CN104091842B - 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法 - Google Patents

分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法 Download PDF

Info

Publication number
CN104091842B
CN104091842B CN201410321813.0A CN201410321813A CN104091842B CN 104091842 B CN104091842 B CN 104091842B CN 201410321813 A CN201410321813 A CN 201410321813A CN 104091842 B CN104091842 B CN 104091842B
Authority
CN
China
Prior art keywords
electrode layer
boron
back side
silicon substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410321813.0A
Other languages
English (en)
Other versions
CN104091842A (zh
Inventor
陈奕峰
刘斌辉
董建文
皮尔·威灵顿
冯志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trina Solar Co Ltd
Original Assignee
Changzhou Trina Solar Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Trina Solar Energy Co Ltd filed Critical Changzhou Trina Solar Energy Co Ltd
Priority to CN201410321813.0A priority Critical patent/CN104091842B/zh
Publication of CN104091842A publication Critical patent/CN104091842A/zh
Application granted granted Critical
Publication of CN104091842B publication Critical patent/CN104091842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法,该电池包括硅衬底,在硅衬底正面设有N型掺杂区、N型掺杂区上设有正面减反钝化膜,硅衬底背面设有背面钝化膜,制备方法还包括以下步骤:在背面钝化膜上以分布式短线的图案将背面钝化膜局部去除,露出硅衬底,形成多个去除通道;然后局域印刷硼硅浆料以覆盖去除通道;随后分别印刷背面电极层和正面电极层,并烘干;然后进行高温烧结,去除通道内的硼硅浆料与硅衬底接触界面形成分布式的P型硼重掺杂区域,组成P型硼重掺杂层;并在高温烧结过程中,同时形成正面电极层和背面电极层。本发明不仅降低了太阳能电池背面的少子在接触界面的复合速率,有利于电池开路电压和转换效率的提升,而且降低了开膜面积,进一步降低了表面的复合速率。

