CN104066812A - 利用原位氮气生成的致密气增产 - Google Patents

利用原位氮气生成的致密气增产 Download PDF

Info

Publication number
CN104066812A
CN104066812A CN201280057766.2A CN201280057766A CN104066812A CN 104066812 A CN104066812 A CN 104066812A CN 201280057766 A CN201280057766 A CN 201280057766A CN 104066812 A CN104066812 A CN 104066812A
Authority
CN
China
Prior art keywords
compound
ammonium
stratum
nitrite
compound containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280057766.2A
Other languages
English (en)
Other versions
CN104066812B (zh
Inventor
艾曼·拉贾·阿勒-纳赫利
哈泽姆·候赛因·阿巴斯
阿里·阿卜杜拉·埃-塔克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of CN104066812A publication Critical patent/CN104066812A/zh
Application granted granted Critical
Publication of CN104066812B publication Critical patent/CN104066812B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/008Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using chemical heat generating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Air Bags (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了用于在致密气层中原位形成人工最佳钻探点的方法和组合物。该组合物可以包含氮气生成化合物,其在激活时发生反应以生成热和氮气。使用该组合物的方法包括将该组合物注入致密气层中,以使其在激活时生成热和氮气。当在地层内部生成氮气和热时,会在地层内部形成微裂缝,并且储层内部的静水压力降低至小于储层流体压力,从而提高了来自该地层的烃产率。

Description

利用原位氮气生成的致密气增产
技术领域
本发明涉及气井增产和用于油气藏(包括液井和气井)增产的组合物。
背景技术
随着世界范围内的石油储量下降,石油的找寻和采收正日益变得困难。在许多情况下,困在某些低渗透性地层(如某些砂岩地层、碳酸盐地层和/或页岩地层)内部的储量显示出很少的产量或不显示产量,并且因此在经济上以当前的石油和气体价格开发是不利的。在某些非常规地层中,如低渗透性地层中,确定开发储层是否将经济可行的最重要的要素是找到储层中的最佳钻探点(sweet spot)。当找到最佳钻探点时,才能确认致密气井可能在商业上是可行的。最佳钻探点在本文中通常定义为储层内部代表最佳产量或潜在产量的区域。不幸地,当前技术不能定位或预测给定地层内何时及何处存在最佳钻探点。
在致密储层中,由于地层的低渗透性,井产能一般较低,因此从开发的观点看,使得该井是不经济的。增产处理是可以用来提高井产能并提高井开发的经济性的一种已知方法。用于使低产井增产的一种常用技术是水力压裂,水力压裂通常涉及将高粘度流体以足够高的速度注入井中,从而在井筒内部建立起足够高的压力以使地层碎裂。产生的水力诱导裂缝从井筒延伸至地层深处。本领域技术人员可以基于诱导裂缝的所需高度和长度来设计增产工作。
增产程序可以采用若干技术以确保诱导裂缝在注入停止时具有导流性。例如,在碳酸盐地层的酸化压裂过程中,将基于酸的流体注入地层中以产生酸蚀裂缝和导流通道,当裂缝闭合时导流通道保持张开。在用于砂岩地层或页岩地层时,压裂液中可包含支撑剂,从而使得在诱导裂缝闭合时使其保持张开。然而,这些方法的应用有限。例如,由于页岩地层和砂岩地层不与酸反应,因此一般不使用酸增产流体,而是仅采用含有支撑剂的水力压裂。然而,在碳酸盐地层中,酸化压裂液和支撑剂均可以使用。然而,这些技术通常所使用的化学品要求充分措施以确保对地层和周围区域的环境影响较低。
因而,额外需要增强致密气层内的开采以增强其产量。特别地,需要对环境影响小的方法和组合物以用于形成人工最佳钻探点(synthetic sweet spot)。
发明内容
总体上,本发明提供了用于形成人工最佳钻探点的方法和组合物。
在一个方面,提供了用于在致密气井内原位生成氮气的反应混合物。该反应混合物可以包含含铵的化合物、含亚硝酸根的化合物;和释放氢的激活物(hydrogen releasing activator)。含铵的化合物和含亚硝酸根的化合物中的至少一者被涂料包封,该涂料能够有效延迟含铵的化合物和含亚硝酸根的化合物的反应。
在某些实施方案中,含铵的化合物是氯化铵。在某些实施方案中,含亚硝酸根的化合物是亚硝酸钠。在某些实施方案中,包封含铵的化合物和含亚硝酸根的化合物中的至少一者的涂料为选自瓜尔胶、壳聚糖、聚乙烯醇和类似化合物的聚合物。在某些其他实施方案中,包封含铵的化合物和含亚硝酸根的化合物中的至少一者的涂料选自55-羧甲基纤维素、黄原胶和类似化合物。在某些实施方案中,激活物选自乙酸和氢氯酸。
在另一个方面,提供了一种用于使致密气层中的气体增产的方法,所述方法包括以下步骤:将含有含铵的化合物和含亚硝酸根的化合物的水溶液注入地层中,其中所述含铵的化合物和所述含亚硝酸根的化合物中的至少一者包括能够有效延迟其二者之间的反应的涂料;并且随后将激活物注入地层中,所述激活物能够引发所述含铵的化合物和所述含亚硝酸根的化合物之间的反应,从而使该反应生成热和氮气。当在地层内部生成氮气和热时,在地层内部产生微裂缝并且储层内部的静水压力降低至小于储层流体压力,从而使来自地层的烃的产率增加。
在某些实施方案中,该方法还包括如下步骤:首先将水性压裂液注入致密气层中,其中所述水性压裂液包含水和压裂聚合物凝胶(fracturing polymer gel),其中以足够高的速度和压力进行注入水性压裂液的步骤以使地层碎裂。在某些实施方案中,含铵的化合物与含亚硝酸根的化合物的比率为约1.1:1至1:1.1。在某些实施方案中,激活物为弱酸和弱酸盐,所述弱酸和弱酸盐的含量比例可提供这样的酸性溶液pH值,其中所述含铵的化合物和含亚硝酸根离子的化合物在该酸性溶液pH值下发生反应。在某些实施方案中,弱酸和弱酸盐的混合物以可提供弱酸水溶液的浓度存在,该弱酸水溶液能够使与井内部产生的裂缝内或裂缝周围接触的材料进行弱酸储层酸化(weak acidreservoir acidization)。在某些实施方案中,将弱酸和弱酸盐的混合物以浓度为约2体积%至10体积%的溶液注入地层。在某些实施方案中,含铵的化合物为氯化铵并且含亚硝酸根的化合物为亚硝酸钠。
附图说明
图1为一个实施方案的示意图。
图2为一个实施方案的示意图。
图3为图2中所示出的实施方案的俯视示意图。
图4为一个实施方案的示意图。
图5为一个实施方案的示意图。
图6为示出了根据一个实施方案的氮气生成反应的热动力曲线的图。
图7为示出了根据一个实施方案的氮气生成反应的压力曲线的图。
图8为示出了一个实施中累积孔体积与核心压力(core pressure)之间的关系的图。
具体实施方式
尽管以下详细说明为了示例的目的包括很多具体细节,但是应当理解,本领域技术人员能够理解,许多例子、以下细节的变体和替代形式在本发明的范围和精神之内。因此,本文所述的以及附图中提供的本发明的示例性实施方案并没有破坏所要求的本发明的共性并且也不限制所要求的本发明。
本文所述的方法涉及在水力压裂过程期间诱发的裂缝处或其附近形成最佳钻探点。当在水力压裂处理期间利用本发明技术时,可以形成人工最佳钻探点,因而增强了产量并且最大程度地增强了气体开采。本文所述的工艺和技术因此可以大大增加从低渗透性储层中采收气体的机会并且将提高其开发的经济性。
图1为用于水力压裂操作的井筒的示意图,其中将粘稠流体,优选为水性流体以高流速注入井筒100中,从而在井筒内产生足够的压力以在地层中形成裂缝。通常,如水力压裂区域101中所示,水力压裂期间生成的裂缝可以延伸至地层中。例如,如图1中所显示,示出了裂缝102的长度延伸至地层中。在一些实施方案中,裂缝的长度可以延伸达25米至100米。另外,可以这样设计水力压裂过程,使得裂缝由井筒沿多个方向向外延伸。
因而,本文提供了用于使致密气井增产以形成人工最佳钻探点从而提高井产量的方法和组合物。在某些实施方案中,该方法和组合物可以与标准水力压裂技术联合使用。例如,井增产方法可以涉及以下步骤:首先将流体以足够高的注入速率注入井口,以在井筒中建立足够高的压力,使之穿过经处理的地层,从而在该地层中引发水力裂缝并使之延伸。
在一个实施方案中,提供了一种在致密气层内部形成人工最佳钻探点的方法。该方法利用了注射本发明组合物的步骤,其中本发明组合物利用了氧化还原反应(在本文中也称作ReDox组合物)以在致密气层内部原位生成氮气,由此产生局部压力区域。通过在地层内部形成这种局部区域压力,使得附近岩层中出现微裂缝;因而改善了地层的近裂缝表面的渗透性。该方法可以包括以下步骤:向地层供给组合物,该组合物包含含有铵离子的化合物和含有亚硝酸根离子的化合物,所述化合物随后可以发生放热反应并生成气态氮。在某些实施方案中,可将全部或一部分的氧化-还原组合物引入压裂液中并且在水力压裂处理期间注入。
图2示出了在裂缝114中扩展并由此延伸的微裂缝112,其中裂缝114是由水力压裂过程产生的,由此形成了最佳钻探点116。通常,取决于反应物和由其形成的氮气体积,微裂缝112可以由在水力压裂期间产生的初始裂缝起延伸遍布于伪裂缝宽度(pseudo fracturewidth)118。图3类似地示出了其俯视图。
图4为示出了在地层内部形成最佳钻探点116的另一个示意图。该图示出了可以延伸穿过地层的裂缝102的长度。在一些实施方案中,裂缝102的长度可以延伸达100米。在一些实施方案中,裂缝102的长度可以延伸达50米。在一些实施方案中,裂缝102的长度可以延伸达25米。该图示出了导致利用已知压裂技术的裂缝宽度120。在一些实施方案中,该裂缝宽度为约0.5厘米。在其他实施方案中,该裂缝宽度小于0.5厘米。然而,通过利用本文所述的组合物和方法,提供了令人惊讶的伪裂缝宽度118,从而在裂缝位置处及其周围产生了最佳钻探点。在一些实施方案中,该伪裂缝宽度为1-3米。
氮气和热的原位生成(以及由此造成的地层内部反应位置处的压力增加)增加了致密气层的渗透性。通过反应生成的热和气体可以在地层中水力诱导的裂缝和现存裂缝内部造成张裂缝和热裂缝(tensile and thermal fractures)。可以理解的是,地层内部微裂缝的生成可取决于被处理的地层的类型。
在某些实施方案中,该方法包括如下步骤:将还原剂(或还原试剂)和氧化剂(或氧化试剂)注入地层中,随后注入激活物。在某些实施方案中,激活物可以是酸。在某些实施方案中,可以由地层单独或额外地供给热,或通过独立手段供给热以作为激活物。基液(basefluids)(即,氧化剂和还原剂)和激活物可以在水力压裂期间注入地层中并且进入新产生的水力裂缝中。一旦激活物被注入地层中并且与氧化剂和还原剂接触,则氧化/还原反应开始进行并且产生大量气体和热。所生成的气体和局部低渗透率有利于井压增加,因此促使在诱导裂缝处或其附近开始出现微裂缝。其结果是使裂缝表面增产,而非损伤地层,而后者在水力压裂期间经常出现。在许多方面中,本文提供的增产方法并没有现有增产技术严苛,并且减少或消除了现有技术中经常遇到的地层损伤。这使得在地层内部裂缝附近获得额外的流通性。这是本文所公开的方法优于现有增产方法的额外优点。
图5示出了氮气在地层内部的预期释放,其中预测氮气在水力压裂期间移动至在地层内部形成的裂缝中从而在地层中形成额外的微裂缝。现在参考图5,井筒104位于地层102内。钻杆106位于井筒104内部。在水力压裂过程后,在地层102内部存在大的裂缝110,其由井筒104向外延伸。将诸如包含铵化合物、亚硝酸盐化合物和激活物的组合物之类的氮生成流体注入地层中,该流体在地层中的裂缝110内移动。在进行反应时,注入的流体产生氮气和热,由此使得在地层内部形成微裂缝112,由此为困在地层内部的烃分子提供迁移和开采的途径。
在又一个实施方案中,可以将包含铵离子、亚硝酸根离子和乙酸的组合物注入地层中,其中铵离子和/或亚硝酸根离子中的至少一者被包封起来。可以理解的是,本文所用的术语“铵离子”和“亚硝酸根离子”指其中包含反离子的离子化合物,例如,铵离子以氯化铵的形式供给。合适的包封材料可以包括水合聚合物,如瓜尔胶、壳聚糖和聚乙烯醇。在某些实施方案中,优选地使用前文所列的水合聚合物包封材料作为含有亚硝酸根离子的化合物(如亚硝酸钠)的包封剂。在替代实施方案中,诸如羧甲基纤维素或黄原胶之类的粘合剂可以用作包封剂。在某些实施方案中,羧甲基纤维素或黄原胶可以为用于含有铵离子的化合物(如氯化铵)的优选包封剂。地层的热、用于底层的酸或液态水均可以在包封材料的腐蚀或移除中发挥作用,由此释放反应物。
本文所述的方法和组合物能够释放动能和热能,这是氧化-还原反应的放热本质的结果。在一个实施方案中,例如,将氯化铵和亚硝酸钠的水溶液在酸(H+)存在的情况下混合以生成氮气、氯化钠、水和热。氮气的生成连同升高的温度使得局部孔压力增加以及在致密地层中形成微裂缝。如下为平衡反应。(该反应需要添加酸或热,未显示)。
NH4Cl+NaNO2→N2(g)+NaCl+2H2O+热(75千卡/摩尔)
在典型用途中,对于每1L反应物,上述反应得到局部生成的约60L氮气和约225千卡的热。不希望受理论约束,认为增加的压力和温度克服了地层的拉伸强度,因而使得在地层中形成了张微裂缝(tensile microfracture)。
在一个实施方案中,可以将包含至少一种含铵的化合物和至少一种含亚硝酸根的化合物的多组分组合物注入地层中,其中至少一种组分包含聚合物涂料。在某些实施方案中,聚合物涂料可以发生水合以与组分形成固态基质。示例性的聚合物涂料包括瓜尔胶、壳聚糖、聚乙烯醇和类似化合物。聚合物涂料能够有效地使含铵的化合物和含亚硝酸根的化合物间的反应延迟。在某些实施方案中,该组合物可以包含在注入地层的水溶液中。在替代的实施方案中,该组合物可以包含在水力压裂液中。
图6示出了生成的热与等摩尔量的氯化铵与亚硝酸钠的反应时间的关系。如图所示,温度在反应进行约10分钟后快速地升至峰值,维持高温达约20分钟,并且在接下来的30分钟内缓慢冷却。该图表明可以对由放热反应导致的温度升高进行设计,以确保实现一定的要求温度,从而在地层中产生热裂缝。
图7提供了示出通过氯化铵和亚硝酸钠反应而生成的压力量的图。该试验在高温高压压机中进行。在启动反应之前,将压机设定为200psi。该反应显示反应期间压力逐渐增加约200psi。该图显示随着化学反应所产生的氮气而使压力升高。生成的压力的量与反应物浓度有关,这使得能够设计反应以实现足以在地层内部产生张裂缝的一定压力。
在替代实施方案中,可以将包含至少一种含铵的化合物和至少一种含亚硝酸根的化合物的多组分组合物注入地层中,其中至少一种组分可以被粘合剂包封以与该组分形成固态基质。示例性的包封粘合剂包括55-羧甲基纤维素、黄原胶和类似化合物。示例性粘合剂优选地与酸、水和/或热反应,以使得在与酸或水接触或被加热时,该粘合剂发生侵蚀或溶解,从而能够使反应物反应。
