CN104091850A - 一种非晶硅纳米线微晶硅薄膜双结太阳能电池 - Google Patents

一种非晶硅纳米线微晶硅薄膜双结太阳能电池 Download PDF

Info

Publication number
CN104091850A
CN104091850A CN201410240195.7A CN201410240195A CN104091850A CN 104091850 A CN104091850 A CN 104091850A CN 201410240195 A CN201410240195 A CN 201410240195A CN 104091850 A CN104091850 A CN 104091850A
Authority
CN
China
Prior art keywords
amorphous silicon
layer
nanowire
silicon film
microcrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410240195.7A
Other languages
English (en)
Inventor
李孝峰
张程
詹耀辉
翟雄飞
尚爱雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201410240195.7A priority Critical patent/CN104091850A/zh
Publication of CN104091850A publication Critical patent/CN104091850A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种非晶硅纳米线微晶硅薄膜双结太阳能电池,包括自下而上依次平行设置的金属反射层、基底层、透明背部电极层、微晶硅薄膜层、中间层、绝缘层和非晶硅纳米线阵列层,绝缘层上设有多个与n型非晶硅核一一对应设置的纳米孔,n型非晶硅核向下延伸到其对应的纳米孔内部并与中间层的上表面接触,p型非晶硅层和i型非晶硅层设于绝缘层的上表面。其优点在于,不仅可以充分利用非晶硅纳米线的聚光特性,形成多种光的波导模式,同时还利用了非晶硅的纳米尺度柱状结构,当光入射到太阳能电池表面时发生多次反射/散射,增加光在太阳能电池中的路径,提高太阳光吸收率,从而提高本太阳能电池的光电转换效率。

Description

一种非晶硅纳米线微晶硅薄膜双结太阳能电池
技术领域
本发明涉及一种太阳能电池,尤其是涉及一种非晶硅纳米线微晶硅薄膜双结太阳能电池。 
背景技术
光伏产业在近些年取得了很大的进步,占据市场主导地位的硅太阳能电池的转化效率已经可以达到25%。同时,利用薄膜技术可以生产出叠层太阳能电池,而使用光吸收性能优异的Ⅲ-Ⅴ族材料实现了目前最高的电池效率(43%)。然而,因为相对昂贵的材料和生产加工成本,高效率的多结太阳能电池还没能在民用领域大量使用。如今,太阳能电池的生产技术相对来讲已经很成熟,而太阳能电池的转化效率还有很大的提升空间,所以太阳能电池的转化效率就成为了整个光伏产业发展最关键的因素。发展光伏产业的最终目标就是要实现太阳能电池的工业化大规模生产,并且使得太阳能发电相较于其他传统发电方式更加经济实惠。 
高效率的太阳能电池必须满足两个主要的要求,一是在宽光谱范围内具有高吸收,二是在能量转化中具有较低的热损失,基于以上要求而提出和发展了多结太阳能电池[Physics of Solar Cells:From Principles to New Concepts(Wiley-VCH,2005)]。纳米线电池因为在电池内部可以形成多种光波导模式,具有聚光效应,能有效增强电池的光吸收,所以纳米线电池可以实现使用少量的光敏材料而达到甚至超过薄膜电池的转换效率[Nano Lett.10,1082–1087(2010)]。研究发现,纳米线阵列的聚光效应可以认为是电池中色散光波导模式的叠加,而光波导模式的强弱和数量主要决定于电池的结构。由此,通过调节纳米线阵列电池的结构参数,可以使得电池在整个太阳光谱范围内具有理想的光吸收。有鉴于此,在2011年,一种多晶硅纳米线太阳能电池曾被提出,即通过生长多晶硅纳米线阵列作为吸收层,再分别沉积氮化硅为抗反射层、In2O3:Sn薄膜为导电层,减小了电池的表面复合,使得内部载流子可以更加有效的收集,短路电流增大,相对于此前报道的4.73%的光电转化效率,进一步提高了约48%(中国发明专利号:CN 102227002A,申请号:201110143760.4)。然而,对于现有的双结叠层薄膜太阳能电池,为了实现顶电池和底电池的电流匹配,顶电池的非晶硅层相对较厚,导致非晶硅的光致衰退效应明显,光电性能不稳定,电池寿命低。同时,由于非晶硅中载流子的寿命和扩散长度较短,较厚的吸收层不利于载流子的收集,降低了电学性能。 
发明内容
本发明目的是:提供一种具有多种光的波导模式、太阳光吸收率及光电转换效率高的非晶硅纳米线微晶硅薄膜双结太阳能电池。 
本发明的技术方案是:一种非晶硅纳米线微晶硅薄膜双结太阳能电池,包括自下而上依次平行设置的金属反射层、基底层、透明背部电极层、微晶硅薄膜层、中间层、绝缘层和非晶硅纳米线阵列层,所述非晶硅纳米线阵列层包括多个垂直于所述绝缘层且间隔设置的非晶硅纳米线,所述非晶硅纳米线包括依次由外而内且径向设置的p型非晶硅层、i型非晶硅层、n型非晶硅核,所述绝缘层上设有多个与所述n型非晶硅核一一对应设置的纳米孔,所述n型非晶硅核向下延伸到其对应的纳米孔内部并与所述中间层的上表面接触,所述p型非晶硅层和所述i型非晶硅层设于所述绝缘层的上表面,同时在所述绝缘层未覆盖非晶硅纳米线区域填充有透明电极间隔层。 
进一步地,所述非晶硅纳米线的长度及所述透明电极间隔层的厚度均为200~400nm; 
相邻非晶硅纳米线之间的轴心间距为500~1000nm; 
所述非晶硅纳米线的直径为200~800nm,其中所述p型非晶硅层的厚度及所述n型非晶硅核的半径各为20~50nm。 
进一步地,所述微晶硅薄膜层包括自下而上依次平行设置的n型微晶硅薄膜层、i型微晶硅薄膜层、p型微晶硅薄膜层。 
进一步地,所述微晶硅薄膜层的厚度为1500~3000nm,其中所述n型微晶硅薄膜层及所述p型微晶硅薄膜层的厚度各为10~30nm。 
进一步地,所述金属反射层的厚度为100~200nm; 
所述基底层的厚度为300~3000μm; 
所述透明背部电极层的厚度为50~100nm; 
所述中间层的厚度为10~30nm; 
所述绝缘层的厚度为10~30nm。 
更进一步地,所述金属反射层为Ti、Pd或Ag金属反射层; 
所述基底层为SiO2玻璃基底层; 
所述透明背部电极层为In2O3:Sn、SnO2:F、ZnO:Al透明背部电极层; 
所述中间层为ZnO中间层; 
所述绝缘层为SiO2绝缘层; 
所述透明电极间隔层为In2O3:Sn、SnO2:F、ZnO:Al透明电极间隔层。 
