CN104098777A - 一种三嵌段聚合物及其制备方法 - Google Patents

一种三嵌段聚合物及其制备方法 Download PDF

Info

Publication number
CN104098777A
CN104098777A CN201410327377.8A CN201410327377A CN104098777A CN 104098777 A CN104098777 A CN 104098777A CN 201410327377 A CN201410327377 A CN 201410327377A CN 104098777 A CN104098777 A CN 104098777A
Authority
CN
China
Prior art keywords
succinyl
chitosan
pll
lysine
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410327377.8A
Other languages
English (en)
Other versions
CN104098777B (zh
Inventor
张学农
张春歌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201410327377.8A priority Critical patent/CN104098777B/zh
Publication of CN104098777A publication Critical patent/CN104098777A/zh
Application granted granted Critical
Publication of CN104098777B publication Critical patent/CN104098777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种三嵌段聚合物及其制备方法。三嵌段聚合物以脂肪酸为内核,中间层为聚-L-赖氨酸,外壳为N-琥珀酰壳聚糖,在水溶液中自组装形成胶束。疏水性内核用于包载疏水性的抗癌药物阿霉素,紫衫醇等;携带正电荷的中间层用于吸附基因DNA,siRNA等,制备的胶束降解后能释放所负载的基因;亲水性的外壳可降低聚-L-赖氨酸的毒性,延长其在系统给药后的血液循环时间。本发明提供的三嵌段聚合物在颗粒形成后再吸附基因,有利于控制胶束颗粒的尺寸以及胶束颗粒的规模化制备;它还可在血清存在的条件下转染基因进入靶细胞并调节目的蛋白的表达,具有良好的生物相容性,为靶向抗肿瘤递药系统的构建提供了一种新型载体和制剂形式。

