃料电池的其它条件与第一组微生物燃料电池完全相同。
3组微生物燃料电池同运行34天,结果表明,在产电稳定期中(4-30d)同步产电和产甲烷的微生物燃料电池的产电输出电压比不产甲烷组高0.05V,而其甲烷产量比不产电组提高约5%,同时处理后污泥中残留有机物比不产电组降低23%,而比不产甲烷组降低60%。同步产电和产甲烷使污泥的资源化和减量化效率均得到的提高。
实施例2
采用单室微生物燃料电池,阳极室体积为500ml,阳极采用碳刷。取自污水处理厂的剩余污泥调节至25g/L后,进行了121℃、30min热处理。将预处理后的剩余污泥浓度与厌氧污泥(浓度10g/L)按2:1进行混合,混合污泥的pH值调节至7.2±0.1,并加入1mmol/L Fe2+、100nmol/L Ni2+、50nmol/L Co2+,并添加10μmol/L的金属离子螯合剂氨三乙酸。之后再将混合污泥加入到单室微生物燃料电池的阳极室中。阳极室充氮气排空5min后密封,两电极外接1000Ω电阻。后将该微生物燃料电池置于37℃恒温环境中,阳极室用磁力搅拌器进行搅拌混合。采用pH值计控制阳极室混合污泥的pH值在7.0±0.1。同样,与实施例1类似,做2组对照微生物燃料电池:不产甲烷组和不产电组。
3组微生物燃料电池同运行36天,结果表明,在产电稳定期中(5-32d)同步产电和产甲烷的微生物燃料电池的产电输出电压比不产甲烷组高0.08V,而其甲烷产量比不产电组提高约10%,同时处理后污泥中残留有机物比不产电组降低30%,而比不产甲烷组降低65%。同步产电和产甲烷使污泥的资源化和减量化效率均得到的提高。
实施例3
采用与实施例1相同的双室微生物燃料电池。将取自污水处理厂的剩余污泥,经沉淀、浓缩后,调节浓度至50g/L,之后将它与取自污泥化池的厌氧污泥按6:1进行混合,调节混合污泥的pH值至6.8±0.1,并加入1mmol/L Fe2+(加FeCl2)、100nmol/L Ni2+(加NiCl2)、50nmol/L Co2+(加CoCl2),并添加10μmol/L的金属离子螯合剂氨三乙酸。混合污泥准备好后,加入到微生物燃料电池的阳极室中,而阴极室加入浓度为10g/L的好氧污泥。阳极室充氮气排空5min后密封,两电极外接500Ω电阻。之后将该微生物燃料电池置于30℃恒温环境中,阳极室用磁力搅拌器进行搅拌混合,而阴极室通过空气曝气供氧。采用pH值计控制阳极室混合污泥的pH值在7.4±0.1。同时,为了进行比较,做2组对照微生物燃料电池,其中一组在阳极室加入产甲烷菌特异性抑制剂—2-溴乙烷磺酸钠来抑制产甲烷过程,使之不产甲烷(不产甲烷组);而另一组两电极之间不外接电阻,使之不产电(不产电组),2组对照微生物燃料电池的其它条件与第一组微生物燃料电池完全相同。
3组微生物燃料电池同运行38天,结果表明,在产电稳定期中(8-32d)同步产电和产甲烷的微生物燃料电池的产电输出电压比不产甲烷组高0.03V,而其甲烷产量与不产电组基本相同,同时处理后污泥中残留有机物比不产电组降低20%,而比不产甲烷组降低45%。同步产电和产甲烷使污泥的资源化和减量化效率均得到的提高。

Claims (9)

1.一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,包括如下步骤:自污水处理厂取得剩余污泥,经沉淀、浓缩后,调节污泥浓度至5~60g/L得到浓缩污泥;将浓缩污泥与取自厌氧消化装置的厌氧污泥按体积比6-10:1进行混合后,加入到微生物燃料电池的阳极室中;调节混合污泥的初始pH值至6.5-8.5,并在产电产甲烷过程中控制混合污泥pH值为6.5-7.2;电池装置的运行环境温度控制在35-40℃;在外电路中,用导线将阴、阳两电极与500~1000Ω电阻相连;向阳极室的混合污泥中添加一定量的微量元素,包括:Fe2+:1-2mmol/L、Ni2+:100nmol/L、Co2+:50nmol/L,并添加10μmol/L的金属离子螯合剂氨三乙酸;所述微生物燃料电池为两室型,两室用质子交换膜隔开。
2.如权利要求1所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,所述浓缩污泥与厌氧污泥的体积比为1-2:1。
3.如权利要求1或2所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,所述厌氧污泥的浓度为6~15g/L。
4.如权利要求1或2所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,所述浓缩污泥的浓度为10~35g/L。
5.如权利要求1所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,所述混合污泥的初始pH为6.8-7.5。
6.如权利要求1所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,电池装置的运行环境温度控制在36-38℃。
7.如权利要求1所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,取自污水处理厂的剩余污泥进行了预处理,所述预处理方法为热处理、超声波、酸碱处理、微波处理其中一种或两种以上方法联合。
8.如权利要求1所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,所述微生物燃料电池的阴极或阳极材料为石墨板、碳毡、碳纸、碳刷中的一种,所述阴极上镀0.25-0.5g/cm2的铂。
9.如权利要求1所述的一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法,其特征在于,所述微生物燃料电池的阴极室中加入磷酸盐缓冲液或稀释的浓缩污泥。
CN201410375536.1A 2014-08-01 2014-08-01 一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法 Active CN104108845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410375536.1A CN104108845B (zh) 2014-08-01 2014-08-01 一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410375536.1A CN104108845B (zh) 2014-08-01 2014-08-01 一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法