Description

分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法
技术领域
本发明涉及一种分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法,属于太阳能电池制备技术领域。
背景技术
目前,晶体硅太阳电池局域铝背场是目前光伏行业的研究热点,被普遍认为是提高晶体硅电池转换效率的可大规模生产的技术。目前,常规的工艺是用AlOx/SiNx:H或者SiO2/SiNx:H叠层膜钝化背表面,以平行线的图案用激光或者化学腐蚀将背面膜打开,然后整面印刷铝浆。在高温过程中接触界面的铝与硅形成液态合金相,液态合金相在冷却过程中凝固,一部分硅原子在重结晶过程中被铝原子取代了在晶格中的位置,形成铝掺杂的局域背面场。
这种局域铝背场电池的局限在于:1、背面采用铝掺杂形成局部背场,掺杂浓度仅在1×1018cm-3量级,且掺杂深度较浅,无法防止少数载流子穿越局部背场到达金属接触的复合;2、背面掺杂占总体面积较大,减少了钝化膜的面积,导致额外的表面复合。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,它不仅降低了太阳能电池背面的少子在接触界面的复合速率,有利于电池开路电压和转换效率的提升,而且降低了开膜面积,进一步降低了表面的复合速率。
为了解决上述技术问题,本发明的技术方案是:一种分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,该电池包括硅衬底,在硅衬底正面设有N型掺杂区,N型掺杂区上设有正面减反钝化膜,硅衬底背面设有背面钝化膜,还包括以下步骤:
1)在背面钝化膜上以分布式短线的图案将背面钝化膜局部去除,露出硅衬底,形成多个去除通道;
2)然后局域印刷硼硅浆料以覆盖去除通道;
3)随后分别印刷背面电极层和正面电极层,并烘干;
4)然后进行高温烧结,去除通道内的硼硅浆料与硅衬底接触界面形成分布式的P型硼重掺杂区域;并在高温烧结过程中,同时形成正面电极层和背面电极层,正面减反钝化膜上未被正面电极层覆盖的区域形成正面感光区域,背面钝化膜上未被背面电极层覆盖的区域形成背面感光区域。
进一步提供了一种短线图形结构的具体尺寸,所述的去除通道的短线图形结构为:线宽为1~500μm,线长为0.1mm~100mm,在其宽度方向上,相邻的去除通道的线间距为0.1mm~10mm。
进一步为了使双面均能接收光线,从而增加背面收集光辐照的能力,提高本电池实际发电性能,所述的正面电极层包括呈交叉状态的正面主栅和正面细栅;所述的背面电极包括呈交叉状态的背面主栅和背面细栅,并且背面细栅与P型硼重掺杂层电性连接。
进一步提供了一种正面和背面感光区域的具体面积比例以满足收集光辐照的性能,所述的正面感光区域面积占正面总区域的90%~98%,所述的背面感光区域占背面总区域的30%~95%。
进一步,所述的P型硼重掺杂层的掺杂浓度为1×1017~2×1020cm-3,掺杂深度为0.1~15μm。
进一步,所述的背面电极层由银、铝、镍、锡中的一种或几种制成。
进一步,所述的正面电极层由银、铝、铜、镍、锡中的一种或几种制成。
本发明还提供了一种分布式局域硼掺杂的双面感光晶体硅太阳电池,该电池包括
一硅衬底,其具有一正面和一背面;
一N型掺杂区,其设在硅衬底的正面上;
一正面减反钝化膜,其设在N型掺杂区的上表面上;
一背面钝化膜,其设在硅衬底的背面上,并且其上开有多个去除通道,并且多个去除通道呈分布式短线阵列结构;
一正面电极层,其设在正面减反钝化膜上,并且与N型掺杂区接触,正面减反钝化膜上未被正面电极层覆盖的区域形成正面感光区域;
一背面电极层,其设在背面钝化膜上,并且背面钝化膜上未被背面电极层覆盖的区域形成背面感光区域;
一P型硼重掺杂层,其具有多个和去除通道对应的P型硼重掺杂区域,P型硼重掺杂区域呈分布式地设置,并且该P型硼重掺杂区域的上侧与硅衬底接触,下侧通过去除通道与背面电极层电性接触。
采用了上述技术方案后,本发明具有以下的有益效果:
(1)采用硼掺杂代替铝掺杂,极大地提高了掺杂浓度和掺杂深度,降低了少子在接触界面的复合,有利于电池开路电压和效率的提升。
(2)采用分布式短线的开膜代替常规的平行线图形,降低了开膜面积,降低了表面的复合速率。
(3)硼掺杂通过印刷硼硅浆料,在一次高温烧结中完成掺杂和电极制备,不需要长时间的硼扩散,工艺简单,便于产业化。
(4)正面和背面都采用主栅和细栅设计,双面都能接收光线,相对于常规背钝化电池增加了背面收集光辐照的能力,提高了电池的实际发电性能。
附图说明