Description

一种三嵌段聚合物及其制备方法
技术领域
本发明属于药物制剂领域, 涉及一种N-琥珀酰壳聚糖(NSC)-聚-L-赖氨酸(PLL)-脂肪酸(FA)三嵌段聚合物及其制备方法。
背景技术
目前,肿瘤的治疗已成为亟待解决的全球性难题。在治疗肿瘤疾病时,药物治疗的效果欠佳,大部分化疗药物水溶性差,对肿瘤部位缺乏选择性(Cheong I, Huang X, Bettegowda C, Diaz LAJ, Kinzler KW, Zhou SB, et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science.2006; 314:1308–1311),并且随着抗肿瘤药物的广泛使用,多数肿瘤细胞产生多药耐药性,成为肿瘤化疗失败的关键因素之一(Gullotti E, Yeo Y. Extracellulary activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol.Pham.2009,6:1041-1051.)。
肿瘤产生多药耐药现象的机制比较复杂,一般认为有两种:一种是由于膜转运蛋白的过度表达所导致耐药机制,包括肿瘤细胞表面表达的大量的外排蛋白(P-糖蛋白,p-gp)及多药耐药相关蛋白(Multidrug resistance-associated proteins, MRPs),可以将进入肿瘤细胞中的药物排出细胞外,降低药物在细胞内的浓度而产生耐药(Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporter in cancer: more than just drug dfflux pumps. Nat Rev Cancer.2010,10:147-156)。二是非转运机制导致的耐药,包括细胞解毒系统活性增强、胞内抗凋亡防御机制激活等(Zhao W, Bao P, You H. Resveratrol down-regulates surviving and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells. Oncol Rep. 2010,23:279-286.),如凋亡相关基因Survivin、Bcl-2等表达异常,影响对凋亡过程调控,抑制药物诱导的细胞凋亡而引起耐药,同时也能特异性激活P-糖蛋白的表达而产生耐药。大部分抗肿瘤药物在诱导细胞凋亡的同时也激活了多药耐药性。
 siRNA通过干扰细胞内基因的表达开启了逆转细胞耐药的新方法。siRNA入胞后与细胞中的蛋白质结合形成 RNA 诱导沉默复合物 (RNA- induced silencing complex, RISC),该复合物寻找并结合特定序列的 mRNA,  对 mRNA 进行酶切。酶切后的 mRNA 片段被胞质中的核酸酶非特异性降解, 结果使特定蛋白无法表达,  实现基因沉默(Jackson AL, Linsley PS. Recognizing and avoiding siRNA off target effects for target identification and therapeutic application.. Nat Rev Drug Discov. 2010,9:57-67.)。
但是siRNA体内易降解,且带有负电荷,很难透过细胞膜,因此需要借助载体提高siRNA的稳定性和跨膜转运能力,促进其发挥干扰效应。目前,siRNA的递送载体主要分为病毒与非病毒两类。前者包括各种逆转录病毒、腺病毒等[Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther. 1998,80(1):35-47.],其转染率高,但存在免疫原性,毒性大和缺乏靶向性等缺点,且病毒载体携带的基因大小受限,不易大量生产和控制;非病毒载体包括脂质体、胶束等具有低免疫原性和相对高安全性等优点已经日益受到国内外学者重视,成为研究热点。非病毒载体中由于阳离子聚合物其稳定性好,制备成熟,结构可调易控,且方便修饰等已成为基因药物或抗肿瘤药物的主要载体。报道的阳离子聚合物种类很多,如聚乙烯亚胺(polyethylenimine, PEI)、聚酰胺(polymidoamine, PAMAM)、多聚赖氨酸(PLL)、鱼精蛋白、壳聚糖(chitosan, CS)等。其中PEI和PAMAM,由于其表面有丰富氨基,生理条件下质子化而具有较高正电荷,能与带负电荷的siRNA发生静电作用,形成复合纳米粒子。同时,利用载体外部的正电作用,可以与带负电荷的细胞膜相互作用,达到保护siRNA不受细胞溶酶体酶降解的作用。但该类聚合物由于细胞内难以降解,加至较高的细胞毒性,一定程度上限制了其应用。
发明内容
本发明针对现有技术存在的缺陷与不足,提供一种具有良好的生物相容性和生物可降解性的三嵌段聚合物及其制备方法。
实现本发明目的的技术方案之一是提供一种三嵌段聚合物,它的结构式为 (C6H11NO4)x(C10H15NO7)1-x[(C6H12N2O)n]y (CmH2m-1 O)z,其中,x为未经琥珀酰基取代的壳聚糖单体在总壳聚糖单体中所占的比例,x的范围为0.5~0.8;1-x为壳聚糖单体中琥珀酰基的取代度,1-x的范围为0.2~0.5;n为聚-L-赖氨酸中L-赖氨酸的聚合度,n的范围为10~30;y为聚-L-赖氨酸的接枝率,y的范围为0.02~0.08;m为脂肪酸中碳的个数,m的范围为8~18;z为脂肪酸的接枝率,z的范围为0.2~0.4;所述的三嵌段聚合物以脂肪酸为内核,内核表面接枝的聚-L-赖氨酸为中间层,外壳为N-琥珀酰壳聚糖。
本发明技术方案还包括上述三嵌段聚合物的制备方法,包括如下步骤:
1、N-琥珀酰壳聚糖-聚L赖氨酸的合成:将N-琥珀酰壳聚糖溶解于蒸馏水中,再将聚L赖氨酸、1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺分别加入到N-琥珀酰壳聚糖溶液中,搅拌溶解得到反应液,反应液中,N-琥珀酰壳聚糖、1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺的浓度依次为10~15 mg·mL-1 、5~10 mg·mL-1和2~3 mg·mL-1;调节反应液的pH为 5.0~6.0,磁力搅拌、室温条件下反应48~72 h后,反应液用截留分子量为3500~5000的透析袋透析,透析液经过滤、冷冻干燥,得到N-琥珀酰壳聚糖-聚L赖氨酸二嵌段聚合物;
2、脂肪酸的活化:将脂肪酸加入到干燥的二氯甲烷中,磁力搅拌溶解得到浓度为4~12 mg·mL-1的溶液,再缓慢加入1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺, 1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺的浓度分别为5~10 mg·mL-1和4~6 mg·mL-1,在40~60℃的温度条件下反应2~4 h后,旋转蒸发除去溶剂,得到白色粉末状固体即为活化的脂肪酸;
3、N-琥珀酰壳聚糖-聚L赖氨酸-脂肪酸的合成:将步骤2得到的活化的脂肪酸加入到甲醇中,搅拌溶解得到浓度为5~10 mg·mL-1的活化脂肪酸甲醇溶液;将步骤1得到的N-琥珀酰壳聚糖-聚L赖氨酸溶解于蒸馏水中,得到浓度为10 ~30 mg·mL-1的N-琥珀酰壳聚糖-聚L赖氨酸水溶液;将等体积的N-琥珀酰壳聚糖-聚L赖氨酸水溶液缓慢滴加到活化脂肪酸甲醇溶液中,在温度为60~70 ℃的条件下反应24~48 h后,反应液用截留分子量为3500~5000的透析袋透析,得到的透析液经2000~3000 rpm离心处理,取上清液冷冻干燥,得到N-琥珀酰壳聚糖-聚L赖氨酸-脂肪酸三嵌段聚合物。
本发明中,优选的技术方案是:
所述的N-琥珀酰壳聚糖的粘均分子量为8000~15000道尔顿;N-琥珀酰壳聚糖中琥珀酰基的取代度为20 %~50 %。
所述的聚-L-赖氨酸的粘均分子量为2000~5000道尔顿。
所述的脂肪酸的碳链长度为8~18,包括正辛酸、癸酸、月桂酸、豆蔻酸、软脂酸和硬脂酸中的一种。
本发明所采用的载体材料N-琥珀酰壳聚糖具有良好水溶性,可以作为亲水性外壳,但其氨基在生理条件下不被质子化,在作为基因载体方面受到了一定的限制。聚-L-赖氨酸广泛的用于基因的转染,但单独使用聚-L-赖氨酸转染基因的效率很低。为了解决这一问题,本发明将 N-琥珀酰壳聚糖与聚-L-赖氨酸耦连,带正电荷聚-L-赖氨酸可用于吸附siRNA,并且聚-L-赖氨酸在体内能够降解为α-氨基酸而被人体吸收,具有良好的生物相容性。而脂肪酸具有良好的柔韧性和疏水性,可以作为疏水端包载疏水性药物。
本发明针对现有技术具有以下优点:
1、本发明所采用的载体材料N-琥珀酰壳聚糖和聚-L-赖氨酸具有良好的良好的生物相容性和生物可降解性,用于制备得到聚合物胶束,将具有优良的组织透过性以及增强渗透和滞留效应,从而具备天然的被动靶向作用,为纳米载体的开发提供了一种新的候选体系。
2、本发明制备的具有独特的三层结构的聚合物颗粒,可在颗粒形成后再吸附基因,有利于控制胶束颗粒的尺寸以及胶束颗粒的规模化生产。
3、本发明制备的具有独特的三层结构的聚合物颗粒,通过聚-L-赖氨酸质子化引起的亲疏水性质改变,用于制备得到聚合物胶束具有一定的酸敏感特性,在肿瘤细胞酸性环境下构象发生改变,释放所负载的基因和药物,为构建纳米载体、开发基于酸敏感聚合物的新型载药系统提供化学结构参考
4、本发明制备的具有独特的三层结构的聚合物颗粒可用于在血清存在的条件下转染基因进入靶细胞并调节目的蛋白表达,并且可以同时携载抗肿瘤药物和基因,发挥协同增效的抗肿瘤作用。
附图说明
图1为本发明提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物合成示意图;
图2为本发明实施例制备N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物及其中间产物的红外图谱;
图3为本发明实施例制备N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物及其中间产物的1H-NMR图谱;
图4为本发明实施例采用芘荧光探针法测定N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在不同缓冲液中的临界胶束浓度;
图5为本发明实施例中N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在水溶液中自组装形成胶束的透射电镜图谱;
图6为本发明实施例中N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在水溶液中自组装形成胶束的粒径分布图;
图7为本发明实施例提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物共转运阿霉素与siRNA胶束在不同缓冲液中放置不同时间后粒径和电位变化的结果对比图。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。
实施例1
本实施例提供一种N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物,参见附图1,它为本发明提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物合成路线示意图。在本实施例中,具体的合成方法包括以下步骤:
1、N-琥珀酰壳聚糖-聚L赖氨酸(NSC-PLL)的合成
将0.4 g NSC溶解于25 mL 蒸馏水中,搅拌形成溶液。将0.32 g PLL、0.192 g EDC·HCl和0.057 g NHS分别投入上述反应液中,1.1 mol.L-1 HcL调pH5.6, 反应液磁力搅拌,室温反应7 2h后,置透析袋(MWCO=3 500)中,蒸馏水透析3 d,过滤后冷冻干燥,得NSC-PLL。
2、软肪酸(PA)的活化
将0.128 g软肪酸加入到25 ml干燥的二氯甲烷中,磁力搅拌溶解,然后缓慢加入0.192 g 1-乙基-(3-二甲基氨基丙基)碳二亚胺(EDC),和0.115 g N-羟基琥珀酰亚胺(NHS),40℃继续反应2 h。旋转蒸发除去溶剂,得到白色粉末状固体即为PA-NHS。
3、N-琥珀酰壳聚糖-聚L赖氨酸-软肪酸(NSC-PLL-PA)的合成
将0.175 g活化的软肪酸加入到25 ml甲醇的烧瓶中,搅拌至其溶解。0.5 g NSC-PLL加入到 25 mL蒸馏水中,溶解后缓慢将其滴加入烧瓶中,70 ℃下反应24 h. 反应结束后将烧瓶内的液体加入到透析袋中(MW=3500),蒸馏水透析3 d后,将透析液3000 rpm离心10 min,取上清液冷冻干燥,得NSC-PLL-PA。
本实施例提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物及其中间产物的红外图谱如图2所示,图中:曲线a为CS,曲线b为NSC,曲线c为PLL,曲线d为NSC-PLL,曲线e为NSC-PLL-PA;从图2可以看出,与CS相比,NSC中1750 cm–1处为游离羧基吸收峰, 1625 cm–1和1550 cm–1处分别为酰胺中C = O伸缩振动吸收峰和N-H弯曲振动吸收峰,NSC-PLL中保留了NSC中1600 cm–1和1525 cm–1处酰胺中C = O伸缩振动吸收峰和N-H弯曲振动吸收峰, 1750 cm–1处游离羧基吸收峰,并且在3500 cm–1处出现PLL中氨基N-H吸收峰,NSC-PLL-PA中由于软肪酸的连接,在2886 cm-1处表征出亚甲基C-H伸缩振动峰强度。
本实施例提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物及其中间产物的1H-NMR图谱如图3所示,图中:曲线a为CS,曲线b为NSC,曲线c为PLL,曲线d为NSC-PLL,曲线e为NSC-PLL-PA;从图3可以看出,NSC的1HNMR谱a可归属如下:δ=4.5 (H1,糖链) , δ =3.35~3.83 ( H3, H4, H5, H6糖链) , 2.61 (H2糖链),δ = 2.35 ppm (multiplet, CH2CH2 of succinyl). NSC-PLL除保留NSC中的质子峰以外,还出现了PLL的质子峰,归属如下:δ=4.1(单峰,a),δ =3.0~3.2(多峰,f),δ =3.0~3.2(多峰,b,c,e)而在NSC-PLL-PA的图谱中,除保留上述质子峰以外,δ=0.82 ppm 附近出现了CH2对应的质子峰, NSC-PLL-PA在D2O溶剂中,软脂酰基的亚甲基氢信号很弱,产生这种现象的原因是在重水溶剂中,NSC-PLL-PA因自聚集使得疏水酰基聚集在胶束粒子的内部,从而核磁共振信号减弱,该现象也显示了NSC-PLL-PA在D2O溶剂中有很强的胶束化行为。