在另一个实施方案中,可以将压裂液注入地层中,该压裂液可任选地包含悬浮于其中的支撑剂。在注入压裂液后,可以将组合物注入地层中,所述组合物包含至少一种含铵的化合物、至少一种含亚硝酸根的化合物和酸(例如,乙酸)。铵离子和亚硝酸根离子中的至少一者被包封。在某些实施方案中,可以在注入压裂液之后,将溶液直接注入地层中,所述溶液包含含有铵离子和亚硝酸根离子的组合物。在替代实施方案中,可以在压裂液注入完成后大约15分钟,可选地在注入完成后大约30分钟、可选地在注入完成后大约1小时,将含有铵离子和亚硝酸根离子的溶液注入地层中。地层的酸和/或热可以侵蚀包封材料,从而延迟含铵和含亚硝酸根的化合物之间的反应,因而使得反应物迁移并渗入地层内部的裂缝。
在另一个实施方案中,将包含铵离子、亚硝酸根离子和缓冲剂的含水组合物在水力压裂过程中注入地层中。缓冲剂优选为可溶解的,并且与含铵化合物和含亚硝酸根化合物以及所产生的反应产物相容。另外,缓冲剂优选地以足够低的速率释放酸性氢离子,从而使注入的流体在pH值降低至小于约7之前有时间进入地层并迁移至通过水力压裂法产生的裂缝中,然后进行反应。示例性的缓冲剂可以包括乙酸酯,包括乙酸甲酯和乙酸乙酯。水溶液的初始pH值为约7。乙酸甲酯在常见的地层温度下降解并释放乙酸。这是在注入流体后于地层内部深部发生的。在某些实施方案中,可以在反应物中包含大约5体积%的缓冲剂(0.1摩尔溶液)。当缓冲剂在地层内部降解并释放乙酸时,其充当激活物。在较低温度下,例如在约60℃-70℃之间,处于约3至5之间pH值的酸性氢原子可以激活反应。在一些实施方案中,将包含铵离子、亚硝酸根离子和缓冲剂的含水组合物随压裂液一起在水力压裂操作中注入地层。
对于本文所述的每个实施方案,示例性的铵离子包括氢氧化铵、氯化铵、溴化铵、硝酸铵、亚硝酸铵、硫酸铵、碳酸铵、氢氧化铵、脲等。
示例性的亚硝酸根离子包括亚硝酸钠、亚硝酸钾、次氯酸钠等。
本文使用的示例性铵-亚硝酸盐组合可以包括脲-次氯酸钠;脲-亚硝酸钠;氢氧化铵-次氯酸钠;氯化铵-亚硝酸钠等。在某些实施方案中,亚硝酸铵可以用作反应物,其中将包封的亚硝酸铵注入地层中,亚硝酸铵在地层中与酸接触,从而使组分发生反应并生成所需的氮气。
在某些实施方案中,将等摩尔量的含铵的化合物和含亚硝酸根的化合物供给至地层,以确保两种组分完全反应。在替代实施方案中,可以使任一种组分至多过量约5%,然而通常优选使用等摩尔量。因此在某些实施方案中,本文中公开的组合物中铵与亚硝酸根的比率可为约1.1:1至1:1.1;或者为约1.05:1至1:1.05,或者为约1:1。
可以用作反应的激活物的示例性酸包括弱酸(如乙酸、柠檬酸等)、强酸(如氢氯酸等)和稀释的强酸。通常而言,可以使用能够释放酸性氢的任何化合物作激活物。在某些优选的实施方案中,使用乙酸作为激活物。在某些实施方案中,可以利用浓度为(总体积)的约0.5体积%的0.1摩尔乙酸溶液。在某些实施方案中,可以使用稀释的氢氯酸之类的稀释弱酸,在添加或不添加缓冲剂的情况下用来激活该反应。使用稀释强酸的一个主要优点是对反应的控制增加。
在某些实施方案中,本文所述的方法可以利用地层内部升高的温度作为反应的激活物或辅助激活物(连同酸或其他释氢化合物)。例如,在某些实施方案中,地层内部的温度可以为约200℃。在某些实施方案中,温度为至少约60℃,或者为至少约70℃。在某些实施方案中,温度为约60℃至70℃,或者需要为约65℃至80℃。如上文所示,在利用地层温度来激活或启动反应的某些实施方案中,可以使用缓冲剂,从而使酸性氢离子缓慢释放。
在某些实施方案中,本申请中所用的流体可以包含能够有助于形成粘稠压裂液的某些化学添加剂。化学添加剂可以包含至少一种溶剂和可溶解于该溶剂中的至少一种聚合物。压裂液的总组成也可以包含还原剂、氧化剂和激活物。取决于被处理的地层的类型,溶剂也可以包含水和/或表面活性剂。氧化剂可以为含铵的化合物,如氯化铵,并且还原剂可以为含亚硝酸根的化合物,如亚硝酸钠。激活物可以为酸,如氢氯酸或乙酸。聚合物可以与溶剂或水混合以形成粘稠的流体。可以使用的示例性聚合物包括瓜尔胶和羧甲基纤维素。聚合物可以用于包覆至少一种反应物,例如氯化铵,以防止过早反应并且还可以使流体具有更高的粘度。然而,也可以在为压裂目的注入含有聚合物的粘稠溶液之后的稍晚阶段,单独将氧化剂和还原剂注入地层中。在注入氧化剂和还原剂后,可以注入引发剂以触发反应并由此产生人工最佳钻探点。产生的人工最佳钻探点将比周围地层岩石具有更高的压力,而所生成的压力将至少部分被消耗掉以在地层中生成裂缝。然而,如果压力并未高到足以破坏地层,则压力的局部增加类似于最佳钻探点本身,因为压力的增加将有助于开采储层烃。然而,本文所述的方法和组合物的主要意图是生成足够高的压力以引发微裂缝,从而提高地层的孔隙度和渗透率。
通常,在成功的水力压裂过程期间,当完成增产处理时,必须除去井中的压裂液。该过程既昂贵又费时。有利地,可将本文所述的组合物和方法设计为不对地层造成损伤,而考虑到现有压裂技术,这是一项挑战。为了克服这个问题,本文所述的组合物和方法有利地利用了氮气形成化学品(nitrogen generating chemicals)的新组合作为水力压裂液基质(hydraulic fracturing liquid-base)。因而,在某些实施方案中,可以通过井筒或其他注入手段并以足够高的注入速度,将可以包含前述氮气形成化学品的地层压裂液体注入地层中,从而在地层内部产生压力,所述压力可以有效地压裂岩石或打开事先存在的裂缝。随着压裂液渗入地层中,可以触发这些氮气形成化学品以发生反应,由此在地层内部以及新产生的裂缝表面附近生成大量的氮气和热。在某些实施方案中,触发机制可以是来自地层温度的热。在替代实施方案中,触发机制可以是可在压裂过程结束时注入的注入流体,如酸。所产生的氮气和热能够在由水力压裂形成的裂缝处或裂缝附近产生额外的微裂缝或热裂缝。对于每1升的供至该反应的氮气形成化学品,该反应生成至少约200千卡的热和50L的氮气,或者对于每1升的供至该反应的氮气形成化学品,该反应生成约225千卡的热和60L的氮气。
在某些实施方案中,聚合物可以与铵溶液、亚硝酸盐溶液或其组合混合,并且可以充当注入地层中的基液。通常,注入基液后接着注入酸,如氢氯酸或乙酸。因而,在某些实施方案中,水力压裂液可以包含诸如水之类的溶剂基体(solvent base)、聚合物稠化剂和含铵的化合物。在这种实施方案中,在注入压裂液后,将含亚硝酸根的化合物和激活物一次注入地层中,或将其依次注入地层中(即,注入含亚硝酸根的化合物,随后注入引发剂)。
在替代实施方案中,水力压裂液可以包含诸如水之类的溶剂基体(solvent base)、聚合物稠化剂和和含亚硝酸根的化合物。在这种实施方案中,在注入压裂液后,随后将含铵的化合物和激活物一次注入地层中,或将其依次注入地层中(即,首先将含铵的化合物注入地层中,随后注入引发剂)。
在某些实施方案中,乙酸浓度可以为注入地层中的流体总体积的约0.5体积%至5体积%。乙酸浓度可以为约0.5摩尔至1摩尔,从而使溶液的pH值为约3至5。氯化铵对亚硝酸钠的比率可以为约1:2至2:1,或者为约1:1.5至1.5:1,或者为约1:1.25至1.25:1,或者为约1:1。在某些实施方案中,氯化铵对亚硝酸钠的比率可以为约1:1至2:1,或者为约1:1至1.5:1,或者为约1.25:1。氮气形成化合物的混合物可以占总流体体积的至多约50体积%,或者为至多约40%,或者为至多约30%,或者为至多约20%。反应可以在反应物的任何浓度下发生,然而在某些实施方案中,氯化铵和亚硝酸钠的摩尔浓度可以为约2摩尔至10摩尔,或者为约2摩尔至5摩尔,或者为约5摩尔至10摩尔。氮气形成化合物的混合物可以占注入流体的总体积的至多约40体积%,或者为至多约50体积%,或者为至多约60体积%。在某些实施方案中,剩余体积部分可以是水。在某些实施方案中,组合物包含至少约40体积%的水,或者包含至少约50体积%的水,或者包含至少约60体积%的水、或者包含至少约70体积%的水。在某些实施方案中,可以向组合物中添加额外的添加剂,例如,表面活性剂、铁控制剂(柠檬酸)、减阻剂等。压裂液可以是水基压裂液、油基压裂液或泡沫基(即,液体和气体)压裂液。可以将包封的反应物添加至前述任一种压裂液中。
有利的是,与目前所用的一些增产方法相反,本文所述的方法和组合物在原位反应后不产生任何损害性副产物。例如,用作激活物的酸一般被反应消耗,并且仅以相对较少的量存在,从而存在很少或不存在可能会造成环境问题的残余酸。因此,在增产工序后,无需清理工序。因此,通过形成人工最佳钻探点,能够最大程度地提高气体产量,同时将损害性废物的产生降至最低。
在某些实施方案中,本文所述的方法和组合物有利地且出乎意料地减少或消除了可能由压裂凝胶、水堵塞和/或凝析聚集(condensate banking)引起的地层损伤。这些状况会导致地层内部的流体渗透率降低,并且接下来会导致井的产量低。根据本文所述的方法形成人工最佳钻探点避免了这些问题。
在某些实施方案中,本文所述的方法和组合物有利且出乎意料地在致密气储层中形成人工最佳钻探点,其中致密气储层中缺少这种重要的促进流动的岩层。如前所示,最佳钻探点是地层内部产量最大的区域。这些地层缺少能够使烃流体和气体流动至开采点的通路。
本文提供的方法和组合物解决了在致密气储层中建立商业井期间经常遭遇到的几个问题。
首先,可以减少或消除与现有水力压裂方法引起的地层损伤相关的问题。例如,本文所述的方法和组合物通过在新近形成的裂缝表面附近形成许多的张裂缝从而使任何滤液易于经由这些裂缝向井流动,从而有助于有利地减少或消除可被锁定在这些裂缝表面附近的压裂液滤液(fracturing-fluid filtrate)。
其次,相比于常规的水力压裂方法,本文提供的方法和组合物有利地通过形成微裂缝而提高了产量,所述微裂缝使附近的裂缝表面具有额外的流通性,从而为气体提供了流向所形成的裂缝的新通道。与井接触的额外储层体积有助于显著提高受诱导裂缝影响的引流区域的总体流动效率。
最后,由于所产生的气体和热而形成了微裂缝,消除了对现有水力压裂技术的需求,其中现有水力压裂技术需要许多压裂工序以形成足够多的与井接触的储层体积以便实现商用。本文所述的本发明增产处理减少了所要求的压裂工序数目以实现相同的产量,其更为成本有效并且能够更加快速地实现,由此为低产量井的增产提供了经济可行的选项。
图8提供了示出地层的累积孔体积(cm3)的增加与压力间的关系图。进行了碳酸盐岩芯中氮气形成化合物的岩芯驱替试验。在形成人工最佳钻探点之前岩芯上的压力为大约15psi,并且渗透率(Kbrine)为约3.7md。在氮生成(即,在岩芯样品中形成人工最佳钻探点)之后,岩芯上的压力为大约0psi,并且渗透率(Kbrine)增至约982.2md。随着盐水渗透率的增加,测试岩芯样品所的压力从约15psi降至0psi,这表明岩芯渗透率和孔隙率增加,因此表明形成了最佳钻探点。
用于确定最佳钻探点形成的测试过程如下述方式进行。这样设计岩芯驱替测试装置,使得测试的岩芯样品具有两个入口管路和一个出口管路。每个入口管路均具有各自的泵和供给容器。通过施加饱和盐水溶液(7重量%的NaCl),将岩芯中的空气排空。随后将岩芯装入岩芯夹持器中。施加大约3000psi的围压应力(confining stresspressure)并且维持500psi的回压。将温度升至约200°F。将7重量%的氯化钠盐水溶液沿预先指定的开采方向注入直至获得稳定的压差。随后计算相对于盐水的绝对渗透率。将氯化铵(2摩尔)和乙酸(1摩尔)的混合物由一个入口注入岩芯样品中,并且同时将亚硝酸钠(2摩尔)由另一个入口注入,由此两种溶液在岩芯样品的入口处相遇。随后将7重量%的氯化钠盐水溶液以恒定速率注入并测量相对于盐水的绝对渗透率。
尽管已详细描述了本发明,但应该理解,可以在不脱离本发明精神和范围的条件下对本发明进行各种变化、替换和改变。因此,本发明的范围应当由以下权利要求书及其适当的法律等同物来确定。
除非上下文清楚地另有指明,否则单数形式的“一个”、“一种”和“该”包括复数形式的所指对象。
“可任选”或“任选地”是指其后所述的事件或情况可以发生或不发生。该描述包括所述事件或情况发生和不发生的场合。
本文中的范围描述为从大约一个特定值和/或至大约另一个特定值。当描述了这样的范围时,应当理解的是,另一实施方案为从所述特定值和/或至所述另一个特定值、以及所述范围内的所有组合。
在本申请的全文中,当引用专利或出版物时,除非这些文献与本文的陈述相矛盾,否则这些引用文献的全部公开内容旨在通过引用的方式并入本申请中,以更全面地描述本发明所属领域的状态。
如本文和所附权利要求书中所用的“包含”、“具有”和“包括”及其全部的语法变型形式均意在具有不排除额外要素或步骤的开放的、非限制性含义。
如本文所用的术语如“第一”和“第二”是任意指派的并仅意在区分装置的两种或更多种组件。应当理解词“第一”和“第二”不起到其他目的并且不是该组件名称或描述中的一部分,它们也不必然限定该组件的相对地点或位置。另外,应当理解仅使用术语“第一”和“第二”不要求存在任何“第三”组件,不过可在本发明的范围下构思这种可能性。