Publications (2)

Publication Number Publication Date
CN104108845A CN104108845A (zh) 2014-10-22
CN104108845B true CN104108845B (zh) 2015-09-30

Family

ID=51705860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410375536.1A Active CN104108845B (zh) 2014-08-01 2014-08-01 一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法

Country Status (1)

Country Link
CN (1) CN104108845B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478185B (zh) * 2014-12-05 2016-08-10 广东省生态环境与土壤研究所 一种利用mfc从污泥中回收磷的方法
CN105601074B (zh) * 2015-12-18 2018-06-29 中国科学院广州能源研究所 一种电镀污泥与二氧化碳协同处理的高效资源化利用新方法
WO2017221199A1 (en) * 2016-06-22 2017-12-28 The Hong Kong Polytechnic University Energy generation from pollutants
CN107265798A (zh) * 2017-06-29 2017-10-20 山东毅康科技股份有限公司 一种污泥处理方法
CN107964552B (zh) * 2017-11-23 2022-02-18 南京工业大学 一种厌氧消化与mfc耦合提高甲烷合成效率的方法
CN108483831B (zh) * 2018-03-27 2021-12-31 广西大学 一种微波超声波协同微生物燃料电池技术处理剩余污泥工艺
CN110877952A (zh) * 2018-09-06 2020-03-13 中国石化扬子石油化工有限公司 一种微生物燃料电池辅助强化厌氧污泥消化的复合系统
CN111517600B (zh) * 2019-02-01 2022-08-02 中国石油天然气集团有限公司 一种高含油污泥无害化处理并发电的方法
CN111170599A (zh) * 2020-01-21 2020-05-19 河海大学 一种污泥mfc-厌氧消化耦合系统及其性能强化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620201B (zh) * 2009-08-03 2012-07-18 广东省生态环境与土壤研究所 一种生化需氧量的测定方法和bod传感器及应用
CN103351093A (zh) * 2013-07-28 2013-10-16 桂林理工大学 一种剩余污泥厌氧发酵和产电的方法
CN103482830B (zh) * 2013-09-02 2015-04-15 同济大学 一种同步浓缩消化污泥并产电的装置

Also Published As

Publication number Publication date
CN104108845A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
CN104108845B (zh) 一种微生物燃料电池利用剩余污泥同步产电产甲烷的方法
Yang et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition
Jia et al. Enhanced anaerobic mono-and co-digestion under mesophilic condition: Focusing on the magnetic field and Ti-sphere core–shell structured additives
Xiao et al. Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells
CN103555566B (zh) 一种促进厌氧消化产甲烷的外置电解设备
Jeong et al. Application of an electric field for pretreatment of a seeding source for dark fermentative hydrogen production
Lee et al. Microbial electrolysis cells for the production of biohydrogen in dark fermentation–A review
Aryal et al. Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading
CN107204479A (zh) 一种联用超声和碱促进污泥微生物电解产氢的方法
Qin et al. Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge
CN102344197A (zh) 一种快速启动厌氧氨氧化反应器的方法
CN104372030A (zh) 一种污泥和餐厨垃圾混合发酵联产氢气和甲烷的方法
CN113430234B (zh) 一种外加电势强化厌氧微生物产中链脂肪酸的方法
CN101665810A (zh) 一种剩余污泥厌氧发酵产挥发性脂肪酸的方法
CN107964552B (zh) 一种厌氧消化与mfc耦合提高甲烷合成效率的方法
Zhao et al. Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel
Yan et al. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion
CN103523866B (zh) 一种降解有机质回收其所含能量的生物阴极法
Kadier et al. Hydrogen production through electrolysis
CN111777162A (zh) 一种铁碳微电解与厌氧生物耦合处理废水的方法
CN101330156A (zh) 一种实现蓝藻资源化的方法
CN113044978B (zh) 一种提高有机废水厌氧消化效率的方法及其应用
Zhang et al. Research advances in deriving renewable energy from biomass in wastewater treatment plants
Sukkasem et al. Development of a UBFC biocatalyst fuel cell to generate power and treat industrial wastewaters
Tariq et al. Digestate quality and biogas enhancement with laterite mineral and biochar: Performance and mechanism in anaerobic digestion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant