CN104576802A - 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法 - Google Patents

基于硅薄膜和硅纳米线异质结的复合电池及其制备方法 Download PDF

Info

Publication number
CN104576802A
CN104576802A CN201410829968.5A CN201410829968A CN104576802A CN 104576802 A CN104576802 A CN 104576802A CN 201410829968 A CN201410829968 A CN 201410829968A CN 104576802 A CN104576802 A CN 104576802A
Authority
CN
China
Prior art keywords
silicon
membrane layer
layer
thin film
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410829968.5A
Other languages
English (en)
Inventor
王超
杨萍
姜晶
栾春红
梁莹林
高阳
张晨贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410829968.5A priority Critical patent/CN104576802A/zh
Publication of CN104576802A publication Critical patent/CN104576802A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种基于硅薄膜和硅纳米线异质结的复合电池及其制备方法,属于新能源太阳能电池技术领域。包括自下而上依次设置的衬底、n型硅薄膜层、第一本征硅薄膜层、第一p型硅薄膜层、n型硅纳米线阵列层、第二本征硅薄膜层、第二p型硅薄膜层和透明导电薄膜层,其中,所述n型硅薄膜层、第一本征硅薄膜层、第一p型硅薄膜层自下而上依次平行设置于衬底之上,所述n型硅纳米线阵列层中的硅纳米线垂直于所述第一p型硅薄膜层,所述第二本征硅薄膜层、第二型硅薄膜层和透明导电薄膜层自下而上依次覆盖所述n型硅纳米线阵列层。本发明提供的复合电池可同时提高电池的短路电流和开路电压,增加电池的转换效率,优化电池的性能。