本发明非晶硅纳米线微晶硅薄膜双结太阳能电池的具体工作原理如下:顶部非晶硅纳米线阵列层吸收太阳光(吸收短波段太阳光)产生电子空穴对,由于非晶硅纳米线阵列层由外而内p-i-n径向掺杂,在内建电场的作用下,空穴向外围的p型非晶硅层运动,电子向中心的n型非晶硅核运动;同样底部微晶硅薄膜层也吸收太阳光(吸收长波段太阳光)产生电子空穴对,由于微晶硅薄膜层自上而下p-i-n掺杂,在内建电场的作用下,空穴向顶部p型微晶硅薄膜层移动,电子向底部n型微晶硅薄膜层运动。 
其中非晶硅纳米线阵列层产生的聚集在中心n型非晶硅核的电子穿过位于中间层的隧道结,并向底部微晶硅薄膜层运动,之后和微晶硅薄膜层产生的电子共同被底部的透明背部电极层收集,并将该透明背部电极层作为电池阴极;微晶硅薄膜层产生的空穴穿过位于中间层的隧道结,和顶部非晶硅纳米线阵列层产生的空穴共同被顶部的透明电极间隔层收集,并将该顶部透明电极间隔层作为电池阳极。 
其次绝缘层用于分别隔离中间层与透明电极间隔层、p型非晶硅层、i型非晶硅层,防止电池短路;基底层除了用于电池支撑,还可以防止其底部的金属反射层扩散到微晶硅薄膜层中,影响电池性能和寿命;金属反射层用于将未被非晶硅纳米线阵列层和微晶硅薄膜层吸收的太阳光反射回电池中,以被再次吸收,从而提高电池的光吸收率。 
本发明的优点是: 
1.本发明采用非晶硅做成纳米线阵列层,不仅可以充分利用非晶硅纳米线的聚光特性,形成多种光的波导模式,同时还利用了非晶硅的纳米尺度柱状结构,当光入射到太阳能电池表面时发生多次反射/散射,增加光在太 阳能电池中的路径,提高太阳光吸收率,从而提高本太阳能电池的光电转换效率; 
2.本发明采用非晶硅纳米线和微晶硅薄膜双结太阳能电池结构,利用位于顶层的非晶硅纳米线吸收短波段,位于底层的微晶硅薄膜吸收长波段的太阳光,可以实现宽太阳光谱内的高吸收,减少太阳能电池的热损失,同时非晶硅纳米线阵列作为顶电池可以实现宽入射角度范围内的高光吸收; 
3.本发明的非晶硅纳米线采用由外而内且径向设置的p型非晶硅层、i型非晶硅层、n型非晶硅核,可以减小载流子的传输距离,提高载流子的收集能力,从而有效地提高太阳能电池的转换效率; 
4.本发明的非晶硅纳米线底部的SiO2绝缘层和ZnO中间层可以进一步将光反射回位于顶层的非晶硅纳米线阵列层,提高非晶硅纳米线的吸收,减少为了匹配位于底部的微晶硅薄膜层电流而需要的非晶硅体积,节省材料,降低成本,并缓解了非晶硅纳米线的光致衰退效应,提高太阳能电池的稳定性。 
附图说明
下面结合附图及实施例对本发明作进一步描述: 
图1为本发明非晶硅纳米线微晶硅薄膜双结太阳能电池的纵向剖视图; 
图2为本发明非晶硅纳米线微晶硅薄膜双结太阳能电池的俯视图; 
图3为本发明非晶硅纳米线微晶硅薄膜双结太阳能电池的制备方法流程图; 
其中:1、In2O3:Sn透明电极间隔层,2、非晶硅纳米线阵列层,201、p型非晶硅层,202、n型非晶硅核,203、i型非晶硅层,3、SiO2绝缘层,4、ZnO中间层,5、p型微晶硅薄膜层,6、i型微晶硅薄膜层,7、n型微晶硅薄膜层,8、ZnO:Al透明背部电极层,9、SiO2玻璃基底层,10、Ti、Pd或Ag金属反射层。 
具体实施方式
实施例1:结合图1~图2所示,本发明提供的非晶硅纳米线微晶硅薄膜双结太阳能电池,其基底层采用500μm厚的SiO2玻璃基底层9,在SiO2玻 璃基底层9上自下而上依次沉积80nm厚的ZnO:Al透明背部电极层8、30nm厚的n型微晶硅薄膜层7、1500nm厚的i型微晶硅薄膜层6、30nm厚的p型微晶硅薄膜层5、20nm厚的ZnO中间层4;15nm厚的SiO2绝缘层3,其中SiO2绝缘层3被刻蚀成纳米孔结构,纳米孔半径为30nm,相邻纳米孔之间的轴心间距为800nm,在SiO2绝缘层3和纳米孔上沉积非晶硅纳米线阵列层2,其中n型非晶硅核202的高度为215nm,半径为30nm;i型非晶硅层203的厚度为200nm;p型非晶硅层201的厚度30nm;且在绝缘层未覆盖非晶硅纳米线区域填充有In2O3:Sn透明电极间隔层1,最后在SiO2玻璃基底层9背面沉积100nm厚的Ti、Pd或Ag金属反射层10。 
上述非晶硅纳米线微晶硅薄膜双结太阳能电池的制备方法如下: 
1)选取一块经过5%HF酸腐蚀的500μm厚的SiO2玻璃基底层9,利用等离子体增强化学气相沉积技术沉积一层ZnO:Al透明背部电极层8,厚度为80nm。 
2)继续用等离子体增强化学气相沉积技术,在腔室中通入氢气,硅烷,磷烷气体,在上述ZnO:Al透明背部电极层8上生长30nm厚的n型微晶硅薄膜层7,各气体的体积比为氢气:硅烷:磷烷=100:(1~5):(0.05~0.1),腔室中的功率为0.05W/cm2~0.1W/cm2,反应时间为3~5分钟,反应气体压力为170Pa,反应温度为200℃。 
3)将腔室中的温度降低至180~200℃,向腔室中通入氢气和硅烷气体,沉积1500nm厚的i型微晶硅薄膜层6,体积比为氢气:硅烷=100:(1~5),腔室中的功率密度为0.5W/cm2,反应时间40~60分钟,反应气体压力170Pa。 