对本实施例提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在不同缓冲液中的临界胶束浓度采用芘荧光探针法进行测定,取2.021 mg芘用100 mL丙酮溶解,配成10-4 mol.mL-1的丙酮溶液,分别精密量取50 μL该溶液,置于10个相同的EP管中,于50 ℃条件下用N2气吹干,至丙酮全部挥发。将聚合物溶液配制成不同的浓度(0.5,l,2,4,8,16,32,64,125,250,500,1000 μg.mL-1),分别精密量取5 ml加入上述10个EP管中,各管中芘的浓度均为10-mol·L-1,将各管溶液放入超声仪中超声0.5 h,设定超声功率为200 W,放置12 h,测定各管中芘溶液的荧光发射光谱。按照以激发波长测最大发射波长,以发射波长测最大激发波长的原则,确定芘荧光探针的激发波长为332 nm。以该激发波长测定样品于350 nm~450 nm范围内的荧光发射光谱,发射狭缝带宽为3 nm,激发狭缝带宽为5nm。分别测定各样品溶液在λ1=372 nm处和λ2=383 nm处的荧光强度,以lgC为横坐标,以测定的I3/I1的比值为纵坐标,根据各点作出数据点的水平切线,以及突变曲线的切线,两个切线的交点所对应的聚合物浓度,即为临界胶束浓度(CMC);结果如图4所示,图中,A和B图 为pH=7.4,C和D图为 pH=5.3;从图4可以看出,芘在某一浓度范围内,I372/I383值保持不变,并且较高,表明聚合物未形成胶束,当浓度达到一定值以后,I372/I383值急剧下降,证明聚合物在该浓度形成胶束I372/I383与lgC作图可以得到该纳米胶束的CMC为0.0064 mg.mL-1。与小分子表面活性剂相比,聚合物的可以达到10-3 mg.mL-1 ,这说明在稀释过程中,该产物形成的胶束相对稳定,有作为药物载体的可能性;运用芘荧光探针法测定聚合物在pH7.4和pH5.3处的CMC,分别为0.0064 mg.mL-1和0.0158 mg.mL-1,说明胶束在PH5.3的条件下没有在PH7.4条件下稳定,这有利于胶束在内涵体酸性条件下释放药物。
本实施提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在水溶液中自组装形成的胶束透射电镜图如图5所示;从图5可以看出,N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在水溶液中自组装形成的胶束呈均匀分散的球状颗粒,粒径约为120 nm
本实施提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在水溶液中自组装形成的胶束的粒径分布图如图6所示;从图6可以看出,N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物在水溶液中自组装形成的胶束在125nm左右具有较窄的粒径分布,显示了其良好的分散性,与透射电镜结果一致。
将本实施例提供的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物应用于制备共转运阿霉素与siRNA的胶束,其具体方法是:将N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物溶于5 ml去离子水中制备浓度为1 mg.mL-1的空白胶束溶液;将盐酸阿霉素用适量 DMSO溶液溶解,加入与盐酸阿霉素摩尔比1:2的三乙胺进行脱盐处理,然后将脱盐后的阿霉素缓慢滴加到上述空白胶束溶液中,使药物终浓度为0.2 mg.mL-1;超声30 min, 磁力搅拌2 h,然后置于透析袋中透析4 h,每1 h换一次蒸馏水,透析液用0.45μm微孔滤膜过滤, 得到载阿霉素胶束样品。再将载阿霉素药物的胶束与siRNA(N/P=20~40)37℃震荡孵育30min即得N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物共转运阿霉素与siRNA胶束。
本实施例制备得到的N-琥珀酰壳聚糖-聚-L-赖氨酸-软肪酸三嵌段聚合物共转运阿霉素与siRNA胶束在不同缓冲液中放置不同时间后粒径和电位变化如图7所示;从图7可以看出,在pH=7.4的环境中,载siRNA胶束的粒径和Zeta电位能保持相对稳定。而在pH=5.3的缓冲液中,粒径增大,Zeta电位升高,推测可能是由于在pH=5.3的条件下,聚L-赖氨酸层中N的质子化程度增大,亲水性增加,可能翻转到壳聚糖外壳的外层,而疏水端软肪酸链较短,不足以维持胶束的稳定,从而使胶束粒径增大,并且由于聚L-赖氨酸的外露而使Zeta电位升高。