Description

基于硅薄膜和硅纳米线异质结的复合电池及其制备方法
技术领域
本发明属于新能源太阳能电池技术领域,具体涉及一种基于硅薄膜和硅纳米线异质结的复合电池及其制备方法。
背景技术
随着传统能源的日益枯竭以及生态环境的逐渐恶化,绿色可再生能源是解决能源与环境危机的关键。太阳能作为地球上储备最丰富的能源之一,成为人类利用的首选的可再生能源,因此,如何获得低成本、高效率的太阳能电池得到了研究者的重视和关注。
太阳能电池是通过半导体p-n结的光生伏特效应直接把光能转化成电能的装置,目前,产业化的太阳能电池以晶体硅和各种薄膜电池为主。其中,硅薄膜由于其原材料消耗少、能耗低、制备工艺简单等优点而得到了快速的发展。近年来,具有半导体硅纳米线结构的太阳能电池引起了人们的广泛关注,由于其减反射以及强吸收的光学性质和高载流子迁移率的电学性质,使得硅纳米线结构已成为光伏材料的有力候选者。但是,由于硅纳米线比表面积大,由其形成的硅纳米线电池表面缺陷较多,使得单一的硅纳米线电池效率与预期仍然存在一定的差距。
发明内容
本发明针对背景技术存在的缺陷,提出了一种基于硅薄膜和硅纳米线异质结的复合电池,本发明提供的复合电池可同时提高电池的短路电流和开路电压,增加电池的转换效率,优化电池的性能。
一种基于硅薄膜和硅纳米线异质结的复合电池,其特征在于,包括自下而上依次设置的衬底1、n型硅薄膜层2、第一本征硅薄膜层3、第一p型硅薄膜层4、n型硅纳米线阵列层5、第二本征硅薄膜层6、第二p型硅薄膜层7和透明导电薄膜层8,其中,所述n型硅薄膜层2、第一本征硅薄膜层3、第一p型硅薄膜层4自下而上依次平行设置于衬底1之上,所述n型硅纳米线阵列层5中的硅纳米线垂直于所述第一p型硅薄膜层4,所述第二本征硅薄膜层6、第二p型硅薄膜层7和透明导电薄膜层8自下而上依次覆盖所述n型硅纳米线阵列层5。
进一步地,所述n型硅薄膜层2的厚度为20~25nm;
所述第一本征硅薄膜层3的厚度250nm~600nm;
所述第一p型硅薄膜层4的厚度10nm~20nm;
所述第二本征硅薄膜层6的厚度为400nm~700nm;
所述第二p型硅薄膜层7的厚度为15nm~25nm。
一种上述基于硅薄膜和硅纳米线异质结的复合电池的制备方法,包括以下步骤:
步骤1:采用等离子体增强化学气相沉积法(PECVD)在衬底1上依次沉积n型硅薄膜层2、第一本征硅薄膜层3、第一p型硅薄膜层4;
步骤2:在步骤1得到的样品表面采用磁控溅射法生长掺锡氧化铟薄膜或氧化锡薄膜;
步骤3:n型硅纳米线阵列层5的制备:采用等离子体增强化学气相沉积法,在反应腔室内通入氢气,对步骤2得到的样品进行H等离子体处理,得到生长硅纳米线的金属催化剂纳米颗粒(铟金属或锡金属);然后在氢气、硅烷和磷烷混合气体气氛下,采用等离子体增强化学气相沉积方法生长n型硅纳米线阵列层5;
步骤4:采用等离子体增强化学气相沉积法在步骤3得到的n型硅纳米线阵列层5表面依次沉积第二本征硅薄膜层6、第二p型硅薄膜层7,形成硅纳米线异质结结构;
步骤5:采用磁控溅射法在步骤4所得的样品表面生长掺锡氧化铟透明薄膜电极,即得到所述复合电池。
进一步地,上述步骤1中所述的衬底为导电玻璃或带导电膜的柔性衬底,所述在衬底上沉积n型硅薄膜层2采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气:硅烷:磷烷=60:(5~10):(0.05~0.1),反应腔室中功率密度为0.05W/cm2~0.2W/cm2,反应气体压力100Pa~300Pa,反应温度为100~300℃,反应时间为5min~10min,沉积得到的n型硅薄膜层2的厚度为20~25nm。
进一步地,上述步骤1中所述沉积第一本征硅薄膜层3采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气:硅烷=60:(5~10),反应腔室中的功率密度为0.03W/cm2~0.1W/cm2,反应气体压力为100Pa~250Pa,反应温度为100℃~250℃,反应时间为40min~80min,沉积得到的第一本征硅薄膜层3的厚度250nm~600nm。
进一步地,上述步骤1中所述沉积第一p型硅薄膜层4采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气:硅烷:硼烷=60∶(5~10)∶(0.02~0.1),反应腔室中的功率密度为0.8W/cm2~1W/cm2,反应气体压力为200Pa~700Pa,反应温度为60℃~120℃,反应时间为2min~6min,沉积得到的第一p型硅薄膜层4的厚度10nm~20nm。
进一步地,上述步骤3中所述沉积n型硅纳米线阵列层5采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气∶硅烷∶磷烷=60∶(5~10)∶(0.05~0.1)。
进一步地,上述步骤4中所述在硅纳米线阵列层5表面沉积第二本征硅薄膜层6采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气∶硅烷=60∶(5~10),反应腔室中的功率密度为0.01W/cm2~1.0W/cm2,反应气体压力为100Pa~300Pa,反应温度为100℃~250℃,反应时间为70min~120min,沉积得到的第二本征硅薄膜层6的厚度为400nm~700nm。
进一步地,上述步骤4中所述沉积第二p型硅薄膜层7采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气∶硅烷∶硼烷=60∶(5~10)∶(0.02~0.1),反应腔室中的功率密度为0.1W/cm2~1.0W/cm2,反应气体压力为200Pa~700Pa,反应温度为70℃~150℃,反应时间为2min~5min,沉积得到的第二p型硅薄膜层7的厚度为15nm~25nm。
本发明的有益效果为:本发明在nip硅薄膜电池的基础上再依次生长硅纳米线阵列和硅薄膜形成异质结电池,得到了基于硅薄膜和硅纳米线异质结的复合电池。本发明得到的复合电池可同时提高电池的短路电流和开路电压,能最大程度减小光反射,增强光吸收,提高电池的转换效率;且本发明得到的复合电池采用硅纳米线作为顶电池,可不用进行表面减反设计,极大地降低了电池成本,对太阳能电池的生产和推广利用带来了重要的意义。
附图说明
图1为本发明提供的基于硅薄膜和硅纳米线异质结的复合电池的结构示意图。
其中,1为衬底,2为n型硅薄膜层,3为第一本征硅薄膜层,4为第一p型硅薄膜层,5为n型硅纳米线阵列层,6为第二本征硅薄膜层,7为第二p型硅薄膜层,8为透明导电薄膜层。
具体实施方式
下面结合附图和实施例对本发明进行进一步地介绍。
如图1所示,本发明提供了一种基于硅薄膜和硅纳米线异质结的复合电池,包括自下而上设置的衬底1、n型硅薄膜层2、第一本征硅薄膜层3、第一p型硅薄膜层4、n型硅纳米线阵列层5、第二本征硅薄膜层6、第二p型硅薄膜层7和透明导电薄膜层8,其中,所述n型硅薄膜层2、第一本征硅薄膜层3、第一p型硅薄膜层4自下而上依次平行设置于衬底1之上,所述n型硅纳米线阵列层5中的硅纳米线垂直于所述第一p型硅薄膜层4,所述第二本征硅薄膜层6、第二p型硅薄膜层7和透明导电薄膜层8自下而上依次覆盖所述n型硅纳米线阵列层5。
其中,n型硅薄膜层2的厚度为20~25nm,第一本征硅薄膜层3的厚度为250nm~600nm,第一p型硅薄膜层4的厚度10nm~20nm,第二本征硅薄膜层6的厚度为400nm~700nm,第二p型硅薄膜层7的厚度为15nm~25nm。
本发明还提供了上述基于硅薄膜和硅纳米线异质结的复合电池的制备方法,包括以下步骤:
步骤1:将导电玻璃或带导电膜的柔性衬底在去离子水、乙醇中超声清洗3~5次,吹干后放入等离子体增强化学气相沉积系统的反应腔室内,对导电玻璃或带导电膜的柔性衬底在300℃下进行烘烤,烘烤完后抽真空至1×10-4Pa以上;
步骤2:n型硅薄膜层2的制备:首先采用H等离子体对衬底表面进行清洁;然后在氢气、硅烷、磷烷混合气体气氛下、功率密度为0.05W/cm2~0.2W/cm2、反应气体压力为100Pa~300Pa、反应温度为100℃~300℃条件下反应5min~10min,得到厚度为20nm~25nm的n型硅薄膜层2,其中氢气、硅烷、磷烷的体积比为60∶(5~10)∶(0.05~0.1);
步骤3:第一本征硅薄膜层3的制备:采用等离子体增强化学气相沉积法在步骤2得到的样品表面沉积第一本征硅薄膜层3,其中,反应气体及其体积比为氢气:硅烷=60:(5~10),反应腔室中的功率密度为0.03W/cm2~0.1W/cm2,反应气体压力为100Pa~250Pa,反应温度为100℃~250℃,反应时间为40min~80min,沉积得到的第一本征硅薄膜层3的厚度250nm~600nm;