4)向腔室中通入氢气,硅烷和硼烷气体,在i型微晶硅薄膜层6上沉积30nm厚的p型微晶硅薄膜层5,气体体积比为氢气:硅烷:硼烷=(120~100):(1~3):(0.02~0.03),腔室中的功率密度为0.05W/cm2~0.1W/cm2,反应时间为3~5分钟,反应气体压力为170Pa。 
5)接着在腔室中通入ZnO工作气体,在p型微晶硅薄膜层5上沉积ZnO中间层4,厚度为20nm。 
6)沉积完成后,将残留尾气抽出真空室,使用亚离子和高纯氩气对真空室进行反复清洗,启动分子泵抽高真空,通入SiO2工作气体,制备SiO2绝缘层3,厚度为15nm。完成后,对氧化物绝缘层用模板辅助反应等离子 体刻蚀技术刻蚀SiO2绝缘层3,得到SiO2绝缘层3的纳米孔阵列。 
7)在纳米孔和SiO2绝缘层3表面上生长n型非晶硅薄膜,利用等离子体增强化学气相沉积技术,向腔室中通入氢气,硅烷和磷烷气体,体积比氢气:硅烷:磷烷=60:(1~10):0.1,腔室中的功率为0.05~0.1W/cm2,反应时间为4~5分钟。反应气体压力为200Pa,反应温度为200~250℃。 
8)利用模板辅助反应等离子体刻蚀技术刻蚀n型非晶硅薄膜,得到单根n型非晶硅核202半径为30nm,长度215nm,相邻n型非晶硅核的轴心间距为800nm的n型非晶硅核阵列。 
9)在腔室中通入氢气和硅烷气体,在n型非晶硅核202表面沉积厚度为200nm厚的i型非晶硅层203,体积比为氢气:硅烷=30:(1~10),腔室中的功率密度为0.5W/cm2,反应时间25~40分钟,反应气体压力150Pa。 
10)沉积完i型非晶硅层203后,清洗真空室和抽高真空,在i型非晶硅层203上沉积厚度为30nm厚的p型非晶硅层201,向腔室中通入氢气,硅烷和硼烷气体,气体体积比为氢气:硅烷:硼烷=(120~100):(1~3):(0.02~0.03),腔室中的功率密度为0.5~1W/cm2,反应时间为3~4分钟,反应气体压力为270Pa。 
11)利用电子束刻蚀法对上述过程后的样品进行无模板刻蚀,由于非晶硅纳米线顶端和非晶硅纳米线阵列间隙的i型非晶硅层203和p型非晶硅层201正对着高能量的入射电子束,这两块区域的刻蚀速率会远大于非晶硅纳米线的侧壁刻蚀速率,利用各向异性的刻蚀速率可以实现去除非晶硅纳米线阵列的顶端和间隙的i型非晶硅层203和p型非晶硅层201而保留侧壁的i型非晶硅层203和p型非晶硅层201,从而得到由内向外径向设置的n-i-p型非晶硅纳米线阵列层2。 
12)利用等离子体增强化学气相沉积技术,通入氧化锡铟工作气体,在SiO2绝缘层3表面沉积一层与非晶硅纳米线阵列层2等高的In2O3:Sn透明电极间隔层1。 
13)利用掩膜法在SiO2玻璃基底层背部沉积100nm厚的Ti、Pd或Ag作为背部金属反射层10。 
14)分别从In2O3:Sn透明电极间隔层1和ZnO:Al透明背部电极层8的侧面引出导线,作为阳极和阴极,即制备出单片非晶硅纳米线微晶硅薄膜双 结太阳能电池。 
将上述制备得到的太阳能电池阴极和阳极接入外部电路中,在一个标准模拟太阳光照射下,给系统加上0~2V的偏压,借助数字源表可测量出此电池的伏安特性曲线,从而可得到短路电流密度、开路电压和光电转换效率等电池性能参数。 
实施例2:其结构参见图1~图2所示,与实施例1的不同之处在于:i型非晶硅层203的厚度由200nm变为300nm,为实现上下结电池电流匹配,需要相应地增加底电池微晶硅薄膜层的厚度,其厚度为2000nm。此时,太阳光的吸收效率增加,电池的短路电流密度和开路电压增加,光电转换效率提高。 
实施例3:其结构参见图1~图2所示,与实施例1、2的不同之处在于:i型非晶硅层203的厚度由300nm变为400nm,为实现上下结电池电流匹配,需要相应地增加底电池微晶硅薄膜层的厚度,其厚度为3000nm,此时,太阳光的吸收效率增加,电池的短路电流密度和开路电压增加,光电转换效率提高。 
实施例4:其结构参见图1~图2所示,与实施例2的不同之处在于:透明电极间隔层的材料,由In2O3:Sn变为SnO2:F或ZnO:Al,电池性能基本不变。 
实施例5:其结构参见图1~图2所示,与实施例2的不同之处在于:透明背部电极层的材料,由ZnO:Al变为In2O3:Sn或SnO2:F,电池性能基本不变。 
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙事方式仅仅是为清楚可见,本领域技术人员应当将说明书作为一个整体,各实例中的技术方案也可以适当组合,形成本领域技术人员可以理解的其他实施方式。 

