CN104066845A - 可溶性IGF受体Fc融合蛋白和其用途 - Google Patents

可溶性IGF受体Fc融合蛋白和其用途 Download PDF

Info

Publication number
CN104066845A
CN104066845A CN201280067765.6A CN201280067765A CN104066845A CN 104066845 A CN104066845 A CN 104066845A CN 201280067765 A CN201280067765 A CN 201280067765A CN 104066845 A CN104066845 A CN 104066845A
Authority
CN
China
Prior art keywords
fusion rotein
cancer
analogue
igf
bioactive fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280067765.6A
Other languages
English (en)
Inventor
P·布洛特
B·马西
T·苏黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McGill University
National Research Council of Canada
Original Assignee
McGill University
National Research Council of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McGill University, National Research Council of Canada filed Critical McGill University
Publication of CN104066845A publication Critical patent/CN104066845A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/179Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/72Receptors; Cell surface antigens; Cell surface determinants for hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)

Abstract

本文中描述了新型的可溶性IGF受体Fc融合蛋白以及其组合物和使用其治疗如癌症和转移等血管生成相关病症和恶性疾病的方法,其中所述融合蛋白特异性结合IGF-1或IGF-2。

Description

可溶性IGF受体Fc融合蛋白和其用途
相关申请
本申请要求2011年12月15日提交的美国临时申请号61/576,034的优先权,该申请的完整内容在此以引用的方式并入。
技术领域
本发明涉及新型的可溶性IGF受体Fc融合蛋白以及其组合物和使用其治疗癌症和转移的方法。
发明背景
I型类胰岛素生长因子的受体(IGF-IR)在恶性疾病的发展中起到关键的作用。有文件证明,在许多人恶性疾病中IGF-IR和/或其配体的表达增加,并且高血浆IGF-I水平被鉴别为恶性疾病如乳癌瘤、前列腺癌瘤及结肠癌瘤的潜在风险因素(Samani等,2007,Endocr Rev,28:20-47)。近期的数据已显示,IGF轴通过若干种机制促进肿瘤侵袭和转移,并且它已经被鉴别为向若干器官部位,特别是淋巴结和肝转移的决定性因素(Long等,1998,Exp Cell Res,238:116-121;Wei等,2006,Ann Surg Oncol,13:668-676;Samani等,2007,Endocr Rev,28:20-47;Reinmuth等,2002,Clin Cancer Res,8:3259-3269)。IGF受体可以通过调控继发部位中肿瘤细胞的存活和增殖,以及还通过经由直接作用于内皮细胞或对血管内皮生长因子(VEGF)A和C进行转录调控来促进血管生成和淋巴管生成来影响转移(评述于Li,S.等,Livermetastasis:Biology and Clinical Management2011;Brodt P.编辑:233-72中)。
IGF-IR配体包括三种在结构上同源的肽IGF-I、IGF-II及胰岛素,但该受体结合IGF-I的亲和力最高。内分泌产生IGF-I和IGF-II的主要部位是肝脏(Werner和Le Roith,2000,Cell Mol Life Sci57:932-942),但有文件证明在如心脏、肌肉、脂肪、脾脏及肾脏等肝外部位中会自分泌/旁分泌产生IGF-I。IGF-I和IGF-II的生理活性和生物可用性通过其与6种分泌的高亲和力结合蛋白(IGFBP1-6)的缔合来调节。
IGF-IR已经被验证为针对各种肿瘤类型的抗癌疗法的靶标。有多种IGF-IR抑制剂正处于临床或临床前开发中(参见例如,Zha,J.和Lackner,M.R.,Clinical Cancer Research2010;16:2512-7;Gualberto,A.和Pollak,M.,Oncogene2009;28:3009-21;及Li,S.等:Liver metastasis:Biology and Clinical Management2011;Brodt P.编辑:233-72)。然而,靶向体内的IGF-I系统面临若干挑战:首先,由于IGF-I与胰岛素受体之间的同源性程度较高,使得靶向IGF轴的药物也可能影响胰岛素受体/胰岛素轴,并且对葡萄糖和脂质代谢带来不希望的影响。事实上,已经观察到,高血糖是抗IGF-IR疗法的不希望的影响之一(Karp,D.D.等,J.Thorac.Oncol.2009;4:1397-403;Bruchim,I.等,ExpertOpinion on Therapeutic Targets2009;13:1179-92;Sachdev,D.和Yee,D.,Mol.Cancer Ther.2007;6:1-12;Rodon,J.等,Mol.Cancer Ther.2008;7:2575-88)。此外,抑制IGF-I信号传导可能导致血清生长激素水平改变,从而引起胰岛素不敏感,并且可能引起胰腺胰岛素产生减少和糖尿病(Zha,J.和Lackner,M.R.,Clinical Cancer Research2010;16:2512-7)。其次,使用基于抗体的疗法可能引起ADCC反应,从而导致如在一些试验中所观察到的血液学毒性(Reidy,D.L.等,Journal ofClinical Oncology;28:4240-6;Zha,J.和Lackner,M.R.,Clinical CancerResearch2010;16:2512-7)。另外,一些肿瘤也表达能够以高亲和力结合IGF-II的胰岛素受体的同种型A(IR-A),并且由此可以为IGF-IR已经被抗体治疗或激酶抑制剂中和的癌细胞提供一种替代性存活机制(Zha,J.和Lackner,M.R.,Clinical Cancer Research2010;16:2512-7)。
使用可溶性受体(诱饵(decoy))拮抗可溶性配体的活性以治疗恶性疾病已经被视为潜在的治疗性治疗并且已经成为针对一些病状的疗法的可接受的形式。诱饵受体可以通过结合配体并降低同源的膜结合受体的配体生物可用性来抑制后者受体的生物活性(Rudge等,2007,Proc Natl Acad Sci USA,104:18363-18370)。当前的实例包括可溶性TNF受体(Enbrel),该受体在临床上常常用于治疗炎症性病状(Richard-Miceli,C.和Dougados,M.,BioDrugs2001;15:251-9);以及VEGF-诱捕蛋白(Aflibercept),其正处于癌症和其它病状治疗的临床试验中(Rudge,J.S.等,Cold Spring Harbor Symposia on QuantitativeBiology2005;70:411-8)。这些试剂比基于抗体的疗法具有优势是因为其具有高度特异性,以高亲和力结合配体并且避免了具有脱靶活性的试剂的一些不希望的作用。
因此,可溶性IGF-I受体可以潜在地克服当前IGF靶向性药物的一些缺点,如例如与胰岛素系统的交叉反应、ADCC相关血液学毒性及胰岛素受体同种型A(IR-A)的补偿效应。
因此,特别希望提供一种用于治疗血管生成相关病症和恶性疾病(包括癌症和转移)的可溶性IGF-1受体。
发明概述
根据本发明的一个广泛方面,提供了包含抗体的Fc部分和可溶性IGF-IR蛋白的融合蛋白。该Fc部分可以来源于例如人IgG抗体,如IgG1或IgG2抗体。
在一个方面,本文提供的融合蛋白特异性地结合IGF-1和IGF-2。在一些实施方案中,融合蛋白以至少大致相同的亲和力结合IGF-1和IGF-2。在一些实施方案中,这些融合蛋白对胰岛素的亲和力是对IGF-1或IGF-2的亲和力的至少约1/1000。在一些实施方案中,这些融合蛋白与胰岛素的结合是不可检测的。
在一些实施方案中,本发明的融合蛋白的Fc部分包括经过修饰的Fc部分。在一个实施方案中,融合蛋白包含被修饰成去除了一个或多个Cys残基,例如一个或多个Cys残基被Ser残基置换的Fc结构域。在另一实施方案中,融合蛋白包含被修饰成11个氨基酸的连接子被更长、柔性更高的连接子(例如,22个氨基酸或37个氨基酸的柔性GS连接子)置换的Fc结构域。在一个实施方案中,融合蛋白包含被修饰成去除了一个或多个Cys残基(例如,一个或多个Cys残基被Ser残基置换)并且11个氨基酸的连接子被更长、柔性更高的连接子(例如,22个氨基酸或37个氨基酸的柔性GS连接子)置换的Fc结构域。在一些实施方案中,与未修饰的Fc结构域相比,具有经过修饰的Fc结构域的融合蛋白不产生HMW物质或产生减少量的HMW物质。
在一些实施方案中,可溶性IGF-IR蛋白包含或其组成为具有氨基酸序列SEQ ID NO:1或6的IGF-IR的细胞外结构域,或其生物活性片段或类似物。在其它实施方案中,可溶性IGF-IR蛋白包含或其组成为具有氨基酸序列SEQ ID NO:4的全长IGF-IR的细胞外结构域的氨基酸序列,或其生物活性片段或类似物。可溶性IGF-IR蛋白可以形成SEQ ID NO:1、4或6的四聚体结构。
在一些实施方案中,融合蛋白包含或其组成为SEQ ID NO:8(Fc-sIGFIR,IgG1)或SEQ ID NO:10(Fc-sIGFIR,IgG2)中所陈述的序列,或其生物活性片段或类似物。融合蛋白的生物活性片段或类似物可以与该融合蛋白具有例如至少70%、至少80%、至少90%、至少95%或至少98%的序列同一性。该生物活性片段或类似物还可以保持该融合蛋白的结合特异性。
在一些实施方案中,融合蛋白包含或其组成为SEQ ID NO:12(sIGF1R-hFc-IgG1Mod#1)、SEQ ID NO:14(sIGF1R-hFc-IgG1Mod#2)、SEQ ID NO:16(sIGF1R-hFc-IgG1Mod#3)、SEQ ID NO:18(sIGF1R-hFc-IgG1Mod#4)中陈述的序列,或其生物活性片段或类似物。融合蛋白的生物活性片段或类似物可以与该融合蛋白具有例如至少70%、至少80%、至少90%、至少95%或至少98%的序列同一性。该生物活性片段或类似物还可以保持该融合蛋白的结合特异性。
还提供了编码这些融合蛋白或其生物活性片段或类似物的核酸。举例来说,这些融合蛋白或其生物活性片段或类似物可以由具有SEQID NO:5、7或9中陈述的序列的核酸或其简并变体编码。在一个实施方案中,融合蛋白由具有SEQ ID NO:11、13、15或17中陈述的序列的核酸或其简并变体编码。在一个实施方案中,本文提供了与SEQ ID NO:5、7、9、11、13、15或17中陈述的序列具有至少70%、至少80%、至少90%、至少95%或至少98%的序列同一性的核酸。还提供了包含本文所描述的核酸的载体。
在其它方面,提供了药物组合物,这些药物组合物包含融合蛋白或其生物活性片段或类似物,和药学上可接受的载剂。
在又其它方面,提供了融合蛋白或其生物活性片段或类似物,或其组合物用于治疗受试者的血管生成相关病症或恶性疾病(如癌症或转移)的用途。举例来说,本发明的融合蛋白或组合物可以用于治疗肿瘤转移、结肠直肠癌瘤、肺癌瘤(lung carcinoma)、乳癌、肝癌、膀胱癌、肺癌(lung cancer)、胰腺癌、多发性骨髓瘤、多形性成胶质细胞瘤或肝转移。本文还提供了抑制患有血管生成相关病症(如肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、肝癌、膀胱癌、肺癌、胰腺癌、多发性骨髓瘤、多形性成胶质细胞瘤或肝转移)的受试者的血管生成的方法。本文还提供了用于预防或治疗癌症或肿瘤转移的方法和组合物。
在其它方面,提供了抑制患有血管生成相关病症的受试者的血管生成的方法,这些方法包括向所述受试者施用被遗传修饰成表达融合蛋白或其生物活性片段或类似物的自体细胞,例如树突细胞、肝细胞或基质细胞。自体细胞可以是例如基质细胞,例如骨髓源性间充质基质细胞。
在又另一方面,本文提供的方法另外包括施用融合蛋白或其生物活性片段或类似物,或其组合物,与另一血管生成抑制剂的组合和/或与一种或多种其它抗癌剂的组合。该两种或更多种药剂可以同时或依序施用。
在又另一方面,融合蛋白或生物活性片段或类似物,或其组合物经由注射(例如静脉内或腹膜内注射)施用。在另一方面,融合蛋白或生物活性片段或类似物,或其组合物口服施用。
在一个实施方案中,本文提供了一种包含抗体的Fc部分和可溶性IGF-IR蛋白的融合蛋白。在一个实施方案中,该融合蛋白包含抗体,该抗体是人IgG抗体。在一个实施方案中,该抗体是IgG1或IgG2抗体。在一个实施方案中,融合蛋白特异性地结合IGF-1和IGF-2。在一个实施方案中,融合蛋白以至少大致相同的亲和力结合IGF-1和IGF-2。在另一实施方案中,融合蛋白对IGF-2的亲和力高于融合蛋白对IGF-1的亲和力。在又另一实施方案中,融合蛋白对胰岛素的亲和力是融合蛋白对IGF-1或IGF-2的亲和力的至少约1/1000。在一个实施方案中,融合蛋白与胰岛素的结合是不可检测的。
在一个实施方案中,融合蛋白包含可溶性IGF-IR蛋白,该IGF-IR蛋白包含具有氨基酸序列SEQ ID NO:1或6的IGF-IR的细胞外结构域,或其生物活性片段或类似物。在一个实施方案中,可溶性IGF-IR蛋白形成SEQ ID NO:1或6的四聚体结构。在另一实施方案中,可溶性IGF-IR蛋白由SEQ ID NO:1或6,或其生物活性片段或类似物组成。在又一实施方案中,可溶性IGF-IR蛋白包含具有氨基酸序列SEQ ID NO:4的IGF-IR的细胞外结构域,或其生物活性片段或类似物。
在一个实施方案中,融合蛋白包含抗体的Fc部分和可溶性IGF-IR蛋白,其中该可溶性IGF-IR蛋白由SEQ ID NO:1或6,或其生物活性片段或类似物组成。
在一个实施方案中,融合蛋白包含SEQ ID NO:8或SEQ ID NO:10中所陈述的序列。在另一实施方案中,融合蛋白包含SEQ ID NO:12、14、16或18中所陈述的序列。在又另一实施方案中,本文提供了一种由SEQ ID NO:8、10、12、14、16或18中所陈述的序列组成的融合蛋白。在另一实施方案中,本文提供了一种融合蛋白,该融合蛋白包含由SEQ ID NO:7、9、11、13、15或17中所陈述的核酸,或其简并变体所编码的氨基酸序列。在又另一实施方案中,本文提供了一种由SEQ ID NO:7、9、11、13、15或17中所陈述的核酸,或其简并变体所编码的氨基酸序列组成的融合蛋白。
附图简述
已由此大体上描述了本发明的性质,现将参见借助于说明显示的附图、其优选实施方案,并且在附图中:
图1示出了用以鉴别sIGF1R(诱捕蛋白D(Trap D))和Fc-sIGF1R(诱捕蛋白E)的最佳产生者(producer)的稳定转导的细胞系的CHO池(pool)的亚克隆。分离出CHO细胞池的三个亚克隆:CHO-Cum2-CR5-IGF1R-9-33-1-6;CHO-Cum2-CR5-IGF1R-10-48-2-5;及CHO-Cum2-CR5-IGF1R-hFc-16-13-1-6。对于每一亚克隆,将600,000个细胞/毫升在37℃下培养2天并在300℃下培养7天。通过变性、非还原性SDS-PAGE(12μl/泳道,Tris-甘氨酸10%TG1.5)对样品进行分析。所示泳道如下:1:IGF1R-9-33-1-6池;2:IGF1R-9-33-1-6克隆#5;3:IGF1R-9-33-1-6克隆#6;4:IGF1R-9-33-1-6克隆#10;5:IGF1R-10-48-2-5池;6:IGF1R-10-48-2-5克隆#5;7:IGF1R-10-48-2-5克隆#8;8:IGF1R-10-48-2-5克隆#12;9:IGF1R-hFc-16-13-1-6池;10:IGF1R-hFc-16-13-1-6克隆#4;11:IGF1R-hFc-16-13-1-6克隆#5;12:IGF1R-hFc-16-13-1-6克隆#7。
图2示出了使用钙羟磷灰石(calcium hydroxyapatite,CHT)柱随后凝胶过滤进行的sIGF1R(诱捕蛋白D)的纯化。对于羟磷灰石柱,将170ml的400倍浓缩并经过渗滤的sIGF1R上样到25ml的CHT柱上。通过变性、非还原性SDS-PAGE(Tris-甘氨酸10%TG1.5)对样品进行分析。SDS-PAGE示于(A)中。泳道1-9中的样品来自CHT柱,并且泳道10-17中的样品来自凝胶过滤柱,第3轮至第4轮,如所示。所示泳道如下:1:进料(未浓缩的),5μg/泳道;2:透过物;3:进料(浓缩的);4:穿柱液(Flow-through),0至115ml;5:穿柱液+追踪液(chase);6:池A2-A7,15%B1;7:池A3-A5,15%B1;8:池A10-B1,20%B1;9:池B3-B7,100%B2(CIP);10:高分子量标准(详情示于该图的B部分中);11:第3轮A6(5μg);12:第3轮A7(5μg);13:第3轮A10(在范围外);14:第4轮A6(5μg);15:第4轮A7(5μg);16:第4轮A11(在范围外);17:纯化的IGF1R-CHT-GF,2.6μg。分子量标准详细示于(B)中。字母和数字(A2-A7、B1、A3-A5、A10-B1、B3-B7、B2)是指从各柱收集的组分;字母和数字指示试管在组分收集器架上的位置。
图3示出了使用钙羟磷灰石(CHT)柱随后凝胶过滤进行的Fc(IgG1)-sIGF1R(诱捕蛋白E)的纯化。通过变性、非还原性SDS-PAGE(Tris-甘氨酸10%TG1.5)对样品进行分析。SDS-PAGE示于(A)中。泳道1-5中的样品来自CHT柱并且泳道6-15中的样品来自凝胶过滤柱。所示泳道如下:1:A9-A12;2:B1-B6;B7-C1;4:C10-D3;5:E5-E8;6:进料(5μl);7:进料(2μl);8:A9-A10;9:A11-A12;10:B1-B3;11:B6;12:B8-B9;13:B10-B11;14:B12-C1;及15:纯化的IGF1R-CHT-hFc-GF,2.6μg。红色箭头指示Fc-sIGFIR四聚体的预期位置;HMW:高分子量标准。分子量标准详细示于(B)中。字母和数字(A9-A12、B1-B6、B7-C1、C10-D3、E5-E8等)是指从各柱收集的组分;字母和数字指示试管在组分收集器架上的位置。
图4示出了使用蛋白质A色谱法进行的Fc(IgG1)-sIGF1R(诱捕蛋白F和G)的纯化。通过变性、非还原性SDS-PAGE(Tris-甘氨酸4-20%TG1.5)对样品进行分析。SDS-PAGE示于(A)中。泳道1至4中的样品来自诱捕蛋白F的纯化(在pH4下洗脱),泳道1:2μl;泳道2:1μl;泳道3:0.5μl;泳道4:0.25μl/泳道;泳道HMW:高分子量标准。泳道5至8中的样品来自诱捕蛋白G的纯化(在pH3.5下洗脱),泳道5:1μl;泳道6:0.5μl;泳道7:0.25μl;泳道8:0.125μl/泳道。泳道9至14中的样品示出了IgG2(从Sigma购得),泳道9:3μg;泳道10:2μg;泳道11:1μg;泳道12:0.5μg;泳道13:0.25μg;泳道14:0.125μg。红色箭头指示Fc-sIGFIR四聚体的预期位置;黑色箭头指示高分子量(HMW)物质。
图5示出了使用蛋白质A色谱法进行的无内毒素Fc(IgG1)-sIGF1R(诱捕蛋白H和I)的纯化。通过变性、非还原性SDS-PAGE(Tris-甘氨酸4-20%TG1.5)对样品进行分析。SDS-PAGE示于(A)中。每泳道上样14μl。泳道5至8中的样品来自诱捕蛋白H的纯化(在pH4下洗脱)。泳道9至12中的样品来自诱捕蛋白I的纯化(在pH3.5下洗脱)。泳道1:进料;泳道X:无上样;泳道2:穿柱液(F.T.);泳道3:A1-A2;泳道4:A3-A4;泳道5:A6-A7;泳道6:A8-A10;泳道7:A11-A12;泳道8:B1-B2;泳道9:B3-B4;泳道10:B5-B6;泳道11:B7-B10;泳道12:B11-B12。红色箭头指示Fc-sIGFIR四聚体的预期位置。字母和数字(A1-A2、A3-A4、A6-A7、A8-A10、A11-A12、B1-B2等)是指从各柱收集的组分;字母和数字指示试管在洗脱份收集器架上的位置。
图6示出了用于制备本发明的诱捕蛋白的载体的示意图。sIGF1R序列被插入如(A)中所示的pMPG-CR5载体中,并且与人IgG1Fc或IgG2Fc融合的sIGF1R序列分别被插入如(B)和(C)中所示的pMPG-CR5载体中。使用这些载体在CHO细胞中瞬时或稳定表达诱捕蛋白。
图7示出了通过质谱法进行的sIGF1R与sIGF1R-hFc的最主要糖肽的比较。在(A)中,相对百分比是指在每一糖基化位点处所连接的糖的类型;位点4、5、7、8、12、15及16是这些肽中的糖基化位点;实心柱表示sIGF-IR(诱捕蛋白D);带交叉影线的柱表示sIGF-IR-hFc(诱捕蛋白E);并且彩色柱表示糖基化的性质,如(B)中的图例所示。
图8显示诱捕蛋白D和E响应hIGF-I而同等地抑制肿瘤细胞增殖。(A)示出了OD随时间变化的曲线,其中使用了10ng/mL IGF-I;(B)示出了OD随时间变化的曲线,其中使用了50ng/mL IGF-I。◆指示IGFI;■指示sIGF-IR(诱捕蛋白D)+IGFI;▲指示sIGF-IR-hFc(诱捕蛋白E)+IGFI;并且****指示在所测试的所有时间点时p<0.001。
图9显示在诱捕蛋白D存在下失巢凋亡(脱离诱导的细胞凋亡)以剂量依赖性方式增加。FBS:胎牛血清;SF:无血清;“IGF-I:TrapD”是IGF-I与诱捕蛋白D的摩尔比,如所示,该摩尔比为2:1、1:1或1:2;*指示p<0.05;**指示p<0.01;并且****指示p<0.001。
图10显示在诱捕蛋白D和E存在下失巢凋亡(脱离诱导的细胞凋亡)以剂量依赖性方式增加以及诱捕蛋白D与E之间的比较。FBS:胎牛血清;SF:无血清;比率为IGF-I:sIGFIR的摩尔比(如所示,2:1、1:1或1:2);*指示p<0.05;**指示p<0.01;并且****指示p<0.001。这些数据说明了诱捕蛋白E(Fc-sIGFIR)的优良性能。
图11显示在IGF-诱捕蛋白E、F及G存在下失巢凋亡增加,说明了蛋白质A纯化的作用。FBS:胎牛血清;SF:无血清;IGF-I:诱捕蛋白的摩尔比是如图所示;****指示p<0.001。
图12显示在诱捕蛋白D和E存在下不依赖于锚着(anchorage-independent)的生长减少,及诱捕蛋白D与E之间的比较。在(A)中显示了集落数量在诱捕蛋白存在下显著减少;*指示p<0.05;在所测试的所有条件下,p<0.01。彩色指示所测试的蛋白质,如(B)中所示的图例所指示。这些数据说明了Fc融合蛋白的优良性能。
图13示出了指示诱捕蛋白D和E对肿瘤细胞侵袭的影响的时程分析,及诱捕蛋白D与E之间的比较。蓝色线(◆)表示基线(无IGF-I);粉色线(■)指示在IGF-I存在下的侵袭;绿色线(▲)指示诱捕蛋白D;并且红色线(●)指示诱捕蛋白E。
图14显示在(A)中,在48小时时,诱捕蛋白D、E、F及G对肿瘤细胞侵袭的影响;****指示p<0.0005。(B)显示了有关诱捕蛋白D、E、F及G对肿瘤细胞侵袭的影响的时程分析:蓝色线(◆)为IGF-I;绿色线(■)为基线(无IGF-I);浅褐色线(◆)为诱捕蛋白D;深绿色线(▲)为诱捕蛋白E;红色线(■)为诱捕蛋白F;浅蓝色线(●)为诱捕蛋白G。
图15显示在(A)中,在48小时时,诱捕蛋白E、H和I对肿瘤细胞侵袭的影响,说明了诱捕蛋白E在蛋白质A纯化之前与之后的比较;****指示p<0.001。(B)显示有关诱捕蛋白E、H及I对肿瘤细胞侵袭的影响的时程分析:蓝色线(◆)为IGF-I;粉色线(■)为诱捕蛋白E;绿色线(■)为诱捕蛋白H;红色线(■)为诱捕蛋白I;并且橙色线(■)为基线(无IGF-I)。
图16示出有关多循环SPR滴定的曲线拟合。示出了有关hIGF-I(0–66nM;2倍连续稀释液)与胺偶合的诱捕蛋白B(9500RU)相结合的实验数据(彩色实线)与“1:1动力学”模型(全局拟合,黑色虚线)的代表性分析。
图17示出有关单循环SPR滴定的曲线拟合。示出了有关mIGF-I(绿色)、hIGF-I(红色)及hIGF-II(蓝色)与胺偶合的诱捕蛋白E(6400RU)相结合的实验数据(彩色实线,0-530nM,2倍连续稀释液)与“1:1滴定”模型(局部拟合,黑色虚线)的代表性分析。
图18示出了诱捕蛋白D和E的药代动力学分析,表明Fc-sIGF1R(诱捕蛋白E)的半衰期相较于sIGF1R(诱捕蛋白D)有大于2倍增加。诱捕蛋白D示于(A)中;诱捕蛋白E示于(B)中;红色圆圈表示观测值;并且蓝色线显示预测值。
图19示出了诱捕蛋白D、E、H及I的药代动力学分析,表明蛋白质A纯化的富含HMW物质的Fc-sIGFIR的体内性能较差。诱捕蛋白D示于(A)中;诱捕蛋白E示于(B)中;诱捕蛋白H(pH4.0)示于(C)中;并且诱捕蛋白I(pH3.5)示于(D)中。红色圆圈表示观测值,并且蓝色线显示预测值。
图20显示在接种结肠癌MC-38细胞并且用IGF-诱捕蛋白H处理的小鼠体内肿瘤体积减小。示出了在肿瘤注射后19天,来源于注射结肠癌MC-38的小鼠的肝脏的代表性H&E染色、福尔马林(formalin)固定并且石蜡包埋的切片。顶图:来自未用IGF-诱捕蛋白H处理的小鼠的肝脏(未处理);底图:来自用IGF-诱捕蛋白H处理的小鼠的肝脏(诱捕蛋白处理);L指示肝脏;T指示肿瘤;放大倍率x20-50,插图-x400。顶图中的最右边的图示出了所指示的转移的放大图(X400)。
图21显示微转移中IGF-IR磷酸化减少。向C57BL6雌性小鼠脾内注射105个GFP标记的H-59细胞,随后在肿瘤注射后第1天和第3天注射5mg/kg IGF-诱捕蛋白H(诱捕蛋白处理)或仅媒介物(未处理)(每组3只小鼠)。第6天处死小鼠,取出肝脏并快速冷冻,并制备10μM的冷冻切片,并依序用兔多克隆抗小鼠pIGF1R抗体和山羊抗兔Alexa Fluor647(远红光)抗体进行免疫染色。洗涤切片并用GOLD防褪色试剂封片,并且用Carl Zeiss LSM510Meta共聚焦显微镜进行分析。在(A)中,示出了代表性合并的共聚焦图像,如下:A.来自未处理的小鼠的切片;B.来自诱捕蛋白处理的小鼠的切片;绿色荧光蛋白(GFP)以绿色示出;DAPI染色以蓝色示出;pIGF1R以白色示出;图像是在X200放大倍率下取得。在(B)中,示出了每一组(未处理或5mg/Kg诱捕蛋白处理,如所示)中pIGF-IR+绿色荧光肿瘤细胞百分比的经计算平均值;P<0.001。
图22显示在IGF-诱捕蛋白H处理的小鼠中肿瘤细胞凋亡增加。如以上关于图21所描述来获得肝脏冷冻切片。首先将切片与兔多克隆抗小鼠裂解的半胱天冬酶-3抗体(ab4501-Abcam)一起培育,接着将其与山羊抗兔Alexa Fluor647抗体一起培育。在(A)中,示出了代表性合并的共聚焦图像,如下:a.来自未处理的小鼠的切片(未处理);b.来自诱捕蛋白处理的小鼠的切片(IGF-诱捕蛋白处理);绿色荧光蛋白(GFP)以绿色示出;DAPI染色以蓝色示出;裂解的半胱天冬酶3+细胞以红色示出;图像是在X200放大倍率下取得。在(B)中,示出了每一组(未处理或5mg/Kg诱捕蛋白处理,如所示)中裂解的半胱天冬酶3+绿色荧光肿瘤细胞百分比的经计算平均值;P<0.001。
图23显示在IGF-诱捕蛋白H处理的小鼠中肿瘤细胞增殖减少。如以上关于图21所描述来获得肝脏冷冻切片。首先将切片与兔多克隆抗小鼠Ki67抗体一起培育,接着将其与山羊抗兔Alexa Fluor647抗体一起培育。对呈Ki67阳性(增殖标记)的GFP+肿瘤细胞的百分比进行计算。在(A)中,示出了代表性合并的共聚焦图像,如下:左图:来自未处理小鼠的切片(未处理);右图:来自诱捕蛋白处理的小鼠的切片(IGF-诱捕蛋白处理);绿色荧光蛋白(GFP)以绿色示出;Ki67阳性细胞以红色示出;图像是在X200放大倍率下取得。在(B)中,示出了每一组(未处理或5mg/Kg诱捕蛋白处理,如所示)中Ki67+绿色荧光肿瘤细胞百分比的经计算平均值;p=0.0012。
图24显示在注射IGF-诱捕蛋白H的小鼠中血管计数(血管生成)减少。如以上关于图21所描述来获得肝脏冷冻切片。首先将切片与大鼠单克隆抗小鼠CD31抗体一起培育,接着将其与山羊抗大鼠AlexaFluor568(橙红色)抗体一起培育。在每个治疗组16个切片中对每一视野(20X物镜)的肿瘤微转移内的CD31+内皮细胞的数量进行计数,并计算平均数量。在(A)中,示出了代表性合并的共聚焦图像,如下:A.来自未处理的小鼠的切片(未处理);B.来自诱捕蛋白处理的小鼠的切片(IGF-诱捕蛋白处理);绿色荧光蛋白(GFP)以绿色示出;DAPI染色以蓝色示出;CD31+细胞以红色示出;图像是在X200放大倍率下取得。在(B)中,示出了每一组(未处理或5mg/Kg IGF-诱捕蛋白处理,如所示)中每一视野的CD31+细胞的经计算平均值;p=0.0057。
图25显示在原位鼠乳癌(4T1)模型中肿瘤生长减少及动物存活率增加。向Balb/c雌性小鼠的乳房脂肪垫(MFP)中注射105个小鼠乳癌4T1细胞。4小时和3天之后,对处理组静脉内(i.v.)注射10mg/kg的IGF-诱捕蛋白H,随后在肿瘤接种之后第6天和第10天2次注射5mg/kg(如部分(A)中以箭头指示)。使用卡尺每周三次测量肿瘤,并使用公式1/2(长度×宽度2)计算肿瘤体积。在(A)中,示出了未处理小鼠(对照)或用IGF-诱捕蛋白处理的小鼠(IGF-诱捕蛋白)的肿瘤体积(mm3)随肿瘤接种后天数的变化的曲线图,如所示。在(B)中,示出了对照或IGF-诱捕蛋白处理的小鼠存活率随肿瘤接种后天数的变化的曲线,如所示;使用Mantel-Cox测试和Gehan-Breslow-Wilcoxon测试,p<0.01。
图26显示在原位植入人乳癌细胞的IGF-诱捕蛋白处理的小鼠中肿瘤生长的抑制。在nu/nu小鼠的乳房脂肪垫中以Matrigel原位植入一百万个MD-MBA-231人乳癌细胞。使用卡尺每周三次测量肿瘤,并使用公式1/2(长度×宽度2)计算肿瘤体积。当产生肿瘤(50-100mm3)(第11天,如部分(A)中以箭头指示的),对动物进行随机分组,并每周两次用5mg/kg IGF-诱捕蛋白H或媒介物(静脉内)处理,直到第33天。对照组中的小鼠在第44天时都处于濒死状态(如部分(A)中以虚线指示的)。在(A)中,示出了未处理小鼠(对照)或用IGF-诱捕蛋白处理的小鼠(IGF-诱捕蛋白处理)的肿瘤体积(mm3)随肿瘤接种后天数的变化的曲线图,如所示。在(B)中,示出了纵向生物发光图像;该图像被用于监测肿瘤。生物发光的色标示于图(B)的左侧,并且示出了在肿瘤接种后的指定日的小鼠;左图示出了未处理的小鼠并且右图示出了诱捕蛋白处理的小鼠。对于对照小鼠(未处理;黑色线)和诱捕蛋白处理(红色线)小鼠的生物发光进行定量并示于(C)中。测量值的单位p/sec/cm2/sr代表每秒每cm2/球面度的光子数。
图27示出了用作设计经过修饰的sIGF1R-ed-Fc构建体的模板的分子模型。IR-ed以及Fc与FcgRIII-ed的复合物的晶体结构是由PDB(括号中给出的编码)重新得到。左侧的图像显示,在构建体Mod#2和Mod#3中利用的22个氨基酸的柔性连接子(白色线)足够长以允许Fc片段(蓝绿色/绿色条带)进行分子内配对,并且还允许结合FcgRIII-ed(表面重建)。右侧的图像关于使用铰链截短型式的Fc的经过修饰的变体蛋白质Mod#4的27个氨基酸的连接子说明了相同概念。
图28示出了所设计的sIGF1R-ed-Fc修饰的变体蛋白质的示意性描绘。基于与人IgG Fc片段融合的胰岛素生长激素的序列模型,设计并产生在sIGF1R和IgG1序列的接点中的具有不同修饰的4种新构建体。这些修饰如下:(1):核心铰链中的两个半胱氨酸被丝氨酸取代(称为sIGF1R-hFc-IgG1-Mod#1);(2):11个氨基酸的克隆人造序列被22个氨基酸的柔性连接子置换(称为sIGF1R-hFc-IgG1-Mod#2);(3):1与2的组合(称为sIGF1R-hFc-IgG1-Mod#3);及(4):11个氨基酸的克隆人造序列、上部铰链及核心铰链的前3个氨基酸(包括第一个半胱氨酸)被27个氨基酸的柔性连接子置换(称为sIGF1R-hFc-IgG1-Mod#4)。
图29示出了融合蛋白的SDS-PAGE分析。在变性和非还原条件下,用SDS-PAGE分离5μg(泳道1至6)和10μg(泳道8至13)的每种亲本sIGF1R-hFc-IgG1蛋白和经过修饰的sIGF1R-hFc-IgG1蛋白。泳道1和8:通过羟磷灰石色谱法随后凝胶过滤来纯化的sIGF1R-hFc-IgG1(亲本构建体,诱捕蛋白H);泳道2和9:通过蛋白质A纯化的sIGF1R-hFc-IgG1(亲本构建体,诱捕蛋白H);泳道3和10:通过蛋白质A纯化的sIGF1R-hFc-IgG-Mod#1;泳道4和11:通过蛋白质A纯化的sIGF1R-hFc-IgG1-Mod#2;泳道5和12:通过蛋白质A纯化的sIGF1R-hFc-IgG1-Mod#3;泳道6和13:通过蛋白质A纯化的sIGF1R-hFc-IgG1-Mod#4;泳道7:Hi-Mark未染色的HMW蛋白质标准品(InVitrogen);泳道14:Precision Plus ProteinTM未染色的标准品(BioRad)。
图30示出了对细胞中表达的所设计的经过修饰的sIGF1R-hFc-IgG1蛋白的蛋白质印迹分析(Western blot analysis)。在变性和非还原条件下,在SDS-PAGE上分离CHO-BRI-rcTA-IGF1R-hFc-IgG1-Mod#1(泳道2、7和12)、Mod#2(泳道3、8和13)、Mod#3(泳道4、9和14)及Mod#4(泳道5、10和15)的20ml上清液。用抗α链抗体(泳道1-5)、抗β链抗体(泳道6-10)或抗Fc抗体(泳道11-15)探测膜印迹。泳道1、6和11:Ez-Run预染的Rec蛋白梯(Fisher)。应注意,β+Fc为约80-90kD;Fc+β+α为约210-220kD(单体);并且Fc+β+α+α+β+Fc为约420-440kD(均二聚体)。
图31示出了融合蛋白的蛋白质印迹分析。在变性和非还原条件(泳道1-7和9-15)或还原条件(泳道16-22)下,对未纯化或纯化的亲本融合蛋白(诱捕蛋白H)或纯化的经过修饰的sIGF1R-hFc-IgG1进行SDS-PAGE。用抗α抗体(泳道1-7)和抗Fc抗体(泳道9-22)探测膜。所示泳道如下:泳道1、9和16:未纯化的亲本sIGF1R-hFc-IgG1的上清液;泳道2、10和17:通过羟磷灰石色谱法随后凝胶过滤来纯化的亲本构建体;泳道3、11和18:通过蛋白质A纯化的亲本构建体;泳道4、12和19:纯化的sIGF1R-hFc-IgG1-Mod#1;泳道5、13和20:纯化的sIGF1R-hFc-IgG1-Mod#2;泳道6、14和21:纯化的IGF1R-hFc-IgG1-Mod#3;泳道7、15和22:纯化的IGF1R-hFc-IgG1-Mod#4;泳道8:EZ-Run*预染的Rec蛋白梯(Fisher)。
图32示出了针对CHO-Cum2-CR5-sIGF1R-hFc-IgG1(未修饰(亲本)的诱捕蛋白)的9个亚克隆的稳定性测试。将CHO-Cum2-CR5-sIGF1R-hFc-IgG1的九个亚克隆在培养物中保持2个月。在时间零、1个月和2个月时,在Power-CHO培养基中将7ml的1.5×106个细胞/毫升的每一亚克隆在香豆酸(cumate)存在下在37℃下培养1天并在30℃下培养7天。将14ml各自的上清液在变性、非还原条件下上样到SDS-PAGE上。
图33示出了有关结合指定的胺偶合sIGF1R-hFc-IgG1蛋白质(Mod#1、Mod#2、Mod#3、Mod#4、诱捕蛋白H;25μL/分钟×5分钟缔合+1-10分钟解离)的指定配体(hIGF-1、hIGF-2、mIGF-1、h-胰岛素、麦芽糖结合蛋白(MBP);3倍连续稀释液)的代表性单循环表面等离子共振(single-cycle surface plasmon resonance,SPR)。
图34示出了有关结合指定的胺偶合sIGF1R-hFc-IgG1蛋白质(Mod#3、Mod#4、诱捕蛋白H;25μL/分钟×5分钟缔合+10分钟解离)的指定配体(hIGF-1、hIGF-2、mIGF-1、h-胰岛素及对照MBP;3倍连续稀释液)的代表性多循环SPR。
图35示出了有关结合指定的胺偶合sIGF1R-hFc-IgG1蛋白质(Mod#3、Mod#4、诱捕蛋白H;25μL/分钟×5分钟缔合+10分钟解离)的指定配体(hIGF-1、hIGF-2;2倍连续稀释液)的代表性多循环SPR。
发明详述
本发明提供了新型的可溶性IGF受体Fc融合蛋白(Fc-sIGFR)以及其组合物和使用其治疗血管生成相关病症和恶性疾病(包括癌症和转移)的方法。
先前已经描述了IGF-IR的具有933个氨基酸的可溶性形式,该可溶性形式针对三种不同的肿瘤类型展现出有效的抗肿瘤发生/抗转移活性,并且展现抗血管生成性质(Wang,N.等,Mol.Ther.2009;17:1241-9;WO 2010/012088)。在此报道了包括IGF-IR的933个氨基酸的可溶性形式和人IgG抗体Fc部分的新型重组融合蛋白(Fc-sIGF-IR融合蛋白)。
还报道了以下发现:本文所描述的Fc-sIGF-IR融合蛋白在一些情形中可以以高特异性和亲和力结合IGF-1和IGF-2二者。在一些情形中,sIGFIR-Fc融合蛋白对IGF-2的亲和力意外地与其对IGF-1的亲和力大致相同。在一些情形中,sIGFIR-Fc融合蛋白对IGF-2的亲和力意外地高于对IGF-1的亲和力。在一些情形中,sIGFIR-Fc融合蛋白对IGF-1的亲和力相比于单独可溶性sIGF-IR的亲和力也有所增加。因此,报道了以下发现:在一些实施方案中,Fc-sIGF-IR融合蛋白可以以高亲和力结合IGF-1和IGF-2并且对这两者具有至少大致相同的亲和力,与文献中报道的IGF-IR结合IGF-2的亲和力是它结合IGF-1的亲和力的约1/6-1/10形成对比(参见例如,Surinya等,JBC,2008,283:5355-5363;Forbes,B.E.等,Eur.J.Biochem.2002;269:961-8;及Jansson,M.等,J.Biol.Chem.1997;272:8189-97)。然而,在一些实施方案中,Fc-sIGF-IR融合蛋白以高亲和力结合IGF-1,并且如基于文献中的报道所预期的,这些融合蛋白结合IGF-2的亲和力是对IGF-1的亲和力的大约1/6-1/7。
此外,本文还报道,在一些实施方案中,如与胰岛素相比较,Fc-sIGF-IR融合蛋白以意外地高特异性结合IGF-1和IGF-2。如本文中所报道的,如使用表面等离子共振所测定,sIGFIR-Fc融合蛋白对胰岛素的结合亲和力是对IGF-1和IGF-2配体的结合亲和力的约1-1/2000。
本文提供的Fc-sIGF-IR蛋白在小鼠中还具有介于35与48小时之间的体内稳定性(半衰期),预期这些蛋白在人体中将提供足以用于治疗应用的半衰期。
本文还报道,与sIGF-IR蛋白相比较,Fc-sIGF-IR蛋白在有关抗癌作用的测定中显示出增强的体外效力,并且这一体外活性在纯化的情况下有所改善。尽管预期在添加Fc部分的情况下体内稳定性增加,但未预期到这还会在抗癌测定中引起体外活性的增加。
因此,与单独sIGF-IR蛋白相比较,本发明的Fc-sIGF-IR蛋白可以提供显著的治疗优势。意外的是,Fc部分使该蛋白质对配体(即,IGF-1和IGF-2)的亲和力增加。不仅在一些实施方案中Fc-sIGF-IR对IGF-2的结合亲和力显著高于预期(例如,在一些实施方案中,类似于或高于对IGF-1的结合亲和力),而且Fc-sIGF-IR对IGF-1的结合亲和力在一些情形中还是单独天然sIGFIR的结合亲和力的约2倍。不希望受理论的束缚,据信在一些实施方案中,Fc-sIGF-IR蛋白对两种配体(IGF-1和IGF-2)的高亲和力将提供显著的治疗益处。举例来说,据报道,肿瘤可以通过增加IGF-1、IGF-2和IR-A的表达而对针对IGFIR的单克隆抗体产生抗性(参见例如,BioCentury,The BernsteinReport on BioBusiness,2011年4月11日,第A5页)。类似地,如果一种药剂仅仅结合并抑制IGF-1和IGF-2中的一种,那么肿瘤可以产生抗性。预期较高的结合特异性还将通过限制脱靶效应来增加治疗益处。最后,与胰岛素相比较,一些Fc-sIGF-IR蛋白对配体(IGF1/2)的高结合特异性可以消除或降低其它药剂(例如,抗体、激酶抑制剂)的许多不想要的副作用,如通过与胰岛素相互作用而对葡萄糖和脂质代谢的不希望的作用。此外,具有经过修饰的Fc结构域的融合蛋白可以提供另外的优势,如本文所论述。
如本文中所使用,术语“血管生成”意指穿透到组织或器官中或穿透到癌生长中的新血管的增生。在正常生理条件下,人或动物只在极为有限的情况下才经历血管生成。举例来说,通常在创伤愈合、胎儿和胚胎发育以及黄体、子宫内膜和胎盘形成时观察到血管生成。
在许多疾病状态下会发生病理性血管生成,例如肿瘤转移和内皮细胞的异常生长,并且支持了在这些情况下所见到的病理损害。存在异常血管生成的多种病理性疾病状态已经统一归类为“血管生成依赖性”或“血管生成相关”病症。
血管生成是通过正信号和负信号密切调控的。血管生成刺激剂,如成纤维细胞生长因子(FGF)和血管内皮生长因子(VEGF),是针对内皮细胞增殖的有效促细胞分裂剂以及针对内皮细胞迁移的强效化学引诱物。这些正调控剂可以促进新血管形成以维持原发性肿瘤和转移性肿瘤的扩张。在截至目前所描述的负调控剂中,血管抑素(angiostatin)被列为最有效的内源性血管生成抑制剂之一。
1型类胰岛素生长因子受体(IGF-IR)已经被鉴别为抗癌疗法的靶标。IGF-IR是一种异四聚体受体酪氨酸激酶(RTK),由两个130-135kDa的α链和两个90-95kDa的β链组成,具有若干个α-α和α-β二硫桥。它是以具有1367个氨基酸的多肽链形式合成,经糖基化并被蛋白水解裂解成α亚基和β亚基,这些亚基二聚合形成四聚体。配体结合结构域在细胞外α亚基上,而β亚基是由通过二硫键连接到α亚基的细胞外部分、跨膜结构域以及具有激酶结构域和参与配体诱导的信号的传播的若干关键酪氨酸和丝氨酸的细胞质部分组成(Samani等,2004,Cancer Research,64:3380-3385)。
癌细胞从原发性肿瘤脱离并在继发性器官部位中产生转移的能力仍是恶性疾病管理的最大挑战。肝脏是一些最流行的人恶性疾病,特别是上胃肠(GI)道和下胃肠道癌瘤转移的主要部位。IGF-IR的表达和功能对于不同肿瘤类型的肝转移形成至关重要。工程改造成表达可溶性形式IGF-IR(sIGFIR)的肿瘤细胞失去了转移到肝脏的能力(Samani等,2004,Cancer Res,64:3380-3385)。
用于阻断细胞受体酪氨酸激酶(RTK)的作用的一个有效策略是使用这些受体的可溶性变体,这些变体能够以高特异性方式结合同源受体并降低同源受体的配体生物利用度(Kong和Crystal,1998,J NatlCancer Inst,90:273-286;Tseng等,2002,Surgery,132:857-865;Trieu等,2004,Cancer Res,64:3271-3275)。成功应用这一策略的一个实例是产生VEGFR1/VEGFR2-Fc诱饵受体(VEGF诱捕蛋白),该受体目前在临床试验中被作为一类新的抗血管生成、抗癌药物(Rudge等,2005,Cold Spring Harb Symp Quant Biol,70:411-418)。
以高特异性方式结合同源受体并降低同源受体的配体生物利用度的此类细胞受体酪氨酸激酶可溶性变体在本文中称为“诱饵”受体或“诱捕(Trap)”蛋白(因为这些蛋白质“诱捕”该配体)。术语“诱饵受体”、“诱捕蛋白”(或简称为“诱捕”)和“可溶性受体”在本文中可互换使用。
美国专利号6,084,085公开了可溶性IGF-IR蛋白用于诱导细胞凋亡和抑制肿瘤发生的用途。美国专利号6,084,085中公开的可溶性IGF-IR蛋白包含IGF-IR的N末端的至多约800个氨基酸,以致C末端跨膜结构域完全缺失,或其存在程度使得包含一部分跨膜结构域的蛋白质无法锚着于细胞膜中。美国专利号6,084,085公开了包含IGF-IR的不带信号肽的N末端486个氨基酸(氨基酸1至486),或包含带有信号肽的516个氨基酸(氨基酸-30至486)的蛋白质的优选的应用。美国专利号6,084,085中公开的蛋白质不包括IGF-IR中供二聚合和多聚合所需的区域。
国际专利申请号WO/2010/012088描述了IGF-IR的具有933个氨基酸的可溶性形式,该可溶性形式在基因疗法背景下并且当直接注射到小鼠体内时,针对三种不同的肿瘤类型展现出有效的抗肿瘤发生/抗转移活性(也参见Wang,N.等,Mol.Ther.2009;17:1241-9)。IGF-IR的这一具有933个氨基酸的可溶性形式在本文中称为可溶性IGF-IR、sIGFIR、sIGF-IR、sIGFIR933或sIGFR;这些术语在全文可互换使用。先前已经显示,sIGFR与循环性小鼠IGF-I形成复合物;产生可溶性IGF-I受体的骨髓基质细胞抑制实验性肝转移以及相关血管生成和细胞凋亡的发生;并且在注射sIGFIR的小鼠体内肝转移减少。这些实验首次证实,施用纯化的sIGFR使转移减少并诱导肿瘤细胞凋亡。
然而,应注意,在先前描述的研究中,治疗只是预防性的,因为sIGFIR是在注射肿瘤细胞之前注射。相比之下,本文首次报道了本发明的融合蛋白的治疗应用。如本文中所报道,本发明的融合蛋白(例如,Fc-sIGFIR蛋白)可以被用于治疗性治疗肿瘤。首次显示了在注射肿瘤细胞之后注射的融合蛋白可以具有治疗作用。
本文中还首次报道,与胰岛素相比较,包括可溶性IGF-IR受体和人IgG抗体的Fc部分的融合蛋白对配体(例如,IGF-1、IGF-2)具有高结合特异性,并且因此与单独可溶性IGF-IR受体相比较,具有显著的潜在治疗优势。
此外,本文中还首次报道了具有经过修饰的Fc结构域的新型Fc融合蛋白。为了避免在Fc融合蛋白中产生不希望的高分子量物质(HMW),设计并制备出新型的Fc经过修饰的融合蛋白(本文中又称为变体蛋白)。举例来说,在一些经过修饰的Fc结构域中,Fc铰链区中的半胱氨酸被丝氨酸残基置换。在其它经过修饰的Fc结构域中,11个氨基酸的连接子被22个氨基酸的柔性(GS)连接子置换。在一些经过修饰的Fc结构域中,组合了这两种方法(Fc铰链Cys残基的突变和更长柔性连接子的利用)。在另外的经过修饰的Fc结构域中,Fc铰链区被截短成仅保留较少Cys残基并且柔性连接子的长度增加到27个氨基酸。如本文中所报道的,这些新型的Fc结构域使本发明的融合蛋白中HMW物质减少。此外,在一些实施方案中,经过修饰的Fc连接子和融合蛋白具有的优势可以为具有足够长度和柔性,使得不仅允许结合FcRn受体以改善药代动力学性质(半衰期),而且还允许Fc部分同时结合FcRγIII受体胞外结构域,此可以赋予其它有益性质(例如,补体功能)。结果表明,铰链Cys残基参与促进分子间低聚合,并且在一些情形中,较长的连接子促进分子内二聚合,这可以保护Fc片段免于蛋白水解降解。在一些实施方案中,本发明的Fc融合蛋白具有这些优势中的一部分或全部。
因此,在一些实施方案中,本文提供了包括可溶性IGF-IR受体和人IgG抗体的Fc部分的融合蛋白,其中该Fc部分是经过修饰的。举例来说,该Fc部分可以被修饰成去除了一个或多个Cys残基(例如一个或多个Cys残基被Ser残基置换),和/或11个氨基酸的连接子被更长、柔性更高的连接子(例如,22个氨基酸或37个氨基酸的柔性GS连接子)置换。在一个实施方案中,与具有未修饰的Fc部分的融合蛋白相比较,具有经过修饰的Fc部分的融合蛋白不产生HMW物质或产生减少的HMW物质。
因此,本文提供了具有抗肿瘤发生、抗转移和/或抗血管生成性质的Fc-sIGF-IR融合蛋白。
可溶性IGF-IR受体在本文中称为sIGFIR、sIGF-IR、可溶性IGFIR、可溶性IGF-IR、sIGFR或sIGFIR933,并且这些术语可互换使用。包括可溶性IGF-IR受体的融合蛋白在本文中称为Fc-sIGFIR、Fc-sIGF-IR、可溶性Fc-IGFIR、可溶性Fc-IGF-IR、Fc-sIGFR、sIGFIR-Fc、sIGFR-Fc、Fc-sIGFIR933等;这些术语在本文中可互换使用。
在一些实施方案中,如在例如“大致相同的结合亲和力”中的术语“大致相同”是指两个值在实验测量值或测定的误差限内近似相同。举例来说,在针对标准误差校正之后,彼此相差约5%、约10%、约15%、约20%、约25%或约30%的两个值被认为是“大致相同”的。“大致相同”的两个值在本文中还可以称为“类似”的,如在例如具有类似结合亲和力的两种蛋白质中。在一个实施方案中,“大致相同”或“类似”的结合亲和力是指一种亲和力是另一种亲和力的不超过2倍或3倍的结合亲和力。在另一实施方案中,至少约6倍或至少约10倍的结合亲和力差异意味着两种结合亲和力不是“大致相同”或“类似”的。
如本文中所使用,术语“遗传工程改造的基质细胞”或“转基因基质细胞”意欲指已经通过逆转录病毒感染或本领域普通技术人员众所周知的其它手段引入外源基因的基质细胞。术语“遗传工程改造的”还意欲指转染、转化、转基因、感染或转导的。其它自体细胞也可以是遗传工程改造的或转基因的,例如,树突状细胞或肝细胞也可以用于本发明的方法和组合物中。
术语“离体基因疗法”意欲指在植入哺乳动物体内之前,对细胞(例如,基质细胞)进行体外转染或逆转录病毒感染以形成转染的细胞,例如转染的基质细胞。
表述“骨髓基质细胞的转导”是指使用DNA或RNA病毒将核酸转移到细胞中的过程。用于将核酸转移到细胞中的RNA病毒(即,逆转录病毒)在本文中称为转导性嵌合逆转录病毒。逆转录病毒内所含的外源遗传物质被并入到转导的骨髓基质细胞的基因组中。已经用嵌合DNA病毒(例如,携带编码治疗剂的cDNA的腺病毒)转导的骨髓基质细胞将不会在其基因组中并入外源遗传物质,但是将能够表达在细胞内染色体外保持的外源遗传物质。
如本文中所使用,术语“基质细胞”意欲指通过在含有或不含松散结缔组织中所见的其它细胞和/或成分的以组织培养物处理的皮氏培养皿中进行粘附和增殖的能力来定义的骨髓源性成纤维细胞样细胞,包括但不限于,内皮细胞、周皮细胞、巨噬细胞、单核细胞、浆细胞、肥大细胞、脂肪细胞等。其它细胞类型,例如树突状细胞、肝细胞,也可以用于本发明的方法和组合物中,并且意欲涵盖于本文中。术语“自体细胞”在本文中用于指此类细胞,并且包括例如基质细胞、树突状细胞和肝细胞。
具有再生能力并且能够被遗传工程改造成产生有效浓度的所希望的蛋白质的自体细胞的使用是一项颇具前景的治疗策略(Buckley,2000,Nat Med,6:623-624;Cavazzana-Calvo等,2000,Science,288:669-672;Dobson,2000,Bmj,320:1225;Stephenson,2000,Jama,283:589-590)。骨髓源性间充质基质细胞(Bone marrow derivedmesenchymal stromal cell,BMSC)已经被用于此目的,并且其作为递送媒介物具有若干优势:这些细胞含量丰富并且可用于所有年龄群的人,可以在引起最少发病和不适的情况下进行采集,具有增殖能力,可以合理的效率被遗传工程改造并且易于再植入供体中,而无需“有毒的”调理方案,如放射疗法、化学疗法或免疫抑制。经验证,BMSC可作为在免疫缺陷宿主和免疫活性宿主中体内分泌各种有益蛋白质的高效自体细胞媒介物,并且可以成为在临床实践中进行蛋白质递送的有效工具(Stagg和Galipeau,2007,Handb Exp Pharmacol,45-66)。因此,BMSC自体细胞可以用作分泌Fc-sIGFIR933的媒介物。用于表达本领域中已知的蛋白质的任何其它媒介物也涵盖于本文中,并且因此BMSC代表着本发明的一个实施方案,而本发明不局限于BMSC。
先前已经显示,以遗传方式改变的基质细胞产生并分泌高水平可溶性受体,该受体在植入后长达数周里仍可在血清中检测到(WO10/012088)。在植入这些细胞的小鼠中,在注射鼠结肠直肠癌瘤MC-38细胞(高达82%减少)和肺癌瘤H-59细胞(高达95%减少),以及在无胸腺裸小鼠中接种的人结肠直肠癌瘤KM12SM细胞(高达64%减少)之后观察到肝转移数量明显减少,但植入对照基质细胞的小鼠则并非如此。这些结果将sIGFIR鉴别为有效的抗血管生成剂以及抗转移治疗剂。
本发明的范围内还涵盖Fc-sIGFIR933变体和片段,包括生物活性片段,以及包含氨基酸缺失、添加和/或取代的生物活性类似物。“生物活性片段”包括维持与得到该片段的Fc-sIGFIR933基本上相同的生物活性的Fc-sIGFIR933片段。“生物活性类似物”包括本质上未改变得到该类似物的Fc-sIGFIR933的生物活性(即,抗血管生成活性或抗转移活性,或结合特异性)的Fc-sIGFIR933区的变体。在本发明的范围内包括对Fc-sIGFIR933和Fc-sIGFIR933片段所作出的增加抗血管生成活性和/或抗转移活性和/或结合特异性的改变。
在一个实施方案中,本发明的Fc-sIGFIR融合蛋白包括sIGFIR的生物活性片段,该片段保持了形成α-α和α-β二硫桥的能力。明确地说,sIGFIR的生物活性片段可以包含二聚合以形成四聚体的α亚基和β亚基。在另一实施方案中,本发明涵盖了一种包含sIGFIR的生物活性片段的Fc-sIGFIR融合蛋白,该生物活性片段在天然(野生型)受体的细胞外结构域中保持二硫键和/或模拟天然(野生型)受体的3D构象。在另一实施方案中,Fc-sIGFIR的生物活性片段保持高亲和力配体结合特异性。在又一实施方案中,如与胰岛素相比较,Fc-sIGFIR的生物活性片段保持了对IGF-1和/或IGF-2的结合特异性。举例来说,在一个实施方案中,Fc-sIGFIR的生物活性片段结合IGF-1和/或IGF-2的亲和力是其结合胰岛素的亲和力的至少约100倍或至少约1000倍。
一些实施方案包括在sIGFIR933区和/或片段中并入了修饰的类似物。所得序列因一个或多个保守氨基酸取代或因一个或多个非保守性氨基酸取代、缺失或插入而不同于sIGFIR933的野生型序列,其中这些取代、缺失或插入不会废除该野生型序列的生物活性。保守取代通常包括一个氨基酸被具有类似特征的另一氨基酸取代,例如在以下各组内的取代:缬氨酸、甘氨酸;甘氨酸、丙氨酸;缬氨酸、异亮氨酸、亮氨酸;天冬氨酸、谷氨酸;天冬酰胺、谷氨酰胺;丝氨酸、苏氨酸;赖氨酸、精氨酸;及苯丙氨酸、酪氨酸。其它保守氨基酸取代是本领域中已知的并且包括在本文中。非保守性取代,如碱性氨基酸被疏水性氨基酸置换,也是本领域中众所周知的。
在本发明内的其它类似物是具有增加蛋白质或肽稳定性的修饰的那些;这些类似物可以在蛋白质或肽序列中含有例如一个或多个非肽键(用以代替肽键)。还包括了包含除天然存在的L-氨基酸外的残基的类似物,这些残基例如为D-氨基酸或非天然存在或合成氨基酸,例如β或γ氨基酸。
还包括了具有多种构型的Fc-sIGFR融合蛋白。举例来说,sIGFIR的N末端可以通过多肽键连接到免疫球蛋白重链恒定区的C末端。或者,sIGFIR的C末端可以通过多肽键连接到免疫球蛋白重链恒定区的N末端。
如本文中所使用,术语“免疫球蛋白重链恒定区”与术语“Fc”、“Fc区”和“Fc结构域”可互换使用,并且应理解为意指免疫球蛋白重链恒定区的羧基末端部分,或其能够结合Fc受体的类似物或部分。如所知的,每一免疫球蛋白重链恒定区都包含四个或五个结构域。这些结构域依序命名如下:CH1-铰链-CH2-CH3(--CH4)。CH4存在于IgM中,IgM没有铰链区。可用于本发明的融合蛋白中的免疫球蛋白重链恒定区可以包含免疫球蛋白铰链区、CH2结构域和CH3结构域。如本文中所使用,术语免疫球蛋白“铰链区”应理解为意指完整的免疫球蛋白铰链区,或足以与另一免疫球蛋白铰链区形成一个或多个二硫键的免疫球蛋白铰链区的至少一部分。
如本文中所使用,在一些实施方案中,“Fc”包括经过修饰的Fc结构域,例如,被修饰成去除一个或多个Cys残基(例如,一个或多个Cys残基被Ser残基置换),和/或11个氨基酸的连接子被更长、柔性更强的连接子(例如,22个氨基酸或37个氨基酸的柔性GS连接子)置换的Fc结构域。在一个实施方案中,与具有未修饰的Fc结构域的融合蛋白相比较,具有经过修饰的Fc结构域的融合蛋白不产生HMW物质或产生减少量的HMW物质。
预期适合的免疫球蛋白重链恒定区可以来源于属于称为IgA、IgD、IgE、IgG及IgM的各免疫球蛋白类别的抗体,不过,优选来自IgG类别的免疫球蛋白重链恒定区。此外,预期免疫球蛋白重链恒定区可以来源于本领域中称为IgG1、IgG2、IgG3和IgG4的任一IgG抗体子类。在一个实施方案中,Fc区来源于IgG1。在另一实施方案中,Fc区来源于IgG2。
免疫球蛋白重链恒定区结构域在各免疫球蛋白类别中具有残余同源性(cross-homology)。举例来说,IgG的CH2结构域与IgA和IgD的CH2结构域同源,并且与IgM和IgE的CH3结构域同源。优选的免疫球蛋白重链恒定区包括对应于IgG的CH2区和CH3区的蛋白质结构域,或其功能部分或衍生物。从某些免疫球蛋白类别和子类中选择特定免疫球蛋白重链恒定区序列以实现特定结果被视为在本领域的技能水平内。本发明的Fc区可以包括恒定区,如例如IgG-Fc、IgG-CH、来自另一Ig类别(即,IgM、IgA、IgE、IgD)的Fc或CH结构域,或轻链恒定结构域。这些结构域的截短形式和氨基酸变体或取代也可以包括在内。
编码Fc融合蛋白的多种核酸序列也可以用于制备本发明的Fc-sIGFR融合蛋白。举例来说,这些核酸序列可以在5'到3'方向上编码免疫球蛋白重链恒定区和sIGFR多肽,或sIGFR多肽和免疫球蛋白重链恒定区。此外,基于例如与免疫球蛋白重链恒定区的铰链区直接融合的免疫球蛋白轻链序列,这些核酸序列任选地还可以包括“前导”或“信号”序列。在一个特定实施方案中,当Fc区是基于IgG序列时,Fc区在5'到3'方向上编码至少一个免疫球蛋白铰链区(即,含有至少一个能够与另一免疫球蛋白铰链区序列形成二硫键的半胱氨酸氨基酸的铰链区)、一个免疫球蛋白CH2结构域和一个CH3结构域。此外,编码Fc-sIGFR融合蛋白的核酸序列还可以整合于可复制的表达载体内,该表达载体可以在例如宿主细胞中表达该Fc融合蛋白。
在一个实施方案中,Fc-sIGFIR融合蛋白的免疫球蛋白重链恒定区组分在受试者体内是无免疫原性的或具有弱免疫原性。如果免疫球蛋白重链恒定区无法针对免疫球蛋白重链恒定区产生可检测的抗体反应,那么Fc区被认为是无免疫原性或具有弱免疫原性的。因此,免疫球蛋白重链恒定区应当来源于存在的免疫球蛋白,或基于对应于与融合蛋白的预定受体相同的物种中存在的免疫球蛋白的氨基酸序列。在一些实施方案中,将人免疫球蛋白重链恒定区序列用于Fc-sIGFIR融合蛋白,该融合蛋白将被施用给人。人Fc IgG的核苷酸和氨基酸序列是本领域中已知的并且公开于例如Ellison等,NucleicAcids Res.10:4071-4079(1982)中。
本发明的Fc-sIGFR融合蛋白可以使用本领域中已知的常规方法制备。举例来说,可以在DNA水平上,使用重组DNA技术产生Fc-sIGFIR融合构建体,并且将所得DNA整合到表达载体中,并使其表达以产生本发明的Fc-sIGFIR融合蛋白。如本文中所使用,术语“载体”应理解为意指包含了能够并入到宿主细胞中并与宿主细胞基因组重组并整合到宿主细胞基因组中,或作为游离体自主复制的核苷酸序列的任何核酸。此类载体包括线性核酸、质粒、噬菌粒、粘粒(cosmid)、RNA载体、病毒载体等。病毒载体的非限制性实例包括逆转录病毒、腺病毒和腺相关病毒。如本文中所使用,术语Fc-sIGFIR融合蛋白的“基因表达”或“表达”应理解为意指DNA序列的转录、mRNA转录物的翻译和Fc融合蛋白产物的分泌。作为通过遗传工程技术进行的蛋白质融合的替代选择,可以使用化学结合,使用常规化学交联剂来融合蛋白质部分。
在一个实施方案中,本发明的Fc-sIGFIR融合蛋白包含含有SEQID NO:8、10、12、14、16或18中所陈述的序列的氨基酸序列,和/或由包含SEQ ID NO:5、7、9、11、13、15或17中所陈述的序列的核酸所编码。在一个实施方案中,Fc区是IgG1Fc。在另一实施方案中,Fc区是IgG2Fc。在融合蛋白中可以包括或不包括内含子序列,例如Fc区中的内含子。可以包括或可以不包括在sIGFIR与Fc之间的连接子序列。
在其它实施方案中,本发明的Fc-sIGFIR融合蛋白由SEQ ID NO:8或10中所陈述的氨基酸序列组成。在其它实施方案中,本发明的Fc-sIGFIR融合蛋白由SEQ ID NO:12、14、16或18中所陈述的氨基酸序列组成。
在一个方面,本文提供了一种基于持续体内递送可溶性Fc-IGFR融合蛋白来预防和/或治疗血管生成依赖性或血管生成相关病症和/或转移性疾病(例如肝细胞转移)的治疗方法。
在一个实施方案中,本文提供了包含本文所描述的Fc-sIGFIR933融合蛋白或其生物活性片段或类似物的组合物,这些组合物可用于治疗血管生成依赖性或血管生成相关病症和/或转移。这些组合物还可以包括药学上可接受的载剂、佐剂或媒介物。
在一个方面,使用本发明的组合物和方法来抑制有需要的受试者(例如,患有血管生成依赖性或血管生成相关病症的受试者)体内的血管生成。在一个方面,该血管生成相关病症是肿瘤转移、结肠直肠癌瘤、肺癌瘤或肝性癌或肝细胞转移。在另一方面,使用本发明的组合物和方法来治疗有需要的受试者体内的转移。
本发明包括用有效量的Fc-sIGFIR融合蛋白或其组合物治疗血管生成依赖性或血管生成相关病症的方法。本发明还包括用有效量的Fc-sIGFIR融合蛋白或其组合物治疗转移性疾病的方法。
血管生成依赖性和/或血管生成相关病症包括但不限于,实体肿瘤、血液源性肿瘤如白血病;肿瘤转移;良性肿瘤,例如血管瘤、听神经瘤(acoustic acuroma)、神经纤维瘤、沙眼及化脓性肉芽肿;类风湿性关节炎;牛皮癣;眼部血管生成疾病,例如糖尿病性视网膜病、早产儿视网膜病变、黄斑变性、角膜移植排斥反应、新生血管性青光眼、晶状体后纤维增生、虹膜发红;奥斯勒-韦博二氏综合症(Osler-Webber Syndrome);心肌血管生成;斑块新血管形成;毛细血管扩张;血友病性关节;血管纤维瘤;及创伤肉芽形成(woundgranulation)。本发明的组合物可用于治疗内皮细胞过度或异常刺激的疾病。这些病症包括但不限于,肠粘连、动脉粥样硬化、硬皮病及增生性瘢痕,即瘢痕瘤。这些组合物还可以通过防止胚胎植入所需的血管形成而用作避孕药。
其它实施方案包括治疗哺乳动物的恶性肿瘤或转移的方法。这些方法可以包括选择需要治疗恶性肿瘤或转移的哺乳动物;以及向该哺乳动物施用治疗有效量的Fc-sIGF-IR融合蛋白或其组合物。在一些方面,该动物为人。在一些方面,该融合蛋白具有SEQ ID NO:8、10、12、14、16或18中所陈述的序列,或为其生物活性片段或类似物。
可治疗疾病的非限制性实例包括黑素瘤、非小细胞肺癌、胶质瘤、肝细胞(肝)癌瘤、甲状腺肿瘤、胃(gastric/stomach)癌、前列腺癌、乳癌、卵巢癌、膀胱癌、肺癌、成胶质细胞瘤、子宫内膜癌、肾癌、结肠癌、胰腺癌、尤文氏肉瘤(Ewing sarcoma)、骨肉瘤、胰腺癌瘤及表皮样癌瘤。在一个方面,提供了治疗结肠癌、乳癌、肝转移、多形性成胶质细胞瘤和/或多发性骨髓瘤的方法,这些方法包括向受试者施用Fc-sIGFIR融合蛋白或其组合物。在另一方面,提供了治疗乳癌、肝癌、膀胱癌、肺癌和/或胰腺癌的方法。
本发明的组合物和方法可以与用于治疗血管生成依赖性或血管生成相关病症和/或转移的其它组合物、方法和/或程序组合使用。举例来说,可以常规地用手术、放射、化学疗法或靶向性(生物)疗法(例如,单克隆抗体、TKI等)治疗肿瘤,接着,可以随后向患者施用包含如本文所公开的Fc-sIGFIR933融合蛋白的组合物以延长微转移的潜伏并且使任何残留的原发性肿瘤稳定。
本发明还提供了包含Fc-sIGFIR或其生物活性片段或类似物,任选地与至少一种其它活性化合物,和/或任何药学上可接受的载剂、佐剂或媒介物组合的药物(即,治疗性)组合物。“其它活性化合物”涵盖但不限于,如免疫抑制剂或抗癌剂等一种或多种药剂。
可以与本发明的组合物和方法组合使用的抗癌剂的非限制性实例包括靶向性癌症疗法和治疗,这些疗法和治疗干扰癌发生和肿瘤生长中所涉及的特定机制。靶向性癌症疗法的非限制性实例包括抑制酪氨酸激酶相关靶标的疗法(如 );激素、细胞因子和生长因子的细胞外受体结合位点的抑制剂( );蛋白酶体抑制剂();及细胞凋亡刺激剂()。这些靶向性疗法可以例如经由小分子、单克隆抗体、反义(antisense)、siRNA、适体、基因疗法和/或癌症疫苗实现。
可以与本发明的组合物和方法组合使用的抗癌治疗和程序的非限制性实例包括手术、放射学、化学疗法或靶向性癌症治疗。更具体地说,该靶向性癌症治疗选自小分子、单克隆抗体、癌症疫苗、反义、siRNA、适体和基因疗法。受试者还可以接受治疗、程序或治疗方案的组合。本领域中已知的任何其它治疗、程序或治疗方案可以单独或与其它治疗或治疗方案组合用于本文所描述的方法中。
术语“药学上可接受的载剂、佐剂或媒介物”是指可以施用给受试者,并入到本发明的组合物中并且不会破坏其药理学活性的载剂、佐剂或媒介物。可以用于本发明的组合物中的药学上可接受的载剂、佐剂和媒介物包括但不限于以下各物:离子交换剂;氧化铝;硬脂酸铝;卵磷脂;自乳化药物递送系统(self-emulsifying drug deliverysystem,“SEDDS”);药物剂型中使用的表面活性剂,如Tweens或其它类似的聚合物递送基质;血清蛋白,如人血清白蛋白;缓冲物质,如磷酸盐、甘氨酸、山梨酸、山梨酸钾;饱和植物脂肪酸的偏甘油酯混合物;水;盐或电解质,如硫酸鱼精蛋白、磷酸氢二钠、磷酸氢钾、氯化钠、锌盐;胶状二氧化硅;三硅酸镁;聚乙烯吡咯烷酮;基于纤维素的物质;聚乙二醇;羧甲基纤维素钠;聚丙烯酸酯;蜡;聚乙烯-聚氧丙烯嵌段聚合物;聚乙二醇;及羊毛脂。环糊精,如α-环糊精、β-环糊精和γ-环糊精;或化学改性的衍生物,如羟烷基环糊精(包括2-和3-羟丙基-β-环糊精),或其它增溶的衍生物,也可以用于增进本发明的组合物的递送。
本发明的组合物可以含有如本文所描述的其它治疗剂,并且可以例如通过采用常规固体或液体媒介物或稀释剂,以及适于所希望的施用模式的类型的药物添加剂(例如,赋形剂、粘合剂、防腐剂、稳定剂、调味剂等),根据如药物配制领域中众所周知的那些技术进行配制。
本发明的组合物可以通过任何适合手段施用,所述手段例如通过口服(如呈片剂、胶囊、颗粒剂或粉剂形式);舌下;口腔;肠胃外,如通过皮下、静脉内、肌肉内、腹膜内或胸骨内注射或输注技术(例如,呈无菌可注射水性或非水性溶液或悬浮液形式);经鼻,如通过吸入喷雾剂;经局部(如呈乳剂或油膏的形式);或直肠(如呈栓剂形式),以含有无毒药学上可接受的媒介物或稀释剂的单位剂量配制物形式。本发明的组合物可以例如呈适于立即释放或持续释放的形式施用。立即释放或持续释放可以通过使用适合的药物组合物,或特别是在持续释放情形中,通过使用如皮下植入物或渗透泵等装置实现。
供口服施用的示例性组合物包括悬浮液,这些悬浮液可以含有例如用于赋予大体积的微晶纤维素、作为悬浮剂的海藻酸或海藻酸钠、作为粘度增强剂的甲基纤维素,及甜味剂或调味剂(如本领域中已知的那些);和立即释放片剂,这些片剂可以含有例如微晶纤维素、磷酸氢二钙、淀粉、硬脂酸镁和/或乳糖和/或其它赋形剂、粘合剂、增量剂、崩解剂、稀释剂和润滑剂,如本领域中已知的那些。本发明的化合物还可以通过舌下和/或口腔施用经口腔递送。模制片剂、压缩片剂或冻干片是可以使用的示例性形式。示例性组合物包括将本发明组合物与快速溶解的稀释剂(如甘露糖醇、乳糖、蔗糖和/或环糊精)一起配制的那些。这些配制物中还可以包括高分子量赋形剂,如纤维素(avicel)或聚乙二醇(PEG)。这些配制物还可以包括有助于粘膜粘附的赋形剂,如羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)、羧甲基纤维素钠(SCMC)、顺丁烯二酸酐共聚物(例如,Gantrez),及用于控制释放的试剂,如聚丙烯酸共聚物(例如,Carbopol934)。为便于制造和使用,还可以添加润滑剂、助流剂、调味剂、着色剂及稳定剂。
本发明的化合物的有效量可以由本领域普通技术人员决定,并且包括用于成年人的每天每公斤体重约0.1至500mg活性化合物的示例性剂量,这些剂量可以按单次剂量施用或以个别分次剂量形式(如,每天1至5次)施用。应了解,用于任何特定受试者的具体剂量水平和剂量频率可以变化,并且将取决于多种因素,包括所用特定化合物的活性;该化合物的代谢稳定性和作用时间长度;受试者的物种、年龄、体重、一般健康状况、性别和饮食;施用的模式和时间;排泄速率和清除率;药物组合;及特定病状的严重程度。供治疗的优选受试者包括经历血管生成依赖性或血管生成相关病症的动物,最优选哺乳动物物种,如人,和家畜,如狗、猫等。
本发明的组合物可以单独使用,或与可用于治疗血管生成依赖性或血管生成相关病症的其它适合的治疗剂(如除本发明的那些外的血管生成抑制剂)组合使用。
通过参照以下实施例将更易于了解本发明,这些实施例是为说明本发明而非限制本发明范围而给出。
实施例
表I显示了如实施例中所描述而制备并测试的纯化的sIGFIR和Fc-sIGFIR诱捕蛋白。
表I.纯化的诱捕蛋白的说明。
1诱捕蛋白A-C是同种诱捕蛋白的不同批次。
2诱捕蛋白E、F、G、H及I是使用不同纯化条件制造的同种诱捕蛋白(SEQ ID NO:8)。
Mod#1、Mod#2、Mod#3及Mod#4是通过修饰亲本sIGF1R-hFc-IgG1蛋白(诱捕蛋白H;SEQ ID NO:8,由SEQ ID NO:7中所陈述的DNA序列所编码)产生的经过修饰的sIGF1R-hFc-IgG1蛋白(在本文中又称为h-sIGF1R-Fc和h-sIGF1R-Fc IgG1蛋白),如表I中以及图27和图28中所描述。这四种经修饰蛋白质分别是由SEQ IDNO:11、13、15及17中所陈述的DNA序列所编码。
示例性sIGF1R-hFc-IgG2蛋白的序列陈述于SEQ ID NO:10中,该蛋白质是由SEQ ID NO:9中所陈述的DNA序列所编码。
实施例1.诱捕蛋白的制备和纯化。
首先对His标记的sIGFIR的纯化方法进行开发和优化。制备13升表达sIGF1R的293细胞并进行浓缩。使用IMAC色谱法,从浓缩的储备液中纯化出His标记的sIGF1R。使用胰岛素捕获sIGF1R,使用该纯化的蛋白质作为开发亲和色谱纯化方案的对照。在胰岛素柱上未成功捕获到sIGF1R之后,开发出一种新的2步骤纯化方法:在羟磷灰石柱上进行捕获步骤,随后进行凝胶过滤。获得纯化的蛋白质(“诱捕蛋白A、B、C”;表I)用于测试。在开发出用于在293细胞中产生的His标记的sIGFIR的方法之后,如下文所描述,使用由汇集的表达sIGFIR和Fc-sIGFIR(即,分别不含和含有Fc)的CHO细胞所产生的无标记sIGFIR对其进行验证。
为了从CHO细胞池中纯化出sIGFIR,通过瞬时转染293-PacLV细胞以及通过生产者池来产生表达sIGF1R的两个独立的慢病毒载体,如别处所描述并且详述的(Gaillet,B.等,Biotechnol.Bioeng.;106:203-15)。用携带sIGFIR基因的慢病毒转导CHO细胞系多达6次。对稳定的CHO细胞系池进行亚克隆以分离出最佳的生产者克隆(图1)。将该制备按比例放大,浓缩CHO上清液并使用羟磷灰石柱随后凝胶过滤(如上文所述)对sIGFIR进行纯化。获得纯化的sIGFIR(“诱捕蛋白D”)用于测试;代表性结果示于图2中。
为了从CHO池中纯化出Fc-sIGFIR,通过瞬时转染293-PacLV细胞以及通过生产者克隆来产生表达Fc-sIGFIR(人IgG1的Fc)的两个独立的慢病毒载体,如别处所描述并且详述的(Gaillet,B.等,Biotechnol.Bioeng.;106:203-15)。随后,用携带Fc-sIGFIR基因的慢病毒载体转导CHO细胞系多达6次。对稳定转导的CHO细胞系池进行亚克隆以选出最佳的生产者克隆(图1)。接着起始Fc-sIGFIR的大规模制备,收集CHO上清液并浓缩,并且使用羟磷灰石柱随后凝胶过滤来纯化Fc-sIGFIR。获得纯化的Fc-sIGFIR(“诱捕蛋白E”)用于测试;代表性结果示于图3中。
一部分Fc-sIGF1R还使用蛋白质A色谱法进行纯化。在粗制剂和纯化的制剂中检测到高分子量(HMW)物质,但在低pH(4.0-4.5)下洗脱部分地减少了这些制剂中HMW蛋白质部分(图4和图5)。应注意,通过使用结合蛋白质A的IGF1R-hFc的pH分步洗脱,可以去除约一半的高分子量(HMW)物质。
在pH4.0(“诱捕蛋白F”)和pH3.5(“诱捕蛋白G”)下洗脱纯化的Fc-sIGF1R用于测试;代表性结果示于图4中。对于纯化的诱捕蛋白F(pH4),Bio-Rad DC蛋白质微量测定指示2.7mg/ml(总计2.27ml);凝胶扫描结果显示3至3.2mg/ml,其中纯度为100%。
另外制备这些Fc-sIGF1R制剂的无内毒素批料并在pH4.0(“诱捕蛋白H”)和pH3.5(“诱捕蛋白I”)下洗脱以用于其它体内研究;代表性结果示于图5中。对于图5中的无内毒素诱捕蛋白H(pH4.0)和诱捕蛋白I(pH3.5),将304ml所制备的CHO-cum2-CR5-IGF1R-hFc-(IgG1)-16-13-1-6#7装载到mabSelectSuRe(2.08ml,10.75cm H,批号10029791)中。消毒是以0.5M NaOH(A11至A14),泵690,F2,F8ON;A15和柱,在0.5M NaOH下1小时30分钟+在0.1M NaOH下过夜进行;结合缓冲液是20mM磷酸钠(pH7);并且洗脱是用0.1M柠檬酸钠(pH4.5、4、3.5和2.5)进行。(字母和数字,如A1至A15、B1至B15、C1、D1、E1等,是指从各柱收集的洗脱份;字母和数字指示了在洗脱份收集器架上试管的位置。使用了两种类型的洗脱份收集器;对于小试管,位置是A1至A15、B1至B15等,而对于大试管,位置是A1至A12,B1至B12等)。
还使用人IgG2的Fc区产生了替代性Fc-sIGFIR融合蛋白。在这一融合蛋白中HMW物质的产生可以因铰链区稳定性增加而减少,由此消除了有关HMW物质的潜在二次效应的问题。
应理解,使用本领域中已知的标准方法也可以产生能够进行诱捕蛋白的工业级生产的稳定CHO细胞系。
实施例2.用于诱捕蛋白的质量控制的分析测定。
为了表征诱捕蛋白,开发出了用以确定例如蛋白质的纯度、完整性、聚集和糖基化的分析测定。根据凝胶扫描,sIGFIR和Fc-sIGFIR蛋白似乎具有相当高纯度,但在Fc-sIGFIR制剂中存在HMW物质(参见图2,该凝胶扫描指示泳道17的sIGFR的纯度为95%至97%;并且参见图3,该凝胶扫描指示泳道15的Fc(IgG1)-sIGF1R的纯度为94%)。在4℃或-70℃下储存数月之后,未观察到任一蛋白质的聚集。
通过质谱法对两种蛋白质中的糖基化模式进行分析(图7)。该分析显示,sIGFIR(“诱捕蛋白D”)和Fc-sIGFIR(“诱捕蛋白E”)分别具有19个和20个潜在的N连接位点。每一位点用大小和唾液酸化程度不同的多种聚糖进行修饰。各位点间的糖型分布不同,但在大多数位点处,较小的双触角糖型(bi-antennary glycoform)最常见。已发现,sIGFIR与Fc-sIGFIR之间的糖型分布和唾液酸化程度不同,但聚糖类型则不然。总体而言,已发现与sIGFIR相比,Fc-sIGF1R含有更复杂(更大),但唾液酸化较少的聚糖。
实施例3.有关sIGFR和Fc-sIGFR蛋白的功能性体外测定。
为了选出最灵敏的功能性体外测定来测试本发明的诱饵蛋白,首先使用4种不同的体外测定来测量纯化的诱捕蛋白对于与恶性疾病发展和转移有关的肿瘤细胞性质的影响(表I)。也就是说,对诱捕蛋白在IGF-I存在下阻断肿瘤增殖、细胞存活、不依赖于锚着的生长及侵袭的能力进行测量。对于所有实验,使用了高转移性的路易斯氏肺癌亚系H-59细胞。在初始筛选之后,选定失巢凋亡和侵袭测定用于所有诱捕蛋白的全面分析,因为这些测定为:(i)半自动的;(ii)较少发生使用者相关性变化;(iii)具有优良的可再现性;及(iv)被认为与肿瘤细胞的转移可能性具有良好的体外相关性。所有功能性体外测定的结果都概述于下文中。
增殖是使用比色(溴化3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑盐(MTT))测定来测量的。在进行初步分析以优化测定条件之后,使细胞血清饥饿过夜,然后在经计算以递送摩尔比为1:1的IGF-I:诱捕蛋白的浓度的纯化的诱捕蛋白D和E存在或不存在下与10或50ng/mlIGF-I一起培育。结果(图8)显示,在10ng/ml或50ng/ml IGF-I存在下,细胞增殖得到完全抑制(在所有时间点,p<0.001)。
细胞存活是使用失巢凋亡(脱离诱导的细胞凋亡)测定进行分析,如先前所描述(Burnier,J.V.等,Oncogene,30:3766-83,2011])。简单地说,将肿瘤细胞(2.5×105个/孔)接种于24孔板中,这些板预先涂有10mg/ml PolyHEMA(Sigma)以防止细胞附着;接着在37℃下,在含有IGF-I并且含或不含诱捕蛋白D和E的血清或无血清培养基存在下,将细胞培育48小时。在培育期结束时,使用体内细胞死亡检测-RED染色试剂盒(In Vivo Cell Death Detection-RED staining kit;RocheCanada),根据制造商的说明书对细胞凋亡进行分析。这一分析的结果清楚地将IGF-I鉴别为这一测定中的存活因子,并且显示,失巢凋亡(即,对IGF-I的促存活/抗细胞凋亡效应的阻断作用)的剂量依赖性增加在诱捕蛋白E存在下比在诱捕蛋白D存在下显著(图9;p<0.05)。此外,随后使用蛋白质A柱进行的诱捕蛋白纯化(即,诱捕蛋白F和G)使其阻断IGF-I的抗细胞凋亡作用的能力略有改善,尤其是在1:2的较低诱捕蛋白:IGF-I比率下(图10;p<0.05)。
不依赖于锚着的肿瘤细胞生长是使用半固体琼脂集落形成测定来测量的,如先前所描述(Brodt,P.等,J.Biol.Chem.2001;276:33608-15)。简单地说,在含有指定浓度FCS并且含或不含IGF-I的RPMI培养基中,将肿瘤细胞与0.8%的琼脂糖溶液(以1:1比率)混合,并将其接种于35mm培养皿(2×104个细胞/培养皿)中凝固的1%琼脂糖层上。向覆盖层添加含有相同浓度FCS的RPMI培养基,并将这些板在37℃下培育14天,此时,将细胞固定并使用装备有目镜格栅(ocular grid)的显微镜对直径超过80μM的集落进行评分。这一测定的结果(图11)显示,诱捕蛋白D和诱捕蛋白E使肿瘤细胞在半固体琼脂中形成集落的能力明显降低(在所有条件下,p<0.01),并且在这些测定条件下,两种诱捕蛋白的活性仅存在微小差异(仅在1%FCS存在下,p<0.05)。
肿瘤细胞侵袭是使用基于电阻抗的实时技术,使用新型自动化xCELLligenceTM系统(Roche)测量的。xCELLigenceTM仪器测量了在电极/细胞间期时电阻抗的变化,因为(恶性)细胞群侵袭Matrigel层并迁移到博伊登室(Boyden-chamber)系统的下部室中。该阻抗是以一种称为细胞指数(或细胞单位)的无量纲参数形式呈现的,其与被细胞覆盖的组织培养物孔的总面积成正比,如其它文献所描述并证实的(Ungefroren,H.等,Int.J.Oncol.;38:797-805;Rahim,S.和Uren,A.,J.Vis.Exp.,50:1-4,2011)。将肿瘤H-59细胞(在上部室中)接种于预先涂有细胞外基质混合物MatrigelTM(BD Biosciences)的孔(5×104个细胞/孔)中,该细胞外基质混合物是呈预先确定为允许最佳侵袭的浓度。接着,将其放到含有50ng/ml IGF-I并添加有(或未添加)呈不同(近似)IGF:诱捕蛋白摩尔比的指定IGF-诱捕蛋白的下部室的顶部上。当在1:1的诱捕蛋白:IGF-I摩尔比下比较诱捕蛋白D(sIGF1R)与诱捕蛋白E(Fc-sIGF1R)对细胞侵袭的抑制作用(图13)时,其显示诱捕蛋白E的活性明显较高(在36小时时,p<0.05)。在蛋白质A纯化并且未去除内毒素(即,诱捕蛋白F和G;图12)或去除了内毒素(诱捕蛋白H和I;图13)之后,所有这些制剂的活性增强表明,所观察到的显著抑制作用与内毒素的非特异性作用无关。应注意,在这些侵袭测定中,在pH3.5下洗脱的洗脱份(即,富含高分子量物质,参见图5和图6)的活性似乎高于耗尽了高分子量物质的那些洗脱份的活性(p<0.01),表明高分子量蛋白质保持了IGF-I“诱捕”能力。
从此处提供的结果可以看出,意外的是,Fc-sIGFR蛋白在这些抗癌测定中展现相比sIGFR蛋白有所增加的体外效力,并且Fc-sIGFR蛋白的这一增强的效力在纯化的情况下得到改善。
实施例4.sIGFR与Fc-sIGFR的结合特异性和亲和力的比较。
使用无标记、实时表面等离子共振(SPR)测量纯化的诱捕蛋白受体(“A”至“I”)与IGF-IR配体(mIGF-1、hIGF-1、hIGF-2及人胰岛素)之间的结合。实验是在25℃下使用BIACORETM3000仪器(GEHealthcare Bio-Sciences AB,Uppsala,Sweden)进行的,如其它文献所描述(Forbes,B.E.等,Eur.J.Biochem.2002;269:961-8;Jansson,M.等,J.Biol.Chem.1997;272:8189-97;Surinya,K.H.等,J.Biol.Chem.2008;283:5355-63)。首先,将配体固定(约125RU;Biacore的胺偶合试剂盒)到涂有葡聚糖的传感器芯片上并将受体依序滴定于参考表面(即,无配体)和配体表面上。在交互作用实验中,将配体滴定到固定的诱捕蛋白表面上(约8000RU)。不依赖于质量转运的数据是双重参考的数据(Myszka DG.Improving biosensor analysis.J Mol Recognit1999;12:279-84)并且是从两个独立试验获取的一式两份进行的注射的代表性数据。对于多循环滴定,通过将这些数据与“1:1动力学”模型(BIAevaluation4.1版软件)或“稳态亲和力”模型(仅针对人胰岛素滴定)进行全局拟合来确定平衡解离常数(KD)。对于单循环滴定,KD值是通过将这些数据与“1:1滴定”模型进行局部拟合来确定(Karlsson,R.等,Anal.Biochem.2006;349:136-47)。
首先测试His标记的sIGFIR变体(“诱捕蛋白A、B、C”)并使用其来对实现制剂中诱捕蛋白与胺偶合配体表面的结合的测定条件进行标准化,以用于诱捕蛋白的后续分析。在纳摩尔滴定范围内,诱捕蛋白B展现出最佳的总体活性并且与在人胰岛素(特异性对照;微摩尔亲和力)或麦芽糖结合蛋白(负对照;无亲和力)存在下具有极少反应或无反应相比较,该诱捕蛋白B与固定的小鼠或人IGF-I的结合是显著的。在交互作用实验中,对hIGF-I进行滴定并且其以纳摩尔亲和力结合HEK293纯化的诱捕蛋白B以及CHO纯化的诱捕蛋白D和E表面,而在所有情形中,人胰岛素以较弱的微摩尔亲和力结合(表II)。平均起来,在这些多循环试验中,诱捕蛋白B、D和E展现类似的缔合和解离速率常数(分别是ka为约2.6×105M-1s-1并且kd为约2×10-3s-1)。结果证实,诱捕蛋白D和E可以在高亲和力下特异性结合hIGF-I配体;诱捕蛋白E与hIGF-I的相互作用适度地强于诱捕蛋白D。
表II.使用多循环分析进行初始SPR筛选的结果(n=4)。
表中示出了有关诱捕蛋白与配体之间的结合的经计算平衡解离常数(KD+/-SE)。结果清楚地证实了与胰岛素相比较,诱捕蛋白对hIGF-I的特异性。Fc-sIGF-IR融合蛋白显示的对hIGF-1的亲和力是其对人胰岛素的亲和力的约1000-2000倍。
诱捕蛋白 hIGF-1 人胰岛素
B(对照) 8+/-0.1nM 10+/-2μM
D 13+/-0.2nM 16+/-4μM
E 6+/-0.2nM 14+/-8μM
使蛋白质A纯化的诱捕蛋白F和G(以D作为对照)流过固定有配体的表面,并且其对hIGF-I以及mIGF-I和hIGF-II展现出较低的纳摩尔亲和力(表III)。在这些多循环试验中还注意到,诱捕蛋白F具有比诱捕蛋白D(kd为约8×10-4s-1)低的解离速率常数(kd为约4.3×10-4s-1),并且与诱捕蛋白F相比较,诱捕蛋白G的解离甚至更慢(kd为约1.5×10-4s-1)。最后,将诱捕蛋白F和G的无内毒素型式(即,分别为诱捕蛋白H和I,以E作为对照)固定以用于SPR分析。虽然诱捕蛋白E(图14)、H和I在这些单循环试验中共有类似的缔合和解离动力学,但是针对诱捕蛋白I所估算的纳摩尔KD值明显不同于诱捕蛋白E和H的KD值(表III)。这一发现可能归因于诱捕蛋白I制剂的样品复杂性较高(即,HMW物质),并且在诱捕蛋白I制剂中存在极少量的所希望的物质(参见图5,泳道9至12;红色箭头指示所希望的物质)。
总体来说,应注意,诱捕蛋白I和E受到高分子量物质污染。据信,这一污染是引起在诱捕蛋白I和E与诱捕蛋白H之间所见到的差异(例如在表III中,及别处)以及本文所报道的结果的大多数可变性的原因。因此,在一个实施方案中,诱捕蛋白H代表了优选的制剂。
表III.诱捕蛋白D、E、H和I对IGF-IR配体的亲和力。
表中示出了有关纯化的诱捕蛋白与IGF-IR配体之间的结合的经计算平衡解离常数(KD+/-SE)。***在多循环SPR中,n=4。
诱捕蛋白 mIGF-l hIGF-1 hIGF-2
D*** 10+/-0.1nM 11+/-0.1nM 16+/-0.1nM
E(对照) 14+/-0.5nM 4+/-0.1nM 26+/-0.9nM
H 18+/-0.8nM 10+/-0.5nM 8+/-0.4nM
I 71+/-3nM 53+/-2nM 127+/-56nM
概括起来,SPR结果成功地证实了使用两种不同偶合定向时,纯化的诱捕蛋白与IGF-IR配体之间的结合。尽管采用了变化的构建体和纯化方案来产生不同的诱捕蛋白制剂(即,“A”-“I”;参见表I),但这些诱捕蛋白展现出大体上类似的缔合和解离动力学。然而,如与含有较高相对比例的高分子量物质的制剂(例如,在pH3.5下洗脱的诱捕蛋白G和I)相比较,蛋白质A纯化的富含天然四聚体蛋白质的制剂(例如,在pH4.0下洗脱的诱捕蛋白F和H)产生质量更好的SPR拟合。
总体而言,诱捕蛋白A-I的亲和力常数与其中已经报道配体与固定的hIGF-IR的结合的类似公开SPR数据相符:例如,Forbes等(Forbes,B.E.等,Eur.J.Biochem.2002;269:961-8)报道KD(hIGF-I→hIGF-IR)=4.5nM并且KD(hIGF-II→hIGF-IR)=23nM;Jansson等(Jansson,M.等,J.Biol.Chem.1997;272:8189-97)报道KD(hIGF-I→hIGF-IR)=3.5nM并且KD(hIGF-II→hIGF-IR)=20nM。然而,意外的是,诱捕蛋白E、F、H和I对IGF-1配体和IGF-2配体呈现类似的结合亲和力,或在一些情形中,对IGF-2的亲和力甚至高于对IGF-1的亲和力。此外,在一些情形中,诱捕蛋白Fc-融合蛋白对IGF-1的亲和力高于单独可溶性sIGFIR的亲和力。应注意,诱捕蛋白E不像诱捕蛋白H和F那样对两种配体显示类似的亲和力;这可能是由所使用的纯化方案所致。
实施例5.SIGFR与Fc-sIGFR的体外稳定性和药代动力学性质 的比较。
如上文所指示,在4℃或-70℃下储存数月之后,未观察到任一蛋白质的聚集。然而,我们注意到这些蛋白质的功能活性在-70℃下储存的前3-6个月内最佳。这可以解释在稍后的分析(例如,在9个月储存之后,参见表V)中所观察到的诱捕蛋白D和E的半衰期相比先前分析(例如,在3个月储存之后,参见表IV)有所减小。
表IV.诱捕蛋白D和E的最终药代动力学参数。
(N/A:不适用)
表V.诱捕蛋白D、E、I和H的最终药代动力学参数。
(N/A:不适用)
向小鼠静脉内注射10mg/kg的每一种所测试的诱捕蛋白。将这些小鼠分成若干组,每组3只小鼠,并从注射后5分钟开始并继续在0.33、1、3、6、12、16和24小时及之后每天,从各组收集血液,持续14天。制备血浆并且使用ELISA(R&D Systems)分析可溶性IGF-IR水平。汇集在同一时间间隔时抽血的每一组小鼠的数据。
结果(图15)显示,如与His标记的诱捕蛋白(293细胞产生的诱捕蛋白A)相比较,CHO细胞产生的诱捕蛋白D和E具有优良的体内稳定性。结果还显示诱捕蛋白D与E具有不同的清除率和体内稳定性特征。随后对这些数据进行的药代动力学分析显示出在半衰期方面的超过2倍差异,其中诱捕蛋白E显示优良的体内稳定性(47.5小时相较于诱捕蛋白D的21.8小时;表IV)。这些数据证实,添加Fc-IgG1片段使诱捕蛋白的体内稳定性增加。当接着以类似方式分析无内毒素、蛋白质A纯化的Fc-sIGFIR蛋白(诱捕蛋白H和I)时,发现在pH4.0下洗脱的洗脱份(诱捕蛋白H,去除了高分子量物质)相较于在pH3.5下洗脱的洗脱份(诱捕蛋白I,富含高分子量物质)具有优良的药代动力学性能(半衰期有3.5倍增加,表V)(图16)。
这些结果显示,向可溶性IGF-IR添加Fc片段使诱捕蛋白的结合亲和力和药代动力学性质都得到显著改善。在体外,Fc-sIGFIR具有相比天然sIGF-IR有所增加的活性,并且在蛋白质A纯化之后,Fc-sIGFIR的活性增加。蛋白质A纯化在将单一四聚体诱捕蛋白与高分子量物质分离方面无效。然而,在pH4.0下进行洗脱可以有效减少制剂中高分子量物质的相对比例。最后,尽管高分子量物质的存在不会明显影响这些蛋白质的体外IGF诱捕活性(并且对于高分子量蛋白可能略微益处),但其具有明显降低的药代动力学特征,其中半衰期值为10小时,构成了对于所测试的所有诱捕蛋白的所观察到的最低值。
实施例6.小鼠模型中肝转移减少。
经由脾内/门静脉内途径向小鼠注射5×104个肺癌H-59细胞或结肠癌MC-38细胞以产生实验性肝转移。次日,首先对其静脉内注射5mg/kg诱捕蛋白H(或用作对照的媒介物),随后在第5天,再注射相同剂量。在肿瘤注射后第18天,对小鼠实施安乐死并且计算转移数并测定其大小。
结果示于下表和图20中。在小鼠模型中,与单独媒介物相比较,诱捕蛋白H使H-59和MC-38肿瘤的肝转移的数量和大小减少。
*如与对照相比较,p<0.05(Mann-Whitney测试)
图20中示出了在注射肿瘤后19天,来源于注射MC-38结肠癌的小鼠的肝的代表性H&E染色、福尔马林固定并且石蜡包埋的切片。
实施例7.IGF-诱捕蛋白在体内抑制肿瘤细胞中的IGF-IR信号 传导。
向C57BL6雌性小鼠脾内注射105个GFP标记的H-59细胞,随后在注射肿瘤后第1天和第3天注射5mg/kg IGF-诱捕蛋白或仅媒介物(未处理)(每组3只小鼠)。第6天处死小鼠,取出肝并快速冷冻,并制备10μM的冷冻切片,并依序用1:100稀释的兔多克隆抗小鼠pIGF1R抗体(ab39398-Abcam,Cambridge,MA)和1:200稀释的山羊抗兔Alexa Fluor647(远红光)抗体(Molecular Probes Invitrogen,Eugene,OR)进行免疫染色。在潮湿室中,在DAPI(1:2000)存在下,在室温下将其分别培育1小时。洗涤切片并用GOLD防褪色试剂(Invitrogen)封片,并用装备有Zen图像分析站的Carl Zeiss LSM510Meta共聚焦显微镜(Carl Zeiss Canada Ltd,Toronto,ON,Canada)进行分析。对于每一处理组,分析12-16个切片并计算呈pIGFIR阳性的GFP+肿瘤细胞的百分比。代表性合并的共聚焦图像示于图21A中,并且每一组中pIGF-IR+绿色荧光肿瘤细胞百分比的经计算平均值示于图21B中。结果显示,由于用IGF-诱捕蛋白处理,使得肿瘤细胞上IGF-I受体的活化和信号传导显著减少。
实施例8.IGF-诱捕蛋白增加体内肿瘤细胞的凋亡。
如以上在实施例7中所描述来获得肝冷冻切片。首先将切片与1:100稀释的兔多克隆抗小鼠裂解的半胱天冬酶3抗体(ab4501-Abcam)一起培育,接着将其与1:200稀释的山羊抗兔Alexa Fluor647抗体(Molecular Probes)一起培育。这些切片的培育和加工如实施例7中所描述。对于每一处理组,分析11-14个切片并计算呈裂解的半胱天冬酶3阳性(细胞凋亡的指标)的GFP+肿瘤细胞的百分比。代表性合并的共聚焦图像示于图22A中,并且每一组中裂解的半胱天冬酶3+绿色荧光肿瘤细胞百分比的经计算平均值示于图22B中。结果显示,用IGF-诱捕蛋白处理使经历细胞凋亡的肿瘤细胞的比例显著增加。
实施例9.IGF-诱捕蛋白抑制体内肿瘤细胞增殖。
如以上在实施例7中所描述来获得肝冷冻切片。首先将切片与1:100稀释的兔多克隆抗小鼠Ki67抗体(ab15580-Abcam)一起培育,接着将其与1:200稀释的山羊抗兔Alexa Fluor647抗体(MolecularProbes)一起培育。这些切片的培育和加工如实施例7中所描述。对于每一处理组,分析14个切片并计算呈Ki67阳性(增殖标记)的GFP+肿瘤细胞的百分比。代表性合并的共聚焦图像示于图23A中,并且每一组中Ki67+绿色荧光肿瘤细胞百分比的经计算平均值示于图23B中。结果显示,在IGF-诱捕蛋白处理的小鼠中,肿瘤细胞增殖显著减少。
实施例10.IGF-诱捕蛋白阻断体内血管生成。
如以上在实施例7中所描述来获得肝冷冻切片。首先将切片与1:100稀释的大鼠单克隆抗小鼠CD31抗体(克隆MEC13.3,来自BDBiosciences,San Jose,CA)一起培育,接着将其与1:200稀释的山羊抗大鼠Alexa Fluor568(橙红色)抗体(分子探针,Invitrogen)一起培育(图24)。在每个治疗组的16个切片中,对每一视野(20X物镜)的肿瘤微转移内CD31+内皮细胞的数量进行计数(图24A),并计算平均数量。代表性合并的共聚焦图像示于图24A中,并且每一组中每一视野的CD31+细胞的经计算平均值示于图24B中。结果显示,在IGF-诱捕蛋白处理的小鼠中,肿瘤相关血管生成显著减少。
实施例11.在注射鼠乳癌4T1细胞的小鼠中肿瘤生长停滞。
向Balb/c雌性小鼠的乳房脂肪垫(MFP)中注射105个小鼠乳癌4T1细胞(Tabaries,S.等,Oncogene30(11):1318-28,2011)。4小时和3天之后,对处理组静脉内注射10mg/kg的IGF-诱捕蛋白,随后在肿瘤接种之后第6天和第10天2次注射5mg/kg(图25A—箭头)。使用卡尺每周三次测量肿瘤,并使用公式1/2(长度×宽度2)计算肿瘤体积。在所有未处理小鼠中,肿瘤迅速生长,使得到注射肿瘤后第14天,所有小鼠死亡(图25A、B),并且具有肉眼可见的肝转移。在处理组中,在施用IGF-诱捕蛋白时,肿瘤未显著发展。仅在处理停止之后观察到肿瘤生长(进行到第14天,图25A)。小鼠在注射肿瘤之后存活长达35天(图25B)(使用Mantel-Cox测试和Gehan-Breslow-Wilcoxon测试,p<0.01)。
实施例12.在注射人乳癌MDA-MB-231细胞的裸小鼠中生长停 滞并消退。
在nu/nu小鼠的乳房脂肪垫中以Matrigel原位植入一百万个MD-MBA-231人乳癌细胞(Mourskaia,A.A.等,Oncogene,28(7):1005-15,2009)。使用卡尺每周三次测量肿瘤,并使用公式1/2(长度×宽度2)计算肿瘤体积。当产生肿瘤(50-100mm3)(图26A—第11天-箭头)时,对动物进行随机分组,并每周两次用5mg/kg IGF-诱捕蛋白或媒介物(静脉内)处理,直到第33天。对照组中的小鼠在第44天时全部处于濒死状态(图26A-虚线)。在IGF-诱捕蛋白组中,所有肿瘤的生长在处理期间都停滞。在一些动物中,在施用最后一次治疗之后20天(第55天),肿瘤开始发展。至少直到第70天,所有经过处理的小鼠都存活(研究仍在进行)。在1/5小鼠中观察到完全消退(治愈)并且在1/5小鼠中观察到肿瘤变稳定(生长停滞)。在所有小鼠中,还使用纵向生物发光成像来监测肿瘤,该图像显示,随时间推移,对照组中生物发光信号强度增加,并且IGF-诱捕蛋白处理组中信号明显减弱(图26B)。
根据在基于细胞的测定中的功效、与IGF-1和IGF-2配体的高亲和力配体结合、体内稳定性及在小鼠肿瘤模型中的功效,本文所描述的Fc-诱捕蛋白是用于治疗和/或预防癌症、转移和/或血管生成相关病症的引人注目的治疗候选物。
实施例13.用于消除高分子量(HMW)物质的sIGF1R-ed-Fc变 体的合理设计。
如上文所示,在CHO细胞中表达的sIGF1R与Fc IgG1或IgG2的融合形式(分别为sIGF1R-hFc-IgG1或sIGF1R-hFc-IgG2)呈现约50%的二硫键连接的高分子量物质(HMW)。在还原条件下,这些HMW可以分离成无二硫键连接的sIGF1R-hFc。
为了解在sIGF1R胞外结构域(sIGF1R-ed)与IgG-Fc片段之间具有11个氨基酸(aa)的连接子的原始sIGF1R-Fc融合蛋白的HMW异质性,我们探索了几种可能性。使用同源胰岛素受体胞外结构域(IR-ed)的晶体结构,推断出sIGF1R-ed二聚体的C末端之间的距离应为约(图27)。因此,考虑到由sIGF1R-ed二聚体强加的几何约束,推测在原始的11个氨基酸连接的构建体中不太可能发生两个Fc部分的分子内配对。未配对的Fc链可以用于开放式分子间缔合,特别是Fc铰链区中可用半胱氨酸残基的存在使该缔合增强,由此解释了所观察到的HMW梯。
为了测试这一观点,并设计出经过修饰的sIGF1R-hFc-IgG1变体蛋白,首先用丝氨酸残基置换Fc的铰链区中的半胱氨酸(变体Mod#1;参见图27)。作为替代选择,为了能通过增加连接子长度来促进分子内Fc二聚合,有效地将11个氨基酸的连接子用22个氨基酸的柔性(GS)连接子置换,如并入到称为Mod#2的经过修饰的变体蛋白中的(图27、28)。将这两种方法(Fc铰链Cys残基的突变及更长柔性连接子的使用)组合于第三种经修饰蛋白,Mod#3变体中(图28)。最后,尝试通过将Fc铰链区截短成仅保留较少的Cys残基并相应地将柔性连接子的长度进一步增加到27个氨基酸来减少二硫键连接的HMW物质(Mod#4;图27、28)。除所预期的HMW物质减少外,预期所设计的更长连接子(Mod#2和Mod#3中的22个氨基酸,及Mod#4中的27个氨基酸)具有足够长度和柔性,以致不仅允许结合FcRn受体以改善药代动力学性质(半衰期),而且还允许Fc部分同时结合FcRγIII受体胞外结构域,这可以赋予其它有益性质(例如,补体功能)。
这一实施例和以下实施例的材料和方法如下所示:
表达四种经过修饰的sIGF1R-hFc-IgG1序列的pMPG-CR5载体的产生。为了产生表达这四种经过修饰的sIGF1R-hFc-IgG1序列的pMPG-CR5载体,每一种构建体需要不同的亚克隆步骤。简单地说,通过SmaI-NdeI消化去除PUC19的SmaI位点,以接受后续的亚克隆。在接下来的步骤中,将全长sIGF1R-hFc-IgG1克隆到经过修饰的PUC19的BamHI位点中。从sIGF1R-hFc-IgG1序列去除含有sIGF1R和hFc的接点的542个核苷酸的SmaI片段。使用这一缺失了SmaI片段的经过修饰的PUC19-sIGF1R-hFc-IgG1载体作为主链用于进一步亚克隆。由Genescript合成四种经过修饰的sIGF1R-hFc-IgG1片段。将这些片段插入到缺失了SmaI片段的经过修饰的PUC19-sIGF1R-hFc-IgG1的SmaI位点中。最后,通过BamHI消化来切除全长的4种经过修饰的sIGF1R-hFc-IgG1,并将其亚克隆到pMPG-CR5表达载体中以产生pMPG-CR5-sIGF1R-hFc-IgG1-Mod#1、pMPG-CR5-sIGF1R-hFc-IgG1-Mod#2、pMPG-CR5-sIGF1R-hFc-IgG1-Mod#3及pMPG-CR5-sIGF1R-hFc-IgG1-Mod#4。
在CHO-BRI-rcTA-55E3细胞系中该4种经过修饰的sIGF1R-hFc-IgG1蛋白的瞬时表达。使用PEIpro,用编码该4种经过修饰的sIGF1R-hFc-IgG1蛋白(sIGF1R-hFc-IgG1-Mod#1、Mod#2、Mod#3及Mod#4)的质粒中的每种分别转染CHO-BRI-rcTA细胞。转染之后五天,通过SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质印迹法分析这4种经过修饰的sIGF1R-hFc-IgG1蛋白的表达水平和高分子量物质的形成。使用蛋白质A柱对200ml的各上清液进行纯化。
SDS–PAGE和蛋白质印迹。为了评估这4种经过修饰的sIGF1R-hFc-IgG1蛋白的凝胶迁移模式,通过4-12%SDS-PAGE分离这些纯化的蛋白质(各5μg和10μg)。为了比较HMW物质的强度或不存在,使用通过羟磷灰石色谱法随后凝胶过滤纯化的亲本sIGF1R-hFc-IgG1的样品和通过蛋白质A纯化的亲本sIGF1R-hFc-IgG1的样品作为对照(图29)。通过4-12%SDS-PAGE分离CHO-BRI-rcTA-sIGF1R-hFc-IgG1-Mod#1、Mod#2、Mod#3及Mod#4的20μl上清液,并转移到膜上。对于免疫印迹,使用了一抗兔多克隆抗αIGF1R链(SC-7952Santa-cruz1/600)或兔多克隆抗αIGF1R链(SC-9038,Santa-cruz,1/400)。使用Cy5-抗兔(Jackson,1/100)作为二抗。用Cy5-山羊抗人IgG(H+L,Jackson,1/400)检测sIGF1R-hFc-IgG1融合蛋白中的IgG1-Fc部分(图30)。
在使用蛋白质A纯化该4种经过修饰的sIGF1R-hFc-IgG1蛋白之后,对200ng每一蛋白质进行SDS-PAGE,随后进行蛋白质印迹。如前一段落中所描述,检测这些融合蛋白的sIGF1R-α链和Fc部分。使用纯化的和未纯化的亲本构建体作为对照(图31)。此外,在还原条件(300mM DTT)下对一组样品进行跑胶。
四种产生亲本蛋白质的工业级CHO-Cum2-sIGF1R-hFc-IgG1细胞系的产生。通过用pMPG-CR5-IGF1R-hFc-IgG1载体转染CHO-Cum2-L72细胞系(Mullick,A.等,BMC Biotechnol.6:43,2006),产生四个表达IGF1R-hFc-IgG1的工业级稳定细胞系池。在潮霉素选择下保持细胞3周。对稳定细胞系的CHO-Cum2池进行亚克隆以分离出最佳的生产者克隆。将具有较高表达水平的亚克隆在培养物中保持2个月以用于稳定性测试。将具有最高稳定性和生产率的亚克隆按比例放大,浓缩CHO上清液并使用蛋白质A纯化法纯化sIGFIR-hFc-IgG1(图32)。
实施例14.对通过序列建模提出的4种经过修饰的 sIGF1R-hFc-IgG1蛋白进行工程改造和测试。
存在>1%的HMW物质不推荐用于制造重组蛋白。如以上所论述,在亲本制剂中不幸的有约一半的原始sIGF1R-hFc-IgG1和sIGF1R-hFc-IgG2融合蛋白是作为HMW物质存在。通过在蛋白质A色谱法之后增加在pH4.5下洗脱的步骤来去除这些HMW物质所取得的成功是不完全的,并且无法进行缩放,因为仅一小部分的蛋白质在此pH值下洗脱。
为了防止或至少是减少HMW物质的形成,如以上所描述,构建在sIGF1R和IgG1序列的接点中具有不同修饰的四种经过修饰的sIGF1R-hFc-IgG1蛋白。在sIGF1R序列的3′处存在一个SmaI限制性位点并且在hFc-IgG1序列的5′端处存在另一个限制性位点。这两个位点的存在提供了通过将任何新合成的SmaI片段与原始序列交换来修饰这一区域的机会。作为第一步骤,对PUC-19序列进行修饰以接纳全长sIGF1R-hFc-IgG1的亚克隆子序列并将原始序列与合成的(经过修饰的)SmaI片段交换。最后,将这些全长的经过修饰的序列亚克隆到pMPG-CR5表达载体中。
在用这4种经过修饰的sIGF1R-hFc-IgG1蛋白瞬时转染的CHO-BRI-rCTA-55E3细胞(为简洁起见,本文中又称为CHO-BRI-rCTA细胞)的上清液中,通过SDS-PAGE未检测到这些蛋白质。为了获得足够的材料用于SDS-PAGE分析,接着用蛋白质A对200ml每一上清液进行纯化。将通过羟磷灰石色谱法随后凝胶过滤纯化的亲本sIGF1R-hFc-IgG1和通过蛋白质A纯化的亲本sIGF1R-hFc-IgG1中的HMW物质的水平与该4种经过修饰的sIGF1R-hFc-IgG1蛋白相比较(图29)。在核心铰链中的两个半胱氨酸都被丝氨酸置换的经修饰蛋白质Mod#1和Mod#3中完全不存在HMW物质的形成。在sIGF1R-hFc-IgG1-Mod#2和Mod#4蛋白中仍存在HMW物质,但其产量低于这些蛋白质的亲本形式(sIGF1R-hFc-IgG1)。然而,在Mod#1和Mod#3的凝胶中发现MW为约80-90kDa和210-220kDa的两个低分子量(LMW)带,并且在Mod#4的凝胶中程度更低。除这些LMW带外,还在Mod#1的SDS-PAGE谱中检测到约30kD的蛋白质。
使用针对这些融合蛋白的IGF-IR和Fc部分的α链和β链的抗体对含有这4种经过修饰的sIGF1R-hFc-IgG1构建体的上清液进行蛋白质印迹法(图30)。在含有Mod#1和Mod#3的上清液中未检测到HMW带。在含Mod#4的上清液中HMW带的水平低于含有该融合蛋白的亲本形式的上清液中的水平。抗β抗体和抗Fc抗体还检测到一些LMW物质。基于蛋白质印迹结果,约80-90kD的带似乎是单一β链与Fc的融合物,并且210-220kDa的带可能是sIGF1R-hFc-IgG1的单体形式(Fc+β+α链)。如通过蛋白质印迹法所评估,CHO细胞上清液中这些LMW形式的强度为四聚体+Fc蛋白的约一半。
为了确定在纯化的蛋白质部分中这些带的丰度并且将其与用 构建体所获得的水平相比较,通过蛋白质印迹法,使用抗α亚基抗体和抗Fc抗体对未纯化和纯化的亲本sIGF1R-hFc-IgG1和该4种经过修饰的sIGF1R-hFc-IgG1蛋白进行分析(图31)。在非还原条件下,亲本sIGF1R-hFc-IgG1的未纯化和纯化部分显示类似的模式并且均未检测到LMW物质。然而,在非还原条件下,当使用抗Fc抗体时,在经过修饰的sIGF1R-hFc-IgG1蛋白的纯化制剂(Mod#1和Mod#3)中可检测到LMW带。这些LMW物质的形成机制尚不清楚。核心铰链中的两个Cys残基被Ser置换(如在Mod#1和Mod#3中)可能使sIGF1R-hFc的剩余二硫键在细胞培养基中对还原更敏感。有趣的是,对于其中保留一个半胱氨酸(即,一个二硫键)的Mod#4来说,LMW物质的浓度降低(相对于Mod#1和Mod#3),但一些HMW物质出现在SDS-PAGE凝胶和蛋白质印迹中。然而,值得注意的是,在蛋白质A柱分级分离之后,LMW带的水平显著降低,表明其与蛋白质A具有不同的结合动力学(例如,亲和力)并且有可能通过蛋白质A纯化消除。
在完全还原条件下,当所有二硫键都被还原时,HMW物质应呈现两条带,一个在130-140kDa处,对应于全长α链(无法利用抗Fc抗体检测)并且另一个在80-90kDa处,对应于β亚基-Fc融合蛋白。然而,在凝胶中可检测到一条210-220kDa的带(对应于sIGF1R-hFc-IgG1单体)。这一发现表明,在每一单体的α链与β-Fc融合蛋白之间形成的二硫键对于300mM DDT的还原作用的抗性高于两个单独单体的α链之间的二硫键。在未纯化蛋白质部分和Mod#1中还检测到约30kDa的低MW带,并且其可能代表Fc-β融合蛋白的截短形式。
尽管在构建全部4种经修饰蛋白质时采用了合理的设计,但结果表明,这些新构建体中仅2种产生不形成HMW物质的蛋白质。举例来说,在引入更长连接子但铰链Cys残基未被取代的经修饰蛋白质Mod#2的情形中,仍能够观察到HMW物质,不过其水平低于亲本蛋白质中。这一发现表明,尽管在Mod#2变体中可能已经产生一些分子内Fc二聚体(如所假定的),但仍存在相当大量的Fc蛋白质可用于分子间缔合。另一方面,Fc铰链结构域中的Cys-Ser取代使经修饰蛋白质Mod#1和Mod#3中的HMW物质完全消除的事实,以及仅保留两个铰链Cys中的一个的Mod#4中存在中间水平HMW物质的发现(图29、30、31)表明,铰链Cys残基确实涉及到促进分子间低聚合,与分子模型所预测的一样。有趣的是,仅在Mod#1中观察到起源于Fc片段的30kDa蛋白质,而在Mod#3中未见到。这可以表明,在Mod#3蛋白质中发生的由其更长连接子引起的分子内二聚合保护Fc片段免于蛋白水解降解。蛋白水解裂解看来更易于在Mod#1蛋白质中发生,其中Fc片段因连接子较短而无法在分子内配对,并且因不存在铰链半胱氨酸而无法在分子间配对。
概括起来,这些结果表明,经修饰蛋白质Mod#3可能是按比例放大生产单带蛋白质的最适合候选物,其有希望开发作为治疗剂。
实施例15.工业级四种经过修饰的 CHO-Cum2-sIGF1R-hFc-IgG1细胞系的产生。
在CHO-BRI-rcTA-55E3细胞中产生表达经过修饰的sIGF1R-hFc-IgG1-Mod#1、Mod#2、Mod#3和Mod#4的四个工业级稳定细胞系池。在潮霉素选择下保持经过转染的细胞2-3周。测量在1μg/ml香豆酸(cum)(用于诱导蛋白质产生)存在下培养的细胞的上清液中每一种经过修饰的sIGF1R-hFc-IgG1蛋白质的产量。培养8天之后,在条件培养基中经过修饰的sIGF1R-hFc-IgG1Mod#1、Mod#2、Mod#3和Mod#4的蛋白质浓度分别为21μg/ml、17μg/ml、20μg/ml和31μg/ml。预期这些生产细胞池的亚克隆和高生产者克隆的选择可以使所选蛋白质的产量增加3-5倍。
实施例16.使用表面等离子共振测定经过修饰的 sIGF1R-hFc-IgG1蛋白的结合亲和力。
如以上所论述,经修饰融合蛋白Mod#1和Mod#3在sIGF1R-hFc-IgG1蛋白的预期MW处产生一个主要带,并且未检测到HMW物质的产生。为了确定这些经修饰蛋白质的结合亲和力(并且因此生物活性)相比亲本蛋白是否未改变,将全部四种经修饰蛋白质(Mod#1、Mod#2、Mod#3和Mod#4)通过胺偶合到表面等离子共振(SPR)传感器上并使用快速、单循环筛选来比较这4种经修饰蛋白质的特征(图33)。这些结果显示,这4种经修饰蛋白质(Mod#1、Mod#2、Mod#3和Mod#4)对配体具有类似的结合亲和力,并且其结合亲和力也高度类似于诱捕蛋白H(亲本诱捕蛋白,用作正对照)的结合亲和力。在所有情形中,特异性、剂量依赖性结合反应在hIGF-1存在下最强(表II),对于其它配体(hIGF-2、mIGF-1、人胰岛素)较弱,并且在麦芽糖结合蛋白(MBP;负对照)存在下未观察到结合反应。
表II.有关IGF1R配体与固定的sIGF1R-hFc-IgG1蛋白的结合的平衡解离常数(KD+/-标准误差)。在BIAevaluation软件中,将实验数据(5点单循环SPR滴定;n=2)与“1:1滴定”模型相拟合。
基于有关这四种经修饰蛋白质的SDS-PAGE分析以及快速、单循环筛选的结果,选出Mod#3和Mod#4蛋白质用于更深入的多循环测试(图34、35;表III)。与关于诱捕蛋白H所观察到的结果一致,hIGF-1与Mod#3和Mod#4的结合亲和力最高(约6nM;表III);在hIGF-2(约37nM)和mIGF-1(约150nM)存在下观察到较弱的结合;而与人胰岛素(约7uM)的结合亲和力是与hIGF-I的结合亲和力的约1/100。
表III.有关IGF1R配体与固定的sIGF1R-hFc-IgG1蛋白的结合的平衡解离常数(KD+/-标准误差)。在BIAevaluation软件中,将实验数据(10点(hIGF-1和hIGF-2)或5点(mIGF-1和h-胰岛素)多循环SPR滴定;n=2)与“1:1动力学”模型相拟合。
本文提到的所有参考文献和文件都是以引用的方式整体并入本文中。
尽管已经结合本发明的具体实施方案来描述本发明,但应理解,其能够进一步修改并且本申请意欲涵盖总体上遵循本发明的原理的本发明的任何变更、应用或改编,并且包括如在本发明所属领域内的已知或常规实践范围内并且可以应用于此前所陈述的基本特征以及在以下所附权利要求书范围内的与本发明的那些偏离。

Claims (73)

1.一种包含抗体的Fc部分和可溶性IGF-IR蛋白的融合蛋白,其中所述融合蛋白包含SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16或SEQ ID NO:18中所陈述的序列。
2.一种包含抗体的Fc部分和可溶性IGF-IR蛋白的融合蛋白,其中所述融合蛋白由SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16或SEQ ID NO:18中所陈述的序列组成。
3.一种如权利要求1或2所限定的融合蛋白的生物活性片段或类似物。
4.如权利要求3所述的生物活性片段或类似物,其中所述生物活性片段或类似物与所述融合蛋白具有至少70%、至少80%、至少90%、至少95%或至少98%的序列同一性。
5.如权利要求3或4所述的生物活性片段或类似物,其中所述生物活性片段或类似物保持所述融合蛋白的结合特异性。
6.一种编码如权利要求1至5中任一项所限定的融合蛋白或其生物活性片段或类似物的核酸。
7.如权利要求6所述的核酸,其中所述核酸具有SEQ ID NO:11、13、15或17中所陈述的序列,或为其简并变体。
8.一种包含SEQ ID NO:11、13、15或17中所陈述的序列的核酸或其简并变体。
9.一种由SEQ ID NO:11、13、15或17中所陈述的序列组成的核酸或其简并变体。
10.一种核酸,所述核酸与SEQ ID NO:11、13、15或17中所陈述的序列具有至少70%、至少80%、至少90%、至少95%或至少98%的序列同一性。
11.如权利要求8至10中任一项所述的核酸,其中所述核酸编码具有如权利要求1或2中所限定的融合蛋白的生物活性或结合特异性的多肽。
12.一种药物组合物,其包含如权利要求1至5中任一项所限定的融合蛋白或其生物活性片段或类似物,及药学上可接受的载剂。
13.如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物或如权利要求12所述的药物组合物用于治疗受试者的血管生成相关病症或转移性疾病的用途。
14.如权利要求13所述的用途,其中所述融合蛋白或其生物活性片段或类似物或所述组合物被用于治疗肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、多发性骨髓瘤、多形性成胶质细胞瘤、肝性癌、肝癌、膀胱癌、肺癌或胰腺癌。
15.如权利要求14所述的用途,其中所述肝性癌是肝转移。
16.一种抑制患有血管生成相关病症的受试者的血管生成的方法,其包括向所述受试者施用治疗有效量的如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物。
17.如权利要求16所述的方法,其中所述血管生成相关病症是癌症。
18.如权利要求16所述的方法,其中所述血管生成相关病症是肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、多发性骨髓瘤、多形性成胶质细胞瘤、肝性癌、肝癌、膀胱癌、肺癌或胰腺癌。
19.如权利要求18所述的方法,其中所述肝性癌是肝转移。
20.如权利要求16至19中任一项所述的方法,另外包括施用所述融合蛋白或其生物活性片段或类似物与另一血管生成抑制剂的组合。
21.一种抑制患有血管生成相关病症的受试者的血管生成的方法,其包括向所述受试者施用被遗传修饰成表达如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物的自体细胞。
22.如权利要求21所述的方法,其中所述自体细胞是骨髓源性间充质基质细胞。
23.如权利要求21或22所述的方法,其中所述血管生成相关病症是癌症。
24.如权利要求23所述的方法,其中所述癌症是肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、多发性骨髓瘤、多形性成胶质细胞瘤、肝性癌、肝癌、膀胱癌、肺癌或胰腺癌。
25.如权利要求24所述的方法,其中所述肝性癌是肝转移。
26.如权利要求21至25中任一项所述的方法,其另外包括施用所述融合蛋白或其生物活性片段或类似物与另一血管生成抑制剂的组合。
27.一种治疗有需要的受试者的癌症的方法,其包括向所述受试者施用如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物。
28.如权利要求27所述的方法,其中所述癌症是转移性疾病。
29.如权利要求27所述的方法,其中所述癌症是肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、肝癌、膀胱癌、肺癌、胰腺癌、多发性骨髓瘤、多形性成胶质细胞瘤或肝转移。
30.如权利要求27至29中任一项所述的方法,其另外包括施用所述融合蛋白或其生物活性片段或类似物与血管生成抑制剂的组合,其中所述血管生成抑制剂和所述融合蛋白或其生物活性片段或类似物同时或依序施用。
31.如权利要求20或26所述的方法,其中所述融合蛋白或其生物活性片段或类似物和所述另一血管生成抑制剂同时或依序施用。
32.一种预防或治疗受试者的血管生成相关病症的方法,所述方法包括向所述受试者施用如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物,其中所述受试者体内的血管生成受到抑制,使得所述血管生成相关病症得到预防或治疗。
33.一种预防或治疗受试者的肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、多发性骨髓瘤、多形性成胶质细胞瘤、肝性癌、肝癌、膀胱癌、肺癌或胰腺癌的方法,所述方法包括向所述受试者施用如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物,使得肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、多发性骨髓瘤、多形性成胶质细胞瘤、肝性癌、肝癌、膀胱癌、肺癌或胰腺癌得到预防或治疗。
34.如权利要求16至33中任一项所述的方法,其中所述融合蛋白或其生物活性片段或类似物经由注射施用。
35.如权利要求34所述的方法,其中所述注射经静脉内或腹膜内。
36.如权利要求16至33中任一项所述的方法,其中所述融合蛋白或其生物活性片段或类似物口服施用。
37.如权利要求16至36中任一项所述的方法,其另外包括施用所述融合蛋白或其生物活性片段或类似物与一种或多种其它抗癌剂或疗法的组合。
38.如权利要求37所述的方法,其中所述融合蛋白或其生物活性片段或类似物和所述一种或多种其它抗癌剂或疗法同时或依序施用。
39.如权利要求37或38所述的方法,其中所述抗癌剂或疗法是手术、放射学、化学疗法或靶向性癌症治疗。
40.如权利要求39所述的方法,其中所述靶向性癌症治疗是小分子、单克隆抗体、癌症疫苗、反义核苷酸、siRNA、适体或基因疗法。
41.一种用于治疗受试者的转移的药物组合物,其包含如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物;及药学上可接受的载剂。
42.一种用于治疗受试者的癌症的药物组合物,其包含如权利要求1至5中任一项所述的融合蛋白或其生物活性片段或类似物;及药学上可接受的载剂。
43.如权利要求42所述的药物组合物,其中所述癌症是肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、多发性骨髓瘤、多形性成胶质细胞瘤、肝性癌、肝癌、膀胱癌、肺癌或胰腺癌。
44.如权利要求43所述的药物组合物,其中所述肝性癌是肝转移。
45.一种包含SEQ ID NO:11、13、15或17中所陈述的序列或其简并变体的载体。
46.一种包含抗体的Fc部分和可溶性IGF-IR蛋白的融合蛋白。
47.如权利要求46所述的融合蛋白,其中所述抗体是人IgG抗体。
48.如权利要求47所述的融合蛋白,其中所述抗体是IgG1或IgG2抗体。
49.如权利要求46至48中任一项所述的融合蛋白,其中所述融合蛋白特异性结合IGF-1和IGF-2。
50.如权利要求46至49中任一项所述的融合蛋白,其中所述融合蛋白以至少大致相同的亲和力结合IGF-1和IGF-2,或其中所述融合蛋白对IGF-2的亲和力高于所述融合蛋白对IGF-1的亲和力。
51.如权利要求46至50中任一项所述的融合蛋白,其中所述融合蛋白对胰岛素的亲和力是所述融合蛋白对IGF-1或IGF-2的亲和力的至少约1/1000。
52.如权利要求46至51中任一项所述的融合蛋白,其中所述融合蛋白与胰岛素的结合是不可检测的。
53.如权利要求46至52中任一项所述的融合蛋白,其中所述可溶性IGF-IR蛋白包含具有所述氨基酸序列SEQ ID NO:1或6的IGF-IR的细胞外结构域,或其生物活性片段或类似物,和/或其中所述可溶性IGF-IR蛋白形成SEQ ID NO:1或6的所述四聚体结构。
54.如权利要求46至53中任一项所述的融合蛋白,其中所述可溶性IGF-IR蛋白由SEQ ID NO:1或6,或其生物活性片段或类似物组成。
55.如权利要求46至54中任一项所述的融合蛋白,其中所述可溶性IGF-IR蛋白包含具有所述氨基酸序列SEQ ID NO:4的IGF-IR的细胞外结构域,或其生物活性片段或类似物。
56.如权利要求46至55中任一项所述的融合蛋白,其中所述可溶性IGF-IR蛋白形成SEQ ID NO:1或6的所述四聚体结构。
57.如权利要求46至52和56中任一项所述的融合蛋白,其中所述可溶性IGF-IR蛋白由SEQ ID NO:1或6,或其生物活性片段或类似物组成。
58.如权利要求46所述的融合蛋白,其中所述融合蛋白包含SEQID NO:8或SEQ ID NO:10中所陈述的序列。
59.如权利要求1所述的融合蛋白,其中所述融合蛋白由SEQ IDNO:8或SEQ ID NO:10中所陈述的序列组成。
60.一种如权利要求46至59中任一项所限定的融合蛋白的生物活性片段或类似物。
61.如权利要求60所述的生物活性片段或类似物,其中所述生物活性片段或类似物与所述融合蛋白具有至少70%、至少80%、至少90%、至少95%或至少98%的序列同一性。
62.如权利要求60或61所述的生物活性片段或类似物,其中所述生物活性片段或类似物保持所述融合蛋白的结合特异性。
63.一种编码如权利要求46至62中任一项所限定的融合蛋白或其生物活性片段或类似物的核酸。
64.如权利要求46至63中任一项所限定的融合蛋白或其生物活性片段或类似物,其中所述融合蛋白或其生物活性片段或类似物由具有SEQ ID NO:5、7或9中所陈述的序列的核酸或其简并变体编码。
65.一种具有SEQ ID NO:5、7或9中所陈述的核苷酸序列的核酸或其简并变体。
66.一种药物组合物,其包含如权利要求46至62和64中任一项所限定的融合蛋白或其生物活性片段或类似物,及药学上可接受的载剂。
67.一种用于治疗受试者的癌症的药物组合物,其包含如权利要求46至62和64中任一项所限定的融合蛋白或其生物活性片段或类似物,及药学上可接受的载剂。
68.一种抑制患有血管生成相关病症的受试者的血管生成的方法,其包括向所述受试者施用治疗有效量的如权利要求46至62和64中任一项所限定的融合蛋白或其生物活性片段或类似物。
69.一种治疗有需要的受试者的癌症的方法,其包括向所述受试者施用如权利要求46至62和64中任一项所限定的融合蛋白或其生物活性片段或类似物。
70.如权利要求68所述的方法,其中所述血管生成相关病症是癌症。
71.如权利要求70所述的方法,其中所述癌症是肿瘤转移、结肠直肠癌瘤、肺癌瘤、乳癌、肝癌、膀胱癌、肺癌、胰腺癌、多发性骨髓瘤、多形性成胶质细胞瘤或肝转移。
72.如权利要求68至71中任一项所述的方法,其中所述融合蛋白或其生物活性片段或类似物经由静脉内注射、腹膜内注射或口服施用。
73.如权利要求68至72中任一项所述的方法,其中所述融合蛋白或其生物活性片段或类似物与一种或多种其它抗癌剂或疗法组合施用。
CN201280067765.6A 2011-12-15 2012-12-14 可溶性IGF受体Fc融合蛋白和其用途 Pending CN104066845A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161576034P 2011-12-15 2011-12-15
US61/576,034 2011-12-15
PCT/CA2012/050899 WO2013086636A1 (en) 2011-12-15 2012-12-14 Soluble igf receptor fc fusion proteins and uses thereof