步骤4:第一p型硅薄膜层4的制备:采用等离子体增强化学气相沉积法在步骤3得到的样品表面沉积第一p型硅薄膜层4,其中反应气体及其体积比为氢气:硅烷:硼烷=60∶(5~10)∶(0.02~0.1),反应腔室中的功率密度为0.8W/cm2~1W/cm2,反应气体压力为200Pa~700Pa,反应温度为60℃~120℃,反应时间为2min~6min,沉积得到的第一p型硅薄膜层4的厚度10nm~20nm;
步骤5:步骤4得到的样品冷却并取出后,采用磁控溅射法在样品表面沉积厚度为5~10nm的掺锡氧化铟薄膜;
步骤6:采用等离子体增强化学气相沉积法,在腔室内通入氢气,对掺锡氧化铟薄膜进行H等离子体处理,得到铟金属纳米颗粒,所述腔室中的功率密度为0.1W/cm2~1.0W/cm2,反应气体压力为100Pa~200Pa,反应温度为300℃~450℃,反应时间为5min~10min,得到的铟金属纳米颗粒的直径为10nm~300nm;然后在氢气、硅烷、磷烷混合气体气氛下,370℃~400℃温度下采用等离子体增强化学气相沉积法沉积n型硅纳米线阵列层5,其中,氢气、硅烷、磷烷的体积比为60:(5~10):(0.05~0.1),得到的n型硅纳米线的长度为1~5μm;
步骤7:第二本征硅薄膜6的制备:采用等离子体增强化学气相沉积法在步骤6得到的带硅纳米线阵列层5的样品表面沉积第二本征硅薄膜层6,其中,反应气体及其体积比为氢气∶硅烷=60∶(5~10),反应腔室中的功率密度为0.01W/cm2~1.0W/cm2,反应气体压力为100Pa~300Pa,反应温度为100℃~250℃,反应时间为70min~120min,沉积得到的第二本征硅薄膜层6的厚度为400nm~700nm;
步骤8:第二p型硅薄膜层7的制备:采用等离子体增强化学气相沉积法在步骤7得到的样品表面沉积第二p型硅薄膜层7,其中,反应气体及其体积比为氢气∶硅烷∶硼烷=60∶(5~10)∶(0.02~0.1),反应腔室中的功率密度为0.1W/cm2~1.0W/cm2,反应气体压力为200Pa~700Pa,反应温度为70℃~150℃,反应时间为2min~5min,沉积得到的第二p型硅薄膜层7的厚度为15nm~25nm;
步骤9:将步骤8得到的样品从腔室内取出,采用磁控溅射的方法在其上生长掺锡氧化铟透明薄膜电极,所述透明薄膜电极的厚度为300~500nm,即得到所述基于硅薄膜和硅纳米线异质结的复合电池。
上述步骤中使用的硅烷和氢气以体积百分比计纯度为99.99%,为反应气体;磷烷以体积百分比计纯度为1%(采用氢气稀释),硼烷以体积百分比计纯度为0.5%(用氢气稀释),磷烷和硼烷为掺杂气体;上述步骤中采用等离子体增强化学气相沉积法制备薄膜采用的设备为等离子体增强化学气相沉积系统(PECVD),包括反应腔室(装片室、掺杂室和本征室)、真空系统、衬底加热及温控系统、气路控制系统等。激发等离子体的射频电源的频率为13.56MHz或者为60MHz的甚高频。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于硅薄膜和硅纳米线异质结的复合电池,其特征在于,包括自下而上依次设置的衬底(1)、n型硅薄膜层(2)、第一本征硅薄膜层(3)、第一p型硅薄膜层(4)、n型硅纳米线阵列层(5)、第二本征硅薄膜层(6)、第二p型硅薄膜层(7)和透明导电薄膜层(8),其中,所述n型硅薄膜层(2)、第一本征硅薄膜层(3)、第一p型硅薄膜层(4)自下而上依次平行设置于衬底(1)之上,所述n型硅纳米线阵列层(5)中的硅纳米线垂直于所述第一p型硅薄膜层(4),所述第二本征硅薄膜层(6)、第二p型硅薄膜层(7)和透明导电薄膜层(8)自下而上依次覆盖所述n型硅纳米线阵列层(5)。
2.根据权利要求1所述的基于硅薄膜和硅纳米线异质结的复合电池,其特征在于,所述n型硅薄膜层(2)的厚度为20~25nm;所述第一本征硅薄膜层(3)的厚度250nm~600nm;所述第一p型硅薄膜层(4)的厚度10nm~20nm;所述第二本征硅薄膜层(6)的厚度为400nm~700nm;所述第二p型硅薄膜层(7)的厚度为15nm~25nm。
3.一种基于硅薄膜和硅纳米线异质结的复合电池的制备方法,包括以下步骤:
步骤1:采用等离子体增强化学气相沉积法在衬底上依次沉积n型硅薄膜层、第一本征硅薄膜层、第一p型硅薄膜层;
步骤2:在步骤1得到的样品表面采用磁控溅射法生长掺锡氧化铟薄膜或氧化锡薄膜;
步骤3:n型硅纳米线阵列层的制备:采用等离子体增强化学气相沉积法,在反应腔室内通入氢气,对步骤2得到的样品进行H等离子体处理,得到生长硅纳米线的金属催化剂纳米颗粒;然后在氢气、硅烷和磷烷混合气体气氛下,采用等离子体增强化学气相沉积方法生长n型硅纳米线阵列层;
步骤4:采用等离子体增强化学气相沉积法在步骤3得到的n型硅纳米线阵列层表面依次沉积第二本征硅薄膜层、第二p型硅薄膜层,形成硅纳米线异质结;
步骤5:采用磁控溅射法在步骤4所得的样品表面生长掺锡氧化铟透明薄膜电极,即得到所述复合电池。
4.根据权利要求3所述的基于硅薄膜和硅纳米线异质结的复合电池的制备方法,其特征在于,步骤1中所述的衬底为导电玻璃或带导电膜的柔性衬底,所述在衬底上沉积n型硅薄膜层采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气:硅烷:磷烷=60:(5~10):(0.05~0.1),反应腔室中功率密度为0.05W/cm2~0.2W/cm2,反应气体压力100Pa~300Pa,反应温度为100~300℃,反应时间为5min~10min,沉积得到的n型硅薄膜层的厚度为20~25nm。
5.根据权利要求3所述的基于硅薄膜和硅纳米线异质结的复合电池的制备方法,其特征在于,步骤1中所述沉积第一本征硅薄膜层采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气:硅烷=60:(5~10),反应腔室中的功率密度为0.03W/cm2~0.1W/cm2,反应气体压力为100Pa~250Pa,反应温度为100℃~250℃,反应时间为40min~80min,沉积得到的第一本征硅薄膜层的厚度250nm~600nm。
6.根据权利要求3所述的基于硅薄膜和硅纳米线异质结的复合电池的制备方法,其特征在于,步骤1中所述沉积第一p型硅薄膜层采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气:硅烷:硼烷=60∶(5~10)∶(0.02~0.1),反应腔室中的功率密度为0.8W/cm2~1W/cm2,反应气体压力为200Pa~700Pa,反应温度为60℃~120℃,反应时间为2min~6min,沉积得到的第一p型硅薄膜层的厚度10nm~20nm。
7.根据权利要求3所述的基于硅薄膜和硅纳米线异质结的复合电池的制备方法,其特征在于,步骤3中所述沉积n型硅纳米线阵列层采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气∶硅烷∶磷烷=60∶(5~10)∶(0.05~0.1)。
8.根据权利要求3所述的基于硅薄膜和硅纳米线异质结的复合电池的制备方法,其特征在于,步骤4中所述在硅纳米线阵列层表面沉积第二本征硅薄膜层采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气∶硅烷=60∶(5~10),反应腔室中的功率密度为0.01W/cm2~1.0W/cm2,反应气体压力为100Pa~300Pa,反应温度为100℃~250℃,反应时间为70min~120min,沉积得到的第二本征硅薄膜层的厚度为400nm~700nm。
9.根据权利要求3所述的基于硅薄膜和硅纳米线异质结的复合电池的制备方法,其特征在于,步骤4中所述沉积第二p型硅薄膜层采用的方法为等离子体增强化学气相沉积法,其中,反应气体及其体积比为氢气∶硅烷∶硼烷=60∶(5~10)∶(0.02~0.1),反应腔室中的功率密度为0.1W/cm2~1.0W/cm2,反应气体压力为200Pa~700Pa,反应温度为70℃~150℃,反应时间为2min~5min,沉积得到的第二p型硅薄膜层的厚度为15nm~25nm。
CN201410829968.5A 2014-12-26 2014-12-26 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法 Pending CN104576802A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410829968.5A CN104576802A (zh) 2014-12-26 2014-12-26 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410829968.5A CN104576802A (zh) 2014-12-26 2014-12-26 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法