Claims (7)

1.一种三嵌段聚合物,其特征在于:它的结构式为 (C6H11NO4)x(C10H15NO7)1-x[(C6H12N2O)n]y (CmH2m-1 O)z,其中,x为未经琥珀酰基取代的壳聚糖单体在总壳聚糖单体中所占的比例,x的范围为0.5~0.8;1-x为壳聚糖单体中琥珀酰基的取代度,1-x的范围为0.2~0.5;n为聚-L-赖氨酸中L-赖氨酸的聚合度,n的范围为10~30;y为聚-L-赖氨酸的接枝率,y的范围为0.02~0.08;m为脂肪酸中碳的个数,m的范围为8~18;z为脂肪酸的接枝率,z的范围为0.2~0.4;所述的三嵌段聚合物以脂肪酸为内核,内核表面接枝的聚-L-赖氨酸为中间层,外壳为N-琥珀酰壳聚糖。
2.按权利要求1所述的三嵌段聚合物的制备方法,其特征在于包括如下步骤:
(1)N-琥珀酰壳聚糖-聚L赖氨酸的合成:将N-琥珀酰壳聚糖溶解于蒸馏水中,再将聚L赖氨酸、1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺分别加入到N-琥珀酰壳聚糖溶液中,搅拌溶解得到反应液;所述的反应液中,N-琥珀酰壳聚糖、1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺的浓度依次为10~15 mg·mL-1 、5~10 mg·mL-1和2~3 mg·mL-1;调节反应液的pH为 5.0~6.0,磁力搅拌、室温条件下反应48~72 h后,反应液用截留分子量为3500~5000的透析袋透析,透析液经过滤、冷冻干燥,得到N-琥珀酰壳聚糖-聚L赖氨酸二嵌段聚合物;
(2)脂肪酸的活化:将脂肪酸加入到干燥的二氯甲烷中,磁力搅拌溶解得到浓度为4~12 mg·mL-1的溶液,再缓慢加入1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺, 1-乙基-(3-二甲基氨基丙基)碳二亚胺和N -羟基琥珀酰亚胺的浓度分别为5~10 mg·mL-1和4~6 mg·mL-1,在40~60℃的温度条件下反应2~4 h后,旋转蒸发除去溶剂,得到白色粉末状固体即为活化的脂肪酸;
(3)N-琥珀酰壳聚糖-聚L赖氨酸-脂肪酸的合成:将步骤(2)得到的活化的脂肪酸加入到甲醇中,搅拌溶解得到浓度为5~10 mg·mL-1的活化脂肪酸甲醇溶液;将步骤(1)得到的N-琥珀酰壳聚糖-聚L赖氨酸溶解于蒸馏水中,得到浓度为10 ~30 mg·mL-1的N-琥珀酰壳聚糖-聚L赖氨酸水溶液;将等体积的N-琥珀酰壳聚糖-聚L赖氨酸水溶液缓慢滴加到活化脂肪酸甲醇溶液中,在温度为60~70 ℃的条件下反应24~48 h后,反应液用截留分子量为3500~5000的透析袋透析,得到的透析液经2000~3000 rpm离心处理,取上清液冷冻干燥,得到N-琥珀酰壳聚糖-聚L赖氨酸-脂肪酸三嵌段聚合物。
3.根据权利要求2所述的三嵌段聚合物的制备方法,其特征在于:所述的N-琥珀酰壳聚糖的粘均分子量为8000~15000道尔顿。
4.根据权利要求2或3所述的三嵌段聚合物的制备方法,其特征在于:所述的N-琥珀酰壳聚糖中琥珀酰基的取代度为20 %~50 %。
5.根据权利要求2所述的三嵌段聚合物的制备方法,其特征在于:所述的聚-L-赖氨酸的粘均分子量为2000~5000道尔顿。
6.根据权利要求2所述的三嵌段聚合物的制备方法,其特征在于:所述的脂肪酸的碳链长度为8~18。
7.根据权利要求2或6所述的三嵌段聚合物的制备方法,其特征在于:所述的脂肪酸包括正辛酸、癸酸、月桂酸、豆蔻酸、软脂酸和硬脂酸中的一种。
CN201410327377.8A 2014-07-10 2014-07-10 一种三嵌段聚合物及其制备方法 Active CN104098777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410327377.8A CN104098777B (zh) 2014-07-10 2014-07-10 一种三嵌段聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410327377.8A CN104098777B (zh) 2014-07-10 2014-07-10 一种三嵌段聚合物及其制备方法