Publications (1)

Publication Number Publication Date
CN104066845A true CN104066845A (zh) 2014-09-24

Family

ID=48611766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280067765.6A Pending CN104066845A (zh) 2011-12-15 2012-12-14 可溶性IGF受体Fc融合蛋白和其用途

Country Status (9)

Country Link
US (1) US10538575B2 (zh)
EP (1) EP2791338B1 (zh)
JP (1) JP2015505843A (zh)
KR (1) KR20150031217A (zh)
CN (1) CN104066845A (zh)
BR (1) BR112014014418A2 (zh)
CA (1) CA2858389A1 (zh)
HK (1) HK1202587A1 (zh)
WO (1) WO2013086636A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520806A (zh) * 2016-11-03 2017-03-22 山东维真生物科技有限公司 一种重组car基因及其载体、car‑t细胞和应用
CN107108718A (zh) * 2014-12-08 2017-08-29 北京强新生物科技有限公司 可溶性通用的增强adcc的合成融合基因和融合肽的技术及其应用
CN107921094A (zh) * 2015-06-04 2018-04-17 圣拉斐尔医院有限公司 Igfbp3及其用途
CN113092392A (zh) * 2021-03-05 2021-07-09 苏州西山中科药物研究开发有限公司 一种检测猴血清中靶向可溶性蛋白的单克隆抗体药物总浓度的通用型方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566082B2 (en) 2014-11-17 2023-01-31 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
AU2016272045B2 (en) * 2015-06-04 2018-04-19 Ospedale San Raffaele Srl Inhibitor of IGFBP3/TMEM219 axis and diabetes
US10730908B2 (en) 2016-05-11 2020-08-04 Ge Healthcare Bioprocess R&D Ab Separation method
US10703774B2 (en) 2016-09-30 2020-07-07 Ge Healthcare Bioprocess R&D Ab Separation method
ES2874974T3 (es) 2016-05-11 2021-11-05 Cytiva Bioprocess R & D Ab Matriz de separación
US10889615B2 (en) 2016-05-11 2021-01-12 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
WO2017194592A1 (en) 2016-05-11 2017-11-16 Ge Healthcare Bioprocess R&D Ab Method of storing a separation matrix
US10654887B2 (en) 2016-05-11 2020-05-19 Ge Healthcare Bio-Process R&D Ab Separation matrix
CN109311948B (zh) 2016-05-11 2022-09-16 思拓凡生物工艺研发有限公司 清洁和/或消毒分离基质的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010012088A1 (en) * 2008-07-29 2010-02-04 The Royal Institution For The Advancement Of Learning/Mcgill University Apparatus and method for loading and transporting containers
CN101855244A (zh) * 2007-08-01 2010-10-06 葛兰素集团有限公司 新型抗体
CN102171247A (zh) * 2008-07-02 2011-08-31 特鲁比昂药品公司 TNF-α拮抗剂多靶点结合蛋白

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861267A4 (en) 1995-11-14 2000-02-02 Univ Jefferson INDUCTION AND RESISTANCE TO TUMOR GROWTH BY MEANS OF SOLUBLE IGF-1
DE602004013372T2 (de) * 2003-12-30 2009-07-02 Merck Patent Gmbh Il-7-fusionsproteine mit antikörperportionen, deren herstellung und deren verwendung
MY146381A (en) * 2004-12-22 2012-08-15 Amgen Inc Compositions and methods relating relating to anti-igf-1 receptor antibodies
MX2008002101A (es) * 2005-08-12 2008-04-19 Schering Corp Fusiones de la proteina-1 quimiotactica de monocito.
TW200722436A (en) * 2005-10-21 2007-06-16 Hoffmann La Roche A peptide-immunoglobulin-conjugate
PE20090107A1 (es) * 2007-02-14 2009-03-20 Glaxo Group Ltd Anticuerpos de union al antigeno igf-1r
GB0702888D0 (en) * 2007-02-14 2007-03-28 Glaxo Group Ltd Novel Antibodies
JP2010520204A (ja) 2007-03-02 2010-06-10 アムジェン インコーポレイテッド 腫瘍疾患を治療するための方法および組成物
KR20110044992A (ko) 2008-07-02 2011-05-03 이머전트 프로덕트 디벨롭먼트 시애틀, 엘엘씨 TGF-β 길항제 다중-표적 결합 단백질
US9260522B2 (en) * 2008-10-01 2016-02-16 Amgen Research (Munich) Gmbh Bispecific single chain antibodies with specificity for high molecular weight target antigens
EP2435477A1 (en) * 2009-05-28 2012-04-04 Glaxo Group Limited Antigen-binding proteins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855244A (zh) * 2007-08-01 2010-10-06 葛兰素集团有限公司 新型抗体
CN102171247A (zh) * 2008-07-02 2011-08-31 特鲁比昂药品公司 TNF-α拮抗剂多靶点结合蛋白
WO2010012088A1 (en) * 2008-07-29 2010-02-04 The Royal Institution For The Advancement Of Learning/Mcgill University Apparatus and method for loading and transporting containers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NI WANG ET AL.: "Autologous Bone Marrow Stromal Cells Genetically Engineered to Secrete an IGF-I Receptor Decoy Prevent the Growth of Liver Metastases", 《MOLECULAR THERAPY》, vol. 17, no. 7, 31 December 2009 (2009-12-31) *
SAMANI AA ET AL.: "Loss of tumorigenicity and metastatic potential in carcinoma cells expressing the extracellular domain of the type 1 insulin-like growth factor receptor", 《CANCER RES》, no. 64, 15 May 2004 (2004-05-15) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107108718A (zh) * 2014-12-08 2017-08-29 北京强新生物科技有限公司 可溶性通用的增强adcc的合成融合基因和融合肽的技术及其应用
CN107108718B (zh) * 2014-12-08 2022-07-22 北京强新生物科技有限公司 可溶性通用的增强adcc的合成融合基因和融合肽的技术及其应用
CN107921094A (zh) * 2015-06-04 2018-04-17 圣拉斐尔医院有限公司 Igfbp3及其用途
CN106520806A (zh) * 2016-11-03 2017-03-22 山东维真生物科技有限公司 一种重组car基因及其载体、car‑t细胞和应用
CN113092392A (zh) * 2021-03-05 2021-07-09 苏州西山中科药物研究开发有限公司 一种检测猴血清中靶向可溶性蛋白的单克隆抗体药物总浓度的通用型方法

Also Published As

Publication number Publication date
HK1202587A1 (zh) 2015-10-02
EP2791338B1 (en) 2019-02-20
US20150044209A1 (en) 2015-02-12
CA2858389A1 (en) 2013-06-20
US10538575B2 (en) 2020-01-21
EP2791338A1 (en) 2014-10-22
KR20150031217A (ko) 2015-03-23
JP2015505843A (ja) 2015-02-26
WO2013086636A1 (en) 2013-06-20
EP2791338A4 (en) 2015-12-02
BR112014014418A2 (pt) 2019-09-24

Similar Documents

Publication Publication Date Title
CN104066845A (zh) 可溶性IGF受体Fc融合蛋白和其用途
Shimamoto et al. Peptibodies: A flexible alternative format to antibodies
KR102424590B1 (ko) 미오스타틴에 결합하는 피브로넥틴 기반 스캐폴드 도메인 단백질
CN104066438B (zh) 抗糖尿病化合物
CA2404945C (en) Taci as an anti-tumor agent
CN110229238A (zh) 人成纤维细胞生长因子21融合蛋白及其制备方法与用途
Garrett et al. Novel engineered trastuzumab conformational epitopes demonstrate in vitro and in vivo antitumor properties against HER-2/neu
BR112019021182A2 (pt) Agentes de anticorpo anti-cd33
CN107286248B (zh) 高糖基化人生长激素融合蛋白及其制备方法与用途
US20120189634A1 (en) Taci as an anti-tumor agent
SK55195A3 (en) Growth factor antagonists of vascular endotel cells
AU2001253920A1 (en) Use of taci as an anti-tumor agent
RU2677800C2 (ru) Сайт-специфичный конъюгат инсулина
CN108623691A (zh) IgG样长效免疫融合蛋白及其应用
JP2002536018A (ja) グリコシル化レプチン組成物および関連する方法
EA006703B1 (ru) СПОСОБ ЛЕЧЕНИЯ ИНДИВИДУУМА, СТРАДАЮЩЕГО ОТ ВЫЗВАННОГО ВИРУСОМ СИСТЕМНОГО ШОКА И/ИЛИ РАССТРОЙСТВА ДЫХАНИЯ, И СПОСОБ ИНДУЦИРОВАНИЯ ПРОТИВОВИРУСНОГО ОТВЕТА У ДАННОГО ИНДИВИДУУМА ПУТЕМ БЛОКАДЫ ПУТИ МЕТАБОЛИЗМА ЛИМФОТОКСИНА-β
KR20180136418A (ko) hGH 융합단백질을 포함하는 성장호르몬 결핍을 치료하기 위한 약학 조성물
TWI777407B (zh) 長效型多肽及其生產和給藥的方法
KR20180135839A (ko) hGH 융합단백질을 포함하는 성장호르몬 결핍을 치료하기 위한 약학 조성물
EP1746106A2 (en) Use of TACI as an anti-tumor agent
KR20230042291A (ko) Fgfr1/klb 표적화 효능작용 항원-결합 단백질 및 그와 glp-1r 효능작용 펩티드의 접합체
WO2023247640A1 (en) Single chain insulins and fc conjugates thereof
WO2024059149A2 (en) Immunogenic coronavirus fusion proteins and related methods
TW202417519A (zh) 單鏈胰島素及其Fc接合物
Zhou Developing Recombinant Single Chain Fc-Dimer Fusion Proteins for Improved Protein Drug Delivery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140924

WD01 Invention patent application deemed withdrawn after publication