图1为本发明的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法的流程图一;
图2为本发明的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法的流程图二;
图3为图2中的A部取样结构示意图;
图4为本发明的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法的流程图四。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。
实施例一
本实施例提供的一种分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,如图1所示,在P型的硅衬底3上,完成包括p-n结N区,即N型掺杂区2的制备,正面减反钝化膜1的沉积,以及背面钝化膜4的沉积之后,采用激光对背面钝化膜4局部去除,图形为分布线图案,如图2所示。短线的长度为2cm,宽度为60μm,沿短线方向的线与线中心之间的间距为2.2cm,在垂直短线方向,线与线中心之间的间距为700μm,激光去除之后露出硅衬底3,采用丝网印刷的方法在硅衬底3上印刷一层厚度为50μm,宽度为400μm的硼硅浆料,硼硅浆料覆盖去除通道,同时在正面和背面丝网印刷银浆和铝浆,经过800摄氏度高温烧结,烧结之后形成P型硼重掺杂区域6,背面电极层8和正面电极层7,其中背面电极8与P型硼重掺杂区域6连接,如图2所示,其背面俯视图如图4所示,在背面电极层8下面是P型硼重掺杂区域6,背面未被背面电极层8覆盖的区域也能接收光线,产生光生电流,提高器件收集辐照的能力。所述的硼硅浆料的主要成分包括硼和硅。
正面电极层7包括呈交叉状态的正面主栅和正面细栅;所述的背面电极层8包括呈交叉状态的背面主栅和背面细栅,并且背面细栅与P型硼重掺杂层电性连接。
背面电极层8由银、铝、镍、锡中的一种或几种制成,但不限于此。描述的几种制成指的是形成合金的方式。
正面电极层7由银、铝、铜、镍、锡中的一种或几种制成,但不限于此。
实施例二
本实施例提供的一种分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,如图1所示,在P型的硅片衬底3上,完成包括p-n结N区,即N型掺杂区2的制备,正面减反钝化膜1的沉积,以及背面钝化膜4的沉积之后,采用刻蚀浆料对背面钝化膜4局部去除,图形为分布线图案,如图2所示。短线的长度为0.5cm,宽度为55μm,沿短线方向的线与线中心之间的间距为1.2cm,在垂直短线方向,线与线中心之间的间距为600μm,激光去除之后露出硅衬底3上,采用丝网印刷的方法在硅衬底3上印刷一层厚度为30μm,宽度为200μm的硼硅浆料,浆料覆盖去除通道,同时在正面和背面丝网印刷银浆和铝浆,经过800摄氏度高温烧结,烧结之后形成P型硼重掺杂区域6,背面电极层8和正面电极层7,其中背面电极层8与P型硼重掺杂区域6连接,如图2所示。其背面俯视图如图4所示,在背面电极层8下面是P型硼重掺杂区域6,背面未被背面电极层8覆盖的区域也能接收光线,产生光生电流,提高器件收集辐照的能力。所述的硼硅浆料的主要成分包括硼和硅。
正面电极层7包括呈交叉状态的正面主栅和正面细栅;所述的背面电极层8包括呈交叉状态的背面主栅和背面细栅,并且背面细栅与P型硼重掺杂层电性连接。
背面电极层8由银、铝、镍、锡中的一种或几种制成,但不限于此。描述的几种制成指的是形成合金的方式。
正面电极层7由银、铝、铜、镍、锡中的一种或几种制成,但不限于此。
本发明的优点如下:
(1)采用硼掺杂代替铝掺杂,极大地提高了掺杂浓度和掺杂深度,降低了少子在接触界面的复合,有利于电池开路电压和效率的提升。
(2)采用分布式的开膜代替常规的平行线图形,降低了开膜面积,降低了表面的复合速率。
(3)硼掺杂通过印刷硼硅浆料,在一次高温烧结中完成掺杂和电极制备,不需要长时间的硼扩散,工艺简单,便于产业化。
(4)正面和背面都采用主栅和细栅设计,双面都能接收光线,相对于常规背钝化电池增加了背面收集光辐照的能力,提高了电池的实际发电性能。
以上所述的具体实施例,对本发明解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,该电池包括硅衬底(3),在硅衬底(3)正面设有N型掺杂区(2),N型掺杂区(2)上设有正面减反钝化膜(1),硅衬底(3)背面设有背面钝化膜(4),其特征在于,还包括以下步骤:
1)在背面钝化膜(4)上以分布式短线的图案将背面钝化膜(4)局部去除,露出硅衬底(3),形成多个去除通道;所述的去除通道的短线图形结构为:线宽为55~60μm,线长为0.1mm~100mm,在其宽度方向上,相邻的去除通道的线间距为100μm~700μm;
2)然后局域印刷硼硅浆料以覆盖去除通道;
3)随后分别印刷背面电极层(8)和正面电极层(7),并烘干;
4)然后进行高温烧结,去除通道内的硼硅浆料与硅衬底接触界面形成分布式的P型硼重掺杂区域(6);并在高温烧结过程中,同时形成正面电极层(7)和背面电极层(8),正面减反钝化膜(1)上未被正面电极层(7)覆盖的区域形成正面感光区域,背面钝化膜(4)上未被背面电极层(8)覆盖的区域形成背面感光区域;
所述的正面感光区域面积占正面总区域的90%~98%,所述的背面感光区域占背面总区域的30%~95%;
所述的P型硼重掺杂层的掺杂浓度为1×1017~2×1020cm-3,掺杂深度为0.1~15μm。
2.根据权利要求1所述的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,其特征在于:所述的正面电极层(7)包括呈交叉状态的正面主栅和正面细栅;所述的背面电极(8)包括呈交叉状态的背面主栅和背面细栅,并且背面细栅与P型硼重掺杂层电性连接。
3.根据权利要求1或2所述的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,其特征在于:所述的背面电极层(8)由银、铝、镍、锡中的一种或几种制成。
4.根据权利要求1或2所述的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,其特征在于:所述的正面电极层(7)由银、铝、铜、镍、锡中的一种或几种制成。
5.根据权利要求1所述的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法,其特征在于:所述的步骤2)中,采用激光销蚀法或浆料刻蚀法在背面钝化膜(4)上局部去除,露出硅衬底(3),形成多个去除通道。
6.一种如权利要求1至5中任一项所述的分布式局域硼掺杂的双面感光晶体硅太阳电池的制备方法中制备的分布式局域硼掺杂的双面感光晶体硅太阳电池,包括
一硅衬底(3),其具有一正面和一背面;
一N型掺杂区(2),其设在硅衬底(3)的正面上;
一正面减反钝化膜(1),其设在N型掺杂区(2)的上表面上;
一背面钝化膜(4),其设在硅衬底(3)的背面上;
其特征在于:
所述的背面钝化膜(4)上开有多个去除通道,并且多个去除通道呈分布式短线阵列结构;所述的去除通道的短线图形结构为:线宽为55~60μm,线长为0.1mm~100mm,在其宽度方向上,相邻的去除通道的线间距为100μm~700μm;
它还包括:
一正面电极层(7),其设在正面减反钝化膜(1)上,并且与N型掺杂区(2)接触,正面减反钝化膜(1)上未被正面电极层(7)覆盖的区域形成正面感光区域;
一背面电极层(8),其设在背面钝化膜(4)上,并且背面钝化膜(4)上未被背面电极层(8)覆盖的区域形成背面感光区域;
一P型硼重掺杂层,其具有多个和去除通道对应的P型硼重掺杂区域(6),P型硼重掺杂区域(6)呈分布式地设置,并且该P型硼重掺杂区域(6)的上侧与硅衬底(3)接触,下侧通过去除通道与背面电极层(8)电性接触;
所述的正面感光区域面积占正面总区域的90%~98%,所述的背面感光区域占背面总区域的30%~95%;
所述的P型硼重掺杂层的掺杂浓度为1×1017~2×1020cm-3,掺杂深度为0.1~15μm。
CN201410321813.0A 2014-07-07 2014-07-07 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法 Active CN104091842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410321813.0A CN104091842B (zh) 2014-07-07 2014-07-07 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410321813.0A CN104091842B (zh) 2014-07-07 2014-07-07 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN104091842A CN104091842A (zh) 2014-10-08
CN104091842B true CN104091842B (zh) 2017-02-15