Claims (17)

1.一种用于在致密气井内部原位生成氮气的反应混合物,该反应混合物包含:
含铵的化合物;
含亚硝酸根的化合物;和
释放氢的激活物;
其中所述含铵的化合物和所述含亚硝酸根的化合物中的至少一者被涂料包封,其中该涂料被设计为使所述含铵的化合物与所述含亚硝酸根的化合物的反应延迟。
2.根据权利要求1或2所述的反应混合物,其中所述含铵的化合物选自氯化铵、溴化铵、硝酸铵、硫酸铵、碳酸铵、亚硝酸铵和氢氧化铵。
3.根据权利要求1所述的反应混合物,其中所述含亚硝酸根的化合物选自亚硝酸钠、亚硝酸钾和次氯酸钠。
4.根据权利要求1至3中任意一项所述的反应混合物,其中将所述含铵的化合物和所述含亚硝酸根的化合物中的至少一者包封的所述涂料为选自瓜尔胶、壳聚糖、聚乙烯醇和类似化合物的聚合物。
5.根据权利要求1至3中任意一项所述的反应混合物,其中将所述含铵的化合物和所述含亚硝酸根的化合物中的至少一者包封的所述涂料选自55-羧甲基纤维素、黄原胶和类似化合物。
6.根据权利要求1至5中任意一项所述的反应混合物,其中所述释放氢的激活物选自乙酸和氢氯酸。
7.根据权利要求1至6中任意一项所述的反应混合物,还包含缓冲剂。
8.一种用于使致密气层中的气体产量增产的方法,所述方法包括如下步骤:
将含有含铵的化合物和含亚硝酸根的化合物的水溶液注入地层中,其中所述含铵的化合物和所述含亚硝酸根的化合物中的至少一者被能够有效延迟其二者之间的反应的涂料包封;并且
随后将激活物注入地层中,所述激活物能够引发所述含铵的化合物和所述含亚硝酸根的化合物之间的反应,从而使该反应生成热和氮气;
其中当在地层内部生成氮气和热时,在地层内部产生微裂缝并且储层内部的静水压力降低至小于储层流体压力,从而使来自地层的烃的产率增加。
9.根据权利要求8所述的方法,还包括如下步骤:首先将水性压裂液注入所述致密气层中,其中所述水性压裂液包含水和压裂聚合物凝胶,其中以足够高的速度和压力进行所述的注入水性压裂液的步骤以使地层碎裂。
10.根据权利要求8或9所述的方法,其中所述含铵的化合物与所述含亚硝酸根的化合物的比率为约1.1:1至1:1.1。
11.根据权利要求8至10中任意一项所述的方法,其中所述激活物为弱酸和弱酸盐,该弱酸和弱酸盐的含量比例可提供这样的酸性溶液pH值,所述含铵的化合物和含亚硝酸根离子的化合物在该酸性溶液pH值下会发生反应。
12.根据权利要求11所述的方法,其中所述弱酸和弱酸盐的混合物以可提供弱酸水溶液的浓度存在,该弱酸水溶液能够使与井内部产生的裂缝内或裂缝周围接触的材料进行弱酸储层酸化。
13.根据权利要求11或12所述的方法,其中将所述弱酸和弱酸盐的混合物以浓度为约2体积%至10体积%的溶液注入地层。
14.根据权利要求8至13中任意一项所述的方法,其中将所述含铵的化合物和所述含亚硝酸根的化合物中的至少一者包封的所述涂料选自瓜尔胶、壳聚糖、聚乙烯醇和类似化合物。
15.根据权利要求8至13中任意一项所述的方法,其中将所述含铵的化合物和所述含亚硝酸根的化合物中的至少一者包封的所述涂料选自55-羧甲基纤维素、黄原胶和类似化合物。
16.根据权利要求8至15中任意一项所述的方法,其中所述含铵的化合物为氯化铵。
17.根据权利要求8至16中任意一项所述的方法,其中所述含亚硝酸根的化合物为亚硝酸钠。
CN201280057766.2A 2011-11-23 2012-11-21 利用原位氮气生成的致密气增产 Expired - Fee Related CN104066812B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161563233P 2011-11-23 2011-11-23
US61/563,233 2011-11-23
PCT/US2012/066249 WO2013078306A1 (en) 2011-11-23 2012-11-21 Tight gas stimulation by in-situ nitrogen generation

Publications (2)

Publication Number Publication Date
CN104066812A true CN104066812A (zh) 2014-09-24
CN104066812B CN104066812B (zh) 2017-03-08

Family

ID=47326386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280057766.2A Expired - Fee Related CN104066812B (zh) 2011-11-23 2012-11-21 利用原位氮气生成的致密气增产

Country Status (5)