Claims (6)

1.一种非晶硅纳米线微晶硅薄膜双结太阳能电池,其特征在于,包括自下而上依次平行设置的金属反射层、基底层、透明背部电极层、微晶硅薄膜层、中间层、绝缘层和非晶硅纳米线阵列层,所述非晶硅纳米线阵列层包括多个垂直于所述绝缘层且间隔设置的非晶硅纳米线,所述非晶硅纳米线包括依次由外而内且径向设置的p型非晶硅层、i型非晶硅层、n型非晶硅核,所述绝缘层上设有多个与所述n型非晶硅核一一对应设置的纳米孔,所述n型非晶硅核向下延伸到其对应的纳米孔内部并与所述中间层的上表面接触,所述p型非晶硅层和所述i型非晶硅层设于所述绝缘层的上表面,同时在所述绝缘层未覆盖非晶硅纳米线区域填充有透明电极间隔层。
2.根据权利要求1所述的非晶硅纳米线微晶硅薄膜双结太阳能电池,其特征在于,
所述非晶硅纳米线的长度及所述透明电极间隔层的厚度均为200~400nm;
相邻非晶硅纳米线之间的轴心间距为500~1000nm;
所述非晶硅纳米线的直径为200~800nm,其中所述p型非晶硅层的厚度及所述n型非晶硅核的半径各为20~50nm。
3.根据权利要求1所述的非晶硅纳米线微晶硅薄膜双结太阳能电池,其特征在于,所述微晶硅薄膜层包括自下而上依次平行设置的n型微晶硅薄膜层、i型微晶硅薄膜层、p型微晶硅薄膜层。
4.根据权利要求3所述的非晶硅纳米线微晶硅薄膜双结太阳能电池,其特征在于,
所述微晶硅薄膜层的厚度为1500~3000nm,其中所述n型微晶硅薄膜层及所述p型微晶硅薄膜层的厚度各为10~30nm。
5.根据权利要求1所述的非晶硅纳米线微晶硅薄膜双结太阳能电池,其特征在于,
所述金属反射层的厚度为100~200nm;
所述基底层的厚度为300~3000μm;
所述透明背部电极层的厚度为50~100nm;
所述中间层的厚度为10~30nm;
所述绝缘层的厚度为10~30nm。
6.根据权利要求1至5所述的非晶硅纳米线微晶硅薄膜双结太阳能电池,其特征在于,
所述金属反射层为Ti、Pd或Ag金属反射层;
所述基底层为SiO2玻璃基底层;
所述透明背部电极层为In2O3:Sn、SnO2:F、ZnO:Al透明背部电极层;
所述中间层为ZnO中间层;
所述绝缘层为SiO2绝缘层;
所述透明电极间隔层为In2O3:Sn、SnO2:F、ZnO:Al透明电极间隔层。
CN201410240195.7A 2014-06-03 2014-06-03 一种非晶硅纳米线微晶硅薄膜双结太阳能电池 Pending CN104091850A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410240195.7A CN104091850A (zh) 2014-06-03 2014-06-03 一种非晶硅纳米线微晶硅薄膜双结太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410240195.7A CN104091850A (zh) 2014-06-03 2014-06-03 一种非晶硅纳米线微晶硅薄膜双结太阳能电池