Publications (2)

Publication Number Publication Date
CN104098777A true CN104098777A (zh) 2014-10-15
CN104098777B CN104098777B (zh) 2017-01-04

Family

ID=51667348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410327377.8A Active CN104098777B (zh) 2014-07-10 2014-07-10 一种三嵌段聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN104098777B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561332A (zh) * 2016-01-29 2016-05-11 浙江工业大学 具有电荷翻转及靶向功能的聚赖氨酸纳米前药胶束及其制备和应用
CN107412159A (zh) * 2017-03-31 2017-12-01 苏州大学 一种三嵌段聚合物胶束的制备方法及其应用
CN107513108A (zh) * 2017-08-29 2017-12-26 东华大学 一种抗菌纤维素酯的制备方法及应用
CN109453114A (zh) * 2018-11-21 2019-03-12 温州医科大学 一种共聚胶束载药纳米颗粒及其应用
CN109851799A (zh) * 2018-12-17 2019-06-07 浙江大学 一种c(RGDfk)环肽-壳聚糖硬脂酸嫁接物载药胶束及制备与应用
CN110938156A (zh) * 2019-12-16 2020-03-31 中国热带农业科学院农产品加工研究所 一种两亲性壳聚糖及其制备方法和应用其的两亲性壳聚糖基纳米微胶囊