Country Link
US (2) US20130126169A1 (zh)
EP (1) EP2782973A1 (zh)
CN (1) CN104066812B (zh)
CA (1) CA2855730C (zh)
WO (1) WO2013078306A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107787392A (zh) * 2015-06-25 2018-03-09 沙特阿拉伯石油公司 井测试
CN108865104A (zh) * 2018-08-06 2018-11-23 广汉市华星新技术开发研究所(普通合伙) 一种滑溜水
CN111647398A (zh) * 2020-01-15 2020-09-11 中国石油大学(北京) 一种基于气动效应的自悬浮支撑剂及其制备方法
CN111944511A (zh) * 2020-09-04 2020-11-17 西南石油大学 一种自生热生气泡沫压裂液及其制备方法
CN113811587A (zh) * 2019-05-15 2021-12-17 沙特阿拉伯石油公司 使用原位泥酸生成的砂岩增产
CN113811588A (zh) * 2019-05-15 2021-12-17 沙特阿拉伯石油公司 使用原位泥酸生成的砂岩增产
CN114183115A (zh) * 2021-12-07 2022-03-15 中国矿业大学 一种天然气水合物高效开采系统及方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126169A1 (en) 2011-11-23 2013-05-23 Saudi Arabian Oil Company Tight Gas Stimulation by In-Situ Nitrogen Generation
WO2013109768A1 (en) 2012-01-17 2013-07-25 Saudi Arabian Oil Company Non-acidic-exothermic sandstone stimulation fluids
WO2013181229A2 (en) * 2012-05-29 2013-12-05 Saudi Arabian Oil Company Enhanced oil recovery by in-situ steam generation
US9321956B2 (en) 2012-11-28 2016-04-26 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation
CA2904094C (en) * 2013-04-01 2021-02-16 Saudi Arabian Oil Company Filtercake removal using exothermic in-situ nitrogen-producing reactants
CA2881054C (en) * 2014-02-04 2020-07-28 Ricky H. Dean Cryogenic acid frack
WO2015161213A1 (en) * 2014-04-17 2015-10-22 Saudi Arabian Oil Company Chemically-induced pulsed fracturing method
US10053614B2 (en) 2014-04-17 2018-08-21 Saudi Arabian Oil Company Compositions for enhanced fracture cleanup using redox treatment
US10308862B2 (en) 2014-04-17 2019-06-04 Saudi Arabian Oil Company Compositions and methods for enhanced fracture cleanup using redox treatment
CA2943635C (en) * 2014-04-17 2019-03-12 Saudi Arabian Oil Company Method for enhanced fracture cleanup using redox treatment
CA2892343C (en) * 2014-05-23 2022-04-26 Sanjel Canada Ltd. Hydrocarbon stimulation by energetic chemistry
WO2015187122A1 (en) 2014-06-02 2015-12-10 Halliburton Energy Services, Inc. Methods and systems for controllably generating heat and/or nitrogen gas in subterranean and pipeline operations
CN104017556A (zh) * 2014-06-26 2014-09-03 中国石油大学(华东) 一种自生热泡沫体系及其制备方法与应用
US20160053164A1 (en) * 2014-08-22 2016-02-25 Baker Hughes Incorporated Hydraulic fracturing applications employing microenergetic particles
CN104263346B (zh) * 2014-09-01 2017-04-05 中国石油天然气股份有限公司 一种酸性加重压裂液及其制备方法和应用
WO2016126351A1 (en) * 2015-02-03 2016-08-11 Halliburton Energy Services, Inc. A method of acidizing of subterranean formations in well operations
WO2017018996A1 (en) * 2015-07-24 2017-02-02 Halliburton Energy Services, Inc. Microbubbles for heat and/or gas generation in subterranean formations
US10889751B2 (en) * 2015-08-28 2021-01-12 Liberty Oilfield Services, LLC Reservoir stimulation by energetic chemistry
EP3371411B1 (en) * 2015-11-05 2021-02-17 Saudi Arabian Oil Company Methods and apparatus for spatially-oriented chemically-induced pulsed fracturing in reservoirs
CA3001550C (en) * 2015-11-05 2020-04-07 Saudi Arabian Oil Company Triggering an exothermic reaction for reservoirs using microwaves
CA3058974A1 (en) * 2017-04-07 2018-10-11 Saudi Arabian Oil Company Compositions and methods for controlled delivery of acid
US10100245B1 (en) * 2017-05-15 2018-10-16 Saudi Arabian Oil Company Enhancing acid fracture conductivity
US10087736B1 (en) 2017-10-30 2018-10-02 Saudi Arabian Oil Company Multilateral well drilled with underbalanced coiled tubing and stimulated with exothermic reactants
CN108412477B (zh) * 2018-03-30 2020-12-08 西安石油大学 一种体积压裂中间歇式部分封堵缝中造缝的方法
US10895136B2 (en) * 2018-09-26 2021-01-19 Saudi Arabian Oil Company Methods for reducing condensation
US11598899B2 (en) 2018-12-28 2023-03-07 Halliburton Energy Services, Inc. Instrumented fracturing target for data capture of simulated well
GB201901921D0 (en) * 2019-02-12 2019-04-03 Innospec Ltd Treatment of subterranean formations
GB201901928D0 (en) 2019-02-12 2019-04-03 Innospec Ltd Treatment of subterranean formations
GB201901923D0 (en) 2019-02-12 2019-04-03 Innospec Ltd Treatment of subterranean formations
GB201901930D0 (en) 2019-02-12 2019-04-03 Innospec Ltd Treatment of subterranean formations
US11215043B2 (en) * 2019-05-07 2022-01-04 Saudi Arabian Oil Company Methods for recovering petroleum by reducing geological formation break-down pressures
US10975293B2 (en) * 2019-07-24 2021-04-13 Saudi Arabian Oil Company Methods for treating a subterranean formation with a foamed acid system
US10927291B2 (en) * 2019-07-24 2021-02-23 Saudi Arabian Oil Company Compositions for treating a subterranean formation with a foamed system and corresponding methods
US10718184B1 (en) * 2019-09-13 2020-07-21 Saudi Arabian Oil Company Thermochemical method for removing organic and inorganic deposits from a wellbore
CN110617047B (zh) * 2019-10-21 2021-06-04 中煤科工集团重庆研究院有限公司 基于定向钻进与液氮急冻遇热致裂的煤层瓦斯抽采方法
US11268017B2 (en) 2020-03-12 2022-03-08 Saudi Arabian Oil Company Systems, methods, and compositions for reservoir stimulation treatment diversion using thermochemicals
US11208877B2 (en) * 2020-04-03 2021-12-28 Saudi Arabian Oil Company Removal of water blockage in tight gas reservoir using thermochemical fluids
US11454098B2 (en) 2020-05-20 2022-09-27 Saudi Arabian Oil Company Methods for wellbore formation using thermochemicals
CN111849451B (zh) * 2020-07-24 2022-11-18 中国石油天然气集团有限公司 一种峰值温度可控自生热压裂液及其制备方法与应用
CN112708413B (zh) * 2020-12-25 2022-05-20 成都理工大学 一种气囊壳充气悬浮支撑剂及其制备方法
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11961702B2 (en) 2021-12-09 2024-04-16 Saudi Arabian Oil Company Fabrication of in situ HR-LCTEM nanofluidic cell for nanobubble interactions during EOR processes in carbonate rocks
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation
US11945996B2 (en) 2022-01-05 2024-04-02 Saudi Arabian Oil Company In-situ foam generation for water shutoff
US11732182B1 (en) 2022-03-28 2023-08-22 Saudi Arabian Oil Company Thermochemical soap stick for well lifting and deliquification
US11787993B1 (en) 2022-03-28 2023-10-17 Saudi Arabian Oil Company In-situ foamed gel for lost circulation
US11578259B1 (en) 2022-03-28 2023-02-14 Saudi Arabian Oil Company Energized fracturing fluid by generation of nitrogen gas
US11814574B1 (en) 2022-04-27 2023-11-14 Saudi Arabian Oil Company Organic sludge targeted removal using nitro-activated carbon composite and acidified solution of ammonium chloride
US11739616B1 (en) 2022-06-02 2023-08-29 Saudi Arabian Oil Company Forming perforation tunnels in a subterranean formation
US11773316B1 (en) * 2022-06-13 2023-10-03 Saudi Arabian Oil Company Method and composition for acidizing a subsurface formation utilizing a nitrogen gas-generating treatment fluid
US11913319B2 (en) 2022-06-21 2024-02-27 Saudi Arabian Oil Company Sandstone stimulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482016A (en) * 1983-11-17 1984-11-13 Shell Oil Company Acidizing with chemically heated weak acid
EP0909873A2 (en) * 1997-10-17 1999-04-21 Petroleo Brasileiro S.A. - Petrobras A process for the thermo-hydraulic control of gas hydrates
US20030221831A1 (en) * 2002-05-31 2003-12-04 Reddy B. Raghava Methods of generating gas in well treating fluids
WO2008032067A1 (en) * 2006-09-14 2008-03-20 Halliburton Energy Services, Inc. Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1677260A (en) 1926-03-20 1928-07-17 Harold C Whitman Blanket
US1819055A (en) 1928-10-23 1931-08-18 Bataafsche Petroleum Desulphurization of gases and vapors
US1990969A (en) 1933-03-16 1935-02-12 Standard Oil Co Well treatment
US2094479A (en) 1936-12-30 1937-09-28 William E Snee Treatment of wells
US2288556A (en) 1939-06-28 1942-06-30 Gulf Research Development Co Method of and composition for producing permeable packs in wells
US2466674A (en) 1946-05-22 1949-04-12 Daniel J Mullady Method for increasing flow of wells
BE496477A (zh) 1949-08-27
US2699213A (en) 1953-07-27 1955-01-11 Dow Chemical Co Treatment of subsurface formations
US2885004A (en) 1955-11-02 1959-05-05 Sinclair Oil & Gas Company Treatment of wells
US3025911A (en) 1958-01-27 1962-03-20 Phillips Petroleum Co Treatment of oil bearing formations
US3354954A (en) 1965-12-20 1967-11-28 Pan American Petroleum Corp Steam injection process for recovery of petroleum
US3385360A (en) 1966-02-01 1968-05-28 Phillips Petroleum Co Steam flood process for producing oil
US3405761A (en) 1967-05-12 1968-10-15 Phillips Petroleum Co Steam flooding oil-bearing limestone strata
US3545915A (en) 1967-07-14 1970-12-08 Calgon C0Rp Method of removing carbon monoxide from gases
US3476183A (en) 1967-12-14 1969-11-04 Texaco Inc Recovery of oils by steam injection
US3483923A (en) 1968-03-29 1969-12-16 Shell Oil Co Oil recovery using combination oilwetting and acidizing treatments
US3543856A (en) 1969-08-19 1970-12-01 Halliburton Co Method of acidizing wells
US3568772A (en) 1969-09-25 1971-03-09 Marathon Oil Co Well stimulation with micellar dispersions
US3712380A (en) 1970-11-30 1973-01-23 P Caffey Method for reworking and cleaning wells
US3707192A (en) 1970-12-28 1972-12-26 Gulf Research Development Co Two-stage injection of acid-producing chemicals for stimulating wells
US3760881A (en) 1971-05-24 1973-09-25 Exxon Production Research Co Treatment of wells with fluids containing complexes
US3719228A (en) 1971-06-11 1973-03-06 Byron Jackson Inc Method of selectively stimulating oil wells, compositions therefor, and methods of making such compositions
US3828854A (en) 1973-04-16 1974-08-13 Shell Oil Co Dissolving siliceous materials with self-acidifying liquid
US4210628A (en) 1973-07-12 1980-07-01 Takeda Chemical Industries, Ltd. Removal of nitrogen oxides
US3864451A (en) 1973-08-16 1975-02-04 Environics Inc Method for Removing Nitric Oxide from Combustion Gases
US4056146A (en) 1976-07-06 1977-11-01 Halliburton Company Method for dissolving clay
US4085799A (en) 1976-11-18 1978-04-25 Texaco Inc. Oil recovery process by in situ emulsification
US4178993A (en) 1977-06-20 1979-12-18 Shell Oil Company Method of starting gas production by injecting nitrogen-generating liquid
US4136739A (en) 1977-08-19 1979-01-30 Exxon Production Research Company Method for generating hydrofluoric acid in a subterranean formation
US4158042A (en) 1977-10-07 1979-06-12 Alcan Research And Development Limited Recovery of alumina from siliceous minerals
US4219083A (en) 1979-04-06 1980-08-26 Shell Oil Company Chemical process for backsurging fluid through well casing perforations
US4232740A (en) 1979-05-23 1980-11-11 Texaco Development Corp. High temperature stable sand control method
US4232741A (en) 1979-07-30 1980-11-11 Shell Oil Company Temporarily plugging a subterranean reservoir with a self-foaming aqueous solution
US4291765A (en) 1979-08-02 1981-09-29 Mitchell Energy Corporation Water flooding process using multiple fluids
US4410041A (en) 1980-03-05 1983-10-18 Shell Oil Company Process for gas-lifting liquid from a well by injecting liquid into the well
US4330037A (en) 1980-12-12 1982-05-18 Shell Oil Company Well treating process for chemically heating and modifying a subterranean reservoir
US4399868A (en) 1981-09-30 1983-08-23 Shell Oil Company Unplugging brine-submerged perforations
US4414118A (en) 1981-10-30 1983-11-08 Halliburton Company Method and compositions for dissolving silicates in subterranean formation
US4485007A (en) 1982-06-15 1984-11-27 Environmental Research And Technology Inc. Process for purifying hydrocarbonaceous oils
US4454918A (en) 1982-08-19 1984-06-19 Shell Oil Company Thermally stimulating mechanically-lifted well production
US4475595A (en) 1982-08-23 1984-10-09 Union Oil Company Of California Method of inhibiting silica dissolution during injection of steam into a reservoir
US4491180A (en) 1983-02-02 1985-01-01 Texaco Inc. Tapered steam injection process
US4518040A (en) 1983-06-29 1985-05-21 Halliburton Company Method of fracturing a subterranean formation
US4572297A (en) 1984-07-06 1986-02-25 Texaco Inc. Method of formation permeability treatment with alkali metal hydroxide
US4615391A (en) 1984-08-13 1986-10-07 Tenneco Oil Company In-situ combustion in hydrocarbon-bearing formations
US4865826A (en) 1986-01-10 1989-09-12 Imperial Chemical Industries Plc Desulphurization
US4703803A (en) 1986-06-24 1987-11-03 Cities Service Oil & Gas Corporation Composition and method for slowly dissolving siliceous material
BR8702856A (pt) * 1987-06-05 1988-12-20 Petroleo Brasileiro Sa Processo continuo de fraturamento hidraulico com espuma
US4842073A (en) 1988-03-14 1989-06-27 Halliburton Services Fluid additive and method for treatment of subterranean formations
RU2100583C1 (ru) 1988-09-12 1997-12-27 Всесоюзный научно-исследовательский и проектно-конструкторский институт по взрывным методам геофизической разведки (ВНИПИвзрывгеофизика) Состав для термогазохимической обработки скважин
US4898750A (en) 1988-12-05 1990-02-06 Texaco Inc. Processes for forming and using particles coated with a resin which is resistant to high temperature and high pH aqueous environments
US4919209A (en) 1989-01-17 1990-04-24 Dowell Schlumberger Incorporated Method for treating subterranean formations
SU1677260A1 (ru) 1989-06-12 1991-09-15 Казахский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Состав дл изол ции водопритоков в скважину
US5087350A (en) 1990-05-08 1992-02-11 Laboratorios Paris, C.A. Process for recovering metals and for removing sulfur from materials containing them by means of an oxidative extraction
BR9004200A (pt) 1990-08-24 1992-03-03 Petroleo Brasileiro Sa Processo de desparafinacao de formacoes produtoras
US5358565A (en) 1990-12-03 1994-10-25 Mobil Oil Corporation Steam injection profile control agent and process
US5099923A (en) 1991-02-25 1992-03-31 Nalco Chemical Company Clay stabilizing method for oil and gas well treatment
US5152906A (en) 1991-02-25 1992-10-06 Nalco Chemical Company Clay stabilizing composition for oil and gas well treatment
US5197544A (en) 1991-02-28 1993-03-30 Halliburton Company Method for clay stabilization with quaternary amines
US5209295A (en) 1991-12-02 1993-05-11 Intevep, S.A. In-situ reduction of oil viscosity during steam injection process in EOR
US5375660A (en) 1992-10-07 1994-12-27 Chevron Research And Technology Company Method to increase the flow capacity of a geologic formation
BR9301171A (pt) 1993-03-15 1994-10-18 Petroleo Brasileiro Sa Processo termo-químico de desparafinação de dutos condutores de hidrocarbonetos
EP0654582B1 (en) 1993-11-18 1999-01-13 Halliburton Energy Services, Inc. Reducing aluminium compound precipitation in subterranean formation acidizing
US5411094A (en) 1993-11-22 1995-05-02 Mobil Oil Corporation Imbibition process using a horizontal well for oil production from low permeability reservoirs
RU2126084C1 (ru) 1997-06-30 1999-02-10 Евгений Николаевич Александров Способ термохимической обработки призабойной зоны пласта
US6277271B1 (en) 1998-07-15 2001-08-21 Uop Llc Process for the desulfurization of a hydrocarbonaceoous oil
US5958224A (en) 1998-08-14 1999-09-28 Exxon Research And Engineering Co Process for deep desulfurization using combined hydrotreating-oxidation
US6192985B1 (en) 1998-12-19 2001-02-27 Schlumberger Technology Corporation Fluids and techniques for maximizing fracture fluid clean-up
JP2001019984A (ja) 1999-07-07 2001-01-23 Tokyo Gas Co Ltd 燃料ガス中付臭剤除去用活性炭素繊維吸着剤
US6444316B1 (en) 2000-05-05 2002-09-03 Halliburton Energy Services, Inc. Encapsulated chemicals for use in controlled time release applications and methods
US6881325B2 (en) 2001-02-08 2005-04-19 Bp Corporation North America Inc. Preparation of components for transportation fuels
US6827845B2 (en) 2001-02-08 2004-12-07 Bp Corporation North America Inc. Preparation of components for refinery blending of transportation fuels
US6500219B1 (en) 2001-03-19 2002-12-31 Sulphco, Inc. Continuous process for oxidative desulfurization of fossil fuels with ultrasound and products thereof
JP4616497B2 (ja) 2001-04-04 2011-01-19 大阪瓦斯株式会社 脱硫装置及び脱硫方法
RU2194156C1 (ru) 2001-09-06 2002-12-10 Александров Евгений Николаевич Горючеокислительный состав для термохимической обработки нефтяного пласта
US6662874B2 (en) 2001-09-28 2003-12-16 Halliburton Energy Services, Inc. System and method for fracturing a subterranean well formation for improving hydrocarbon production
US7256160B2 (en) 2001-11-13 2007-08-14 Baker Hughes Incorporated Fracturing fluids for delayed flow back operations
GB0207943D0 (en) 2002-04-05 2002-05-15 Univ Cambridge Tech Sensors and their production
US7066260B2 (en) 2002-08-26 2006-06-27 Schlumberger Technology Corporation Dissolving filter cake
EP1403358A1 (en) 2002-09-27 2004-03-31 ENI S.p.A. Process and catalysts for deep desulphurization of fuels
US7192908B2 (en) 2003-04-21 2007-03-20 Schlumberger Technology Corporation Composition and method for treating a subterranean formation
US7182136B2 (en) 2003-07-02 2007-02-27 Halliburton Energy Services, Inc. Methods of reducing water permeability for acidizing a subterranean formation
JP4594602B2 (ja) 2003-06-24 2010-12-08 三井造船株式会社 液状石油製品の酸化脱硫方法
US7059414B2 (en) 2003-07-22 2006-06-13 Bj Services Company Acidizing stimulation method using a pH buffered acid solution
US7351681B2 (en) 2004-02-17 2008-04-01 Halliburton Energy Services, Inc. Well bore servicing fluids comprising thermally activated viscosification compounds and methods of using the same
US20050215439A1 (en) 2004-03-29 2005-09-29 Blair Cecil C Clay stabilization in sub-surface formations
US20060054325A1 (en) 2004-09-15 2006-03-16 Brown J E Solid sandstone dissolver
US20060144591A1 (en) 2004-12-30 2006-07-06 Chevron U.S.A. Inc. Method and apparatus for repair of wells utilizing meltable repair materials and exothermic reactants as heating agents
US7328746B2 (en) 2005-03-01 2008-02-12 Saudi Arabian Oil Company Method and composition for forming protective precipitate on cement surfaces prior to formation acidizing treatment
US7337839B2 (en) 2005-06-10 2008-03-04 Schlumberger Technology Corporation Fluid loss additive for enhanced fracture clean-up
JP5048495B2 (ja) 2005-08-01 2012-10-17 Jx日鉱日石エネルギー株式会社 炭化水素油の脱硫方法
US7153434B1 (en) 2006-06-29 2006-12-26 Severn Trent Water Purification, Inc. Methods for removing contaminants from water and silica from filter media beds
US8183184B2 (en) 2006-09-05 2012-05-22 University Of Kansas Polyelectrolyte complexes for oil and gas applications
US7779915B2 (en) 2006-09-18 2010-08-24 Schlumberger Technology Corporation Methods of limiting leak off and damage in hydraulic fractures
US8096361B2 (en) 2006-12-29 2012-01-17 Schlumberger Technology Corporation Stimulated oil production using reactive fluids
WO2008098242A2 (en) 2007-02-09 2008-08-14 Hpd, Llc Process for recovering heavy oil
RU2347069C2 (ru) 2007-02-13 2009-02-20 Шлюмбергер Текнолоджи Б.В. Способ очистки трещины гидроразрыва
US8695708B2 (en) 2007-03-26 2014-04-15 Schlumberger Technology Corporation Method for treating subterranean formation with degradable material
US8728989B2 (en) 2007-06-19 2014-05-20 Clearwater International Oil based concentrated slurries and methods for making and using same
WO2009009370A1 (en) 2007-07-06 2009-01-15 Carbo Ceramics Inc. Proppants for gel clean-up
US7947629B2 (en) 2007-08-06 2011-05-24 Schlumberger Technology Corporation Method of acidizing sandstone formations
US8142646B2 (en) 2007-11-30 2012-03-27 Saudi Arabian Oil Company Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds
CA2684817C (en) 2008-12-12 2017-09-12 Maoz Betzer-Zilevitch Steam generation process and system for enhanced oil recovery
CN101323780B (zh) * 2008-08-06 2010-06-02 西安石油大学 一种低渗透油田热化学助排剂及其应用
US8216344B2 (en) 2008-09-26 2012-07-10 Praxair Technology, Inc. Purifying carbon dioxide using activated carbon
MX2011002513A (es) 2008-10-15 2011-06-22 Tctm Ltd Composiciones para disminuir la viscosidad de petroleo que desprende gas para estimular la capa productiva de un yacimiento de petroleo.
US8470747B2 (en) 2008-10-20 2013-06-25 Halliburton Energy Services, Inc. Carboxylic acid and oxidizer clean-up compositions and associated methods of use in subterranean applications
RU2484237C2 (ru) 2008-10-24 2013-06-10 Шлюмберже Текнолоджи Б.В. Способ очистки трещины гидроразрыва пласта
US10717922B2 (en) 2009-05-13 2020-07-21 Abdullah Al-Dhafeeri Composition and method for stimulation of oil production in sandstone formations
US20110220360A1 (en) 2010-03-12 2011-09-15 Thomas Lindvig Application of alkaline fluids for post-flush or post-treatment of a stimulated sandstone matrix
CN101839123B (zh) 2010-03-26 2013-07-10 李向东 一种析蜡型油藏开采方法
US9010430B2 (en) 2010-07-19 2015-04-21 Baker Hughes Incorporated Method of using shaped compressed pellets in treating a well
MY165508A (en) 2010-08-24 2018-03-28 Tctm Ltd Method and apparatus for thermally treating an oil reservoir
US8962536B2 (en) 2010-12-17 2015-02-24 Chevron U.S.A. Inc. Heat generating system for enhancing oil recovery
US8684076B2 (en) 2011-02-22 2014-04-01 Sergey A Kostrov Method and apparatus for enhancement of fracture fluid clean-up with periodic shock waves
US9260647B2 (en) 2011-11-14 2016-02-16 Baker Hughes Incorporated Metallic particle mediated viscosity reduction of viscoelastic surfactants
US20130126169A1 (en) 2011-11-23 2013-05-23 Saudi Arabian Oil Company Tight Gas Stimulation by In-Situ Nitrogen Generation
WO2013109768A1 (en) 2012-01-17 2013-07-25 Saudi Arabian Oil Company Non-acidic-exothermic sandstone stimulation fluids
WO2013181229A2 (en) 2012-05-29 2013-12-05 Saudi Arabian Oil Company Enhanced oil recovery by in-situ steam generation
RU2525386C2 (ru) 2012-11-26 2014-08-10 Общество с ограниченной ответственностью "Центр Нефтяных Технологий" (ООО "ЦНТ") Термогазохимический состав и способ применения для обработки призабойной и удаленной зоны продуктивного пласта