Publications (1)

Publication Number Publication Date
CN104091850A true CN104091850A (zh) 2014-10-08

Family

ID=51639548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410240195.7A Pending CN104091850A (zh) 2014-06-03 2014-06-03 一种非晶硅纳米线微晶硅薄膜双结太阳能电池

Country Status (1)

Country Link
CN (1) CN104091850A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576802A (zh) * 2014-12-26 2015-04-29 电子科技大学 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221992A (zh) * 2007-01-11 2008-07-16 通用电气公司 多层膜-纳米线复合物、双面型和串联型太阳能电池
CN101369610A (zh) * 2008-09-23 2009-02-18 北京师范大学 一种新型结构硅纳米线太阳能电池
CN101777593A (zh) * 2010-01-20 2010-07-14 景德镇陶瓷学院 一种具有掺杂中间层结构的非晶/微晶硅叠层太阳电池及其制造方法
WO2013030935A1 (ja) * 2011-08-29 2013-03-07 株式会社日立製作所 太陽電池
US20130220406A1 (en) * 2012-02-27 2013-08-29 Sharp Kabushiki Kaisha Vertical junction solar cell structure and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221992A (zh) * 2007-01-11 2008-07-16 通用电气公司 多层膜-纳米线复合物、双面型和串联型太阳能电池
CN101369610A (zh) * 2008-09-23 2009-02-18 北京师范大学 一种新型结构硅纳米线太阳能电池
CN101777593A (zh) * 2010-01-20 2010-07-14 景德镇陶瓷学院 一种具有掺杂中间层结构的非晶/微晶硅叠层太阳电池及其制造方法
WO2013030935A1 (ja) * 2011-08-29 2013-03-07 株式会社日立製作所 太陽電池
US20130220406A1 (en) * 2012-02-27 2013-08-29 Sharp Kabushiki Kaisha Vertical junction solar cell structure and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576802A (zh) * 2014-12-26 2015-04-29 电子科技大学 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法

Similar Documents

Publication Publication Date Title
US8895350B2 (en) Methods for forming nanostructures and photovoltaic cells implementing same
US8435825B2 (en) Methods for fabrication of nanowall solar cells and optoelectronic devices
KR100876613B1 (ko) 탄뎀 박막 실리콘 태양전지 및 그 제조방법
US20180219115A1 (en) Semiconductor structures for fuel generation
CN102254963A (zh) 一种石墨烯/硅柱阵列肖特基结光伏电池及其制造方法
CN102184975A (zh) 一种能增加光电转换效率的薄膜太阳能电池及其制造方法
US20130174896A1 (en) Tandem solar cell using a silicon microwire array and amorphous silicon photovoltaic layer
US20130192663A1 (en) Single and multi-junction light and carrier collection management cells
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
CN104157724A (zh) 选择性纳米发射极太阳能电池及其制备方法
CN103985778B (zh) 具有选择性发射极的异质结太阳能电池及其制备方法
JP7109833B2 (ja) 半積層型フレキシブルシリコン系薄膜太陽電池、及びその製造方法
CN103078001A (zh) 硅基薄膜叠层太阳能电池的制造方法
CN102157596B (zh) 一种势垒型硅基薄膜半叠层太阳电池
CN111564505A (zh) 一种双本征层钝化的异质结太阳能电池及其制备方法
CN104064619B (zh) 一种微晶硅非晶硅径向双结纳米线太阳能电池
CN110416342A (zh) 一种基于金属纳米颗粒的hjt电池及其制备方法
CN104091850A (zh) 一种非晶硅纳米线微晶硅薄膜双结太阳能电池
CN102064212B (zh) 一种非晶硅薄膜太阳能电池及制备方法
CN203850312U (zh) 具有选择性发射极的异质结太阳能电池
CN103066153A (zh) 硅基薄膜叠层太阳能电池及其制造方法
CN103594535A (zh) 一种硅纳米线量子阱太阳能电池及其制备方法
CN102185037A (zh) 能提高光电转换效率的硅纳米柱太阳能电池及其制造方法
CN109309147B (zh) 一种n型单晶硅基太阳能电池及其制备方法
CN102130186A (zh) 基于iii-v族化合物半导体/硅纳米孔柱阵列的太阳能电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141008