Publications (1)

Publication Number Publication Date
CN104576802A true CN104576802A (zh) 2015-04-29

Family

ID=53092434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410829968.5A Pending CN104576802A (zh) 2014-12-26 2014-12-26 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104576802A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409653A (zh) * 2016-03-31 2017-02-15 兰州大学 硅纳米线阵列的制备方法
CN106960895A (zh) * 2017-05-15 2017-07-18 江苏康德蛋业有限公司 一种用于畜牧养殖设备的透光盖板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221992A (zh) * 2007-01-11 2008-07-16 通用电气公司 多层膜-纳米线复合物、双面型和串联型太阳能电池
CN102983215A (zh) * 2012-11-19 2013-03-20 中国科学院半导体研究所 具有硅纳米线结构的硅薄膜太阳能电池的制备方法
CN103489941A (zh) * 2013-09-25 2014-01-01 中国科学院半导体研究所 一种硅纳米线阵列结构硅薄膜太阳电池及其制备方法
CN104064619A (zh) * 2014-06-03 2014-09-24 苏州大学 一种微晶硅非晶硅径向双结纳米线太阳能电池
CN104091850A (zh) * 2014-06-03 2014-10-08 苏州大学 一种非晶硅纳米线微晶硅薄膜双结太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221992A (zh) * 2007-01-11 2008-07-16 通用电气公司 多层膜-纳米线复合物、双面型和串联型太阳能电池
CN102983215A (zh) * 2012-11-19 2013-03-20 中国科学院半导体研究所 具有硅纳米线结构的硅薄膜太阳能电池的制备方法
CN103489941A (zh) * 2013-09-25 2014-01-01 中国科学院半导体研究所 一种硅纳米线阵列结构硅薄膜太阳电池及其制备方法
CN104064619A (zh) * 2014-06-03 2014-09-24 苏州大学 一种微晶硅非晶硅径向双结纳米线太阳能电池
CN104091850A (zh) * 2014-06-03 2014-10-08 苏州大学 一种非晶硅纳米线微晶硅薄膜双结太阳能电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409653A (zh) * 2016-03-31 2017-02-15 兰州大学 硅纳米线阵列的制备方法
CN106409653B (zh) * 2016-03-31 2021-04-09 兰州大学 硅纳米线阵列的制备方法
CN106960895A (zh) * 2017-05-15 2017-07-18 江苏康德蛋业有限公司 一种用于畜牧养殖设备的透光盖板及其制备方法
CN106960895B (zh) * 2017-05-15 2018-08-28 江苏康德蛋业有限公司 一种用于畜牧养殖设备的透光盖板及其制备方法

Similar Documents

Publication Publication Date Title
CN103682153B (zh) 用于钙钛矿型有机卤化铅薄膜太阳能电池的金属‑绝缘层‑半导体背接触界面结构及其制备方法
CN104201287A (zh) 一种钙钛矿基柔性薄膜太阳能电池及其制备方法
CN102299206A (zh) 一种异质结太阳电池及其制备方法
CN110634961A (zh) 一种双面钝化背接触异质结太阳电池及其制作方法
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
Zeng et al. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si: H/c-Si heterojunction solar cells
CN103077981B (zh) 柔性衬底硅基多结叠层薄膜太阳电池及其制造方法
Kabongo et al. Advanced development of sustainable pecvd semitransparent photovoltaics: a review
CN104716261A (zh) 一种吸收光谱互补的硅薄膜/有机叠层薄膜太阳能电池
CN102983215A (zh) 具有硅纳米线结构的硅薄膜太阳能电池的制备方法
CN103137770B (zh) 一种石墨烯/Si p-n双结太阳能电池及其制备方法
CN207441751U (zh) 一种同质结钙钛矿薄膜太阳能电池
CN101393942B (zh) 多晶硅-碳化硅叠层薄膜太阳能电池
Marins et al. Flexible nip thin film silicon solar cells on polyimide foils with textured ZnO: Ga back reflector
CN104576802A (zh) 基于硅薄膜和硅纳米线异质结的复合电池及其制备方法
CN101800268A (zh) 一种改进非晶硅太阳电池性能的方法
CN107768523A (zh) 一种同质结钙钛矿薄膜太阳能电池及其制备方法
CN103489941A (zh) 一种硅纳米线阵列结构硅薄膜太阳电池及其制备方法
CN103107240B (zh) 多晶硅薄膜太阳能电池及其制作方法
CN217182188U (zh) 一种钙钛矿/钙钛矿/硅-锗基三结叠层太阳能电池
CN103972321B (zh) 一种纤维状硅基薄膜太阳电池及其制备方法
CN104064619A (zh) 一种微晶硅非晶硅径向双结纳米线太阳能电池
CN210156405U (zh) 具有氢退火tco导电膜的异质结电池结构
KR20110044442A (ko) 박막 태양전지용 투명전극 및 그의 제조방법
CN102437224A (zh) 一种带有介质层的肖特基结构的非晶硅薄膜电池及制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150429