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482016A (en) * 1983-11-17 1984-11-13 Shell Oil Company Acidizing with chemically heated weak acid
EP0909873A2 (en) * 1997-10-17 1999-04-21 Petroleo Brasileiro S.A. - Petrobras A process for the thermo-hydraulic control of gas hydrates
US20030221831A1 (en) * 2002-05-31 2003-12-04 Reddy B. Raghava Methods of generating gas in well treating fluids
WO2008032067A1 (en) * 2006-09-14 2008-03-20 Halliburton Energy Services, Inc. Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107787392A (zh) * 2015-06-25 2018-03-09 沙特阿拉伯石油公司 井测试
CN107787392B (zh) * 2015-06-25 2022-06-07 沙特阿拉伯石油公司 井测试
CN108865104A (zh) * 2018-08-06 2018-11-23 广汉市华星新技术开发研究所(普通合伙) 一种滑溜水
CN113811587A (zh) * 2019-05-15 2021-12-17 沙特阿拉伯石油公司 使用原位泥酸生成的砂岩增产
CN113811588A (zh) * 2019-05-15 2021-12-17 沙特阿拉伯石油公司 使用原位泥酸生成的砂岩增产
CN111647398A (zh) * 2020-01-15 2020-09-11 中国石油大学(北京) 一种基于气动效应的自悬浮支撑剂及其制备方法
CN111944511A (zh) * 2020-09-04 2020-11-17 西南石油大学 一种自生热生气泡沫压裂液及其制备方法
CN114183115A (zh) * 2021-12-07 2022-03-15 中国矿业大学 一种天然气水合物高效开采系统及方法

Also Published As

Publication number Publication date
US20150175879A1 (en) 2015-06-25
WO2013078306A1 (en) 2013-05-30
EP2782973A1 (en) 2014-10-01
CA2855730C (en) 2019-05-28
CA2855730A1 (en) 2013-05-30
US9738824B2 (en) 2017-08-22
CN104066812B (zh) 2017-03-08
US20130126169A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
CN104066812A (zh) 利用原位氮气生成的致密气增产
US10047277B2 (en) Non-acidic exothermic sandstone stimulation fluids
US10989030B2 (en) Synthetic sweet spots in tight formations by injection of nano encapsulated reactants
EP3680449B1 (en) Enhanced oil recovery by in-situ steam generation
US20170130568A1 (en) Triggering an exothermic reaction for reservoirs using microwaves
US20150337638A1 (en) Hydrocarbon stimulation by energetic chemistry
CN102022105A (zh) 缝洞型碳酸盐岩储层大型复合酸压方法
US10308862B2 (en) Compositions and methods for enhanced fracture cleanup using redox treatment
GB2582218A (en) Treatment of subterranean formations
US20210363866A1 (en) Methods for wellbore formation using thermochemicals
CN103821486A (zh) 一种新型化学吞吐增产方法
US11987751B2 (en) Treatment of subterranean formations
US11041112B2 (en) Breaker systems for wellbore treatment operations for use at varying temperatures
CN100513513C (zh) 一种加重压裂液配方

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170308