Family

ID=51639540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410321813.0A Active CN104091842B (zh) 2014-07-07 2014-07-07 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104091842B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298984A (zh) * 2015-05-19 2017-01-04 茂迪股份有限公司 太阳能电池
CN104851925B (zh) * 2015-05-25 2017-12-01 苏州阿特斯阳光电力科技有限公司 一种局部背接触太阳能电池的背面开口结构
CN107046073A (zh) * 2016-12-30 2017-08-15 苏州阿特斯阳光电力科技有限公司 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池
CN106887477A (zh) * 2017-03-03 2017-06-23 广东爱康太阳能科技有限公司 P型perc双面太阳能电池及其制备方法、组件和系统
CN110148636A (zh) * 2018-11-27 2019-08-20 晶澳(扬州)太阳能科技有限公司 一种太阳能电池及其制备方法、光伏组件
CN110828584A (zh) * 2019-11-14 2020-02-21 通威太阳能(成都)有限公司 一种p型局部背表面场钝化双面太阳电池及其制备工艺
CN112054093A (zh) * 2020-08-31 2020-12-08 江苏润阳悦达光伏科技有限公司 一种改善perc电池背面接触的方法
CN114464700A (zh) * 2022-01-17 2022-05-10 常州时创能源股份有限公司 N型晶硅电池的选择性硼掺杂方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606597A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 局部掺杂背纯化晶体硅太阳能电池及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139458B1 (ko) * 2009-06-18 2012-04-30 엘지전자 주식회사 태양전지 및 그 제조방법
CN102832268A (zh) * 2012-09-10 2012-12-19 中国科学院半导体研究所 硼铝共掺背面场硅太阳能电池及其制备方法
CN103219416A (zh) * 2013-03-22 2013-07-24 中山大学 一种晶体硅太阳电池局域背表面场的制备方法
CN203967096U (zh) * 2014-07-07 2014-11-26 常州天合光能有限公司 分布式局域硼掺杂的双面感光晶体硅太阳电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606597A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 局部掺杂背纯化晶体硅太阳能电池及其制作方法

Also Published As

Publication number Publication date
CN104091842A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
CN104091842B (zh) 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法
JP3168227U (ja) 太陽電池の電極構造
CN109244194B (zh) 一种低成本p型全背电极晶硅太阳电池的制备方法
CN105870215A (zh) 一种背面钝化接触电池电极结构及其制备方法
US20100319768A1 (en) Thin-film solar cell and process for its manufacture
CN108735829A (zh) 能够提升背面光电转换效率的p型perc双面太阳能电池及其制备方法
CN209056507U (zh) 一种mwt异质结硅太阳电池
CN102903765B (zh) 一种全铝背场晶体硅电池及其制备方法
CN102610666A (zh) 金属绕穿型背接触太阳电池、制备方法及其组件
CN103117329B (zh) 异质结mwt电池及其制作方法、载片舟
CN102820343B (zh) 具有无发射极区的太阳能电池及其制备方法
CN108198903A (zh) 一种背面镀膜处理的mwt太阳能电池的制备方法
CN109461782A (zh) P型背接触型太阳能电池及其制作方法
CN105118874A (zh) 一种晶体硅太阳能电池及其制作方法
CN205564764U (zh) 一种背面钝化接触电池结构
CN105118891A (zh) 一种抗氧化正面电极太阳能电池及其制备方法
CN104681665A (zh) 一种新型背钝化太阳能电池的制备方法
CN107046070A (zh) 一种p型晶体硅电池结构及其制作方法
US8772079B2 (en) Backside contacting on thin layer photovoltaic cells
CN206864485U (zh) 一种p型晶体硅电池结构
CN203967096U (zh) 分布式局域硼掺杂的双面感光晶体硅太阳电池
CN103035771B (zh) N型mwt太阳能电池结构及其制造工艺
CN208507688U (zh) 能够提升背面光电转换效率的p型perc双面太阳能电池
CN210073868U (zh) 一种选择性增强正面钝化的perc太阳能电池
CN202996849U (zh) 一种全铝背场晶体硅电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Solar photovoltaic industry park Tianhe Road 213031 north of Jiangsu Province, Changzhou City, No. 2

Patentee after: TRINA SOLAR Co.,Ltd.

Address before: Solar photovoltaic industry park Tianhe Road 213031 north of Jiangsu Province, Changzhou City, No. 2

Patentee before: trina solar Ltd.

CP01 Change in the name or title of a patent holder
CP03 Change of name, title or address

Address after: Solar photovoltaic industry park Tianhe Road 213031 north of Jiangsu Province, Changzhou City, No. 2

Patentee after: trina solar Ltd.

Address before: Tianhe Electronic Industrial Park Road 213022 north of Jiangsu Province, Changzhou City, No. 2

Patentee before: CHANGZHOU TRINA SOLAR ENERGY Co.,Ltd.

CP03 Change of name, title or address