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022241A1 (en) * 2010-04-05 2012-01-26 Gross Richard A Sophorolipid Analog Compositions
CN102796236A (zh) * 2012-08-24 2012-11-28 苏州大学 基于生物可降解聚磷酸酯的阳离子型三嵌段共聚物及其应用
CN102863557A (zh) * 2012-10-12 2013-01-09 苏州大学 乳糖酸修饰的脂肪酸-三甲基壳聚糖聚合物制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022241A1 (en) * 2010-04-05 2012-01-26 Gross Richard A Sophorolipid Analog Compositions
CN102796236A (zh) * 2012-08-24 2012-11-28 苏州大学 基于生物可降解聚磷酸酯的阳离子型三嵌段共聚物及其应用
CN102863557A (zh) * 2012-10-12 2013-01-09 苏州大学 乳糖酸修饰的脂肪酸-三甲基壳聚糖聚合物制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高群等: "赖氨酸改性壳聚糖亲核NO 供体的合成", 《高分子材料科学与工程》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561332A (zh) * 2016-01-29 2016-05-11 浙江工业大学 具有电荷翻转及靶向功能的聚赖氨酸纳米前药胶束及其制备和应用
CN107412159A (zh) * 2017-03-31 2017-12-01 苏州大学 一种三嵌段聚合物胶束的制备方法及其应用
CN107412159B (zh) * 2017-03-31 2021-02-09 苏州大学 一种三嵌段聚合物胶束的制备方法及其应用
CN107513108A (zh) * 2017-08-29 2017-12-26 东华大学 一种抗菌纤维素酯的制备方法及应用
CN107513108B (zh) * 2017-08-29 2021-06-01 东华大学 一种抗菌纤维素酯的制备方法及应用
CN109453114A (zh) * 2018-11-21 2019-03-12 温州医科大学 一种共聚胶束载药纳米颗粒及其应用
CN109851799A (zh) * 2018-12-17 2019-06-07 浙江大学 一种c(RGDfk)环肽-壳聚糖硬脂酸嫁接物载药胶束及制备与应用
CN109851799B (zh) * 2018-12-17 2020-07-10 浙江大学 一种c(RGDfk)环肽-壳聚糖硬脂酸嫁接物载药胶束及制备与应用
CN110938156A (zh) * 2019-12-16 2020-03-31 中国热带农业科学院农产品加工研究所 一种两亲性壳聚糖及其制备方法和应用其的两亲性壳聚糖基纳米微胶囊
CN110938156B (zh) * 2019-12-16 2021-11-19 中国热带农业科学院农产品加工研究所 一种两亲性壳聚糖及其制备方法和应用其的两亲性壳聚糖基纳米微胶囊

Also Published As

Publication number Publication date
CN104098777B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Yang et al. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo
Gandhi et al. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances
CN104098777A (zh) 一种三嵌段聚合物及其制备方法
Nishimura et al. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels
Xia et al. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery
Chen et al. Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug–gene co-delivery to cancer cells
Yang et al. Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer
Zhang et al. Host− guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery
CN108542885B (zh) 抗肿瘤药物及其制备方法
Hu et al. pH triggered doxorubicin delivery of PEGylated glycolipid conjugate micelles for tumor targeting therapy
Sun et al. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery
Sun et al. Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression
CN104470904B (zh) 官能化的pla‑peg共聚物,其纳米颗粒,其制备及其用于靶向药物递送和造影的应用
Qi et al. Hyaluronic acid-grafted polyamidoamine dendrimers enable long circulation and active tumor targeting simultaneously
Sun et al. Preclinical evaluation of antitumor activity of acid-sensitive PEGylated doxorubicin
Cui et al. pH-triggered charge-reversal mesoporous silica nanoparticles stabilized by chitosan oligosaccharide/carboxymethyl chitosan hybrids for effective intracellular delivery of doxorubicin
Liu et al. Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo
Huo et al. Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain
Luo et al. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer
Chen et al. Enhanced sensitivity of cancer stem cells to chemotherapy using functionalized mesoporous silica nanoparticles
Yin et al. Novel chitosan derivatives with reversible cationization and hydrophobicization for tumor cytoplasm-specific burst co-delivery of siRNA and chemotherapeutics
Yan et al. Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro
Yang et al. Comparison of tumor penetration of Podophyllotoxin–Carboxymethylcellulose conjugates with various chemical compositions in tumor spheroid culture and in vivo solid tumor
CN101768276B (zh) 聚乙二醇单甲醚-聚己内酯-聚乙烯亚胺三嵌段共聚物及其应用
Du et al. Which one performs better for targeted lung cancer combination therapy: pre-or post-bombesin-decorated nanostructured lipid carriers?

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant