CN104050330B - 升流式厌氧发酵生物制氢反应器的优化设计方法及其应用 - Google Patents

升流式厌氧发酵生物制氢反应器的优化设计方法及其应用 Download PDF

Info

Publication number
CN104050330B
CN104050330B CN201410293478.8A CN201410293478A CN104050330B CN 104050330 B CN104050330 B CN 104050330B CN 201410293478 A CN201410293478 A CN 201410293478A CN 104050330 B CN104050330 B CN 104050330B
Authority
CN
China
Prior art keywords
flow
reactor
phase
anaerobic fermentation
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410293478.8A
Other languages
English (en)
Other versions
CN104050330A (zh
Inventor
王旭
刘俊新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN201410293478.8A priority Critical patent/CN104050330B/zh
Publication of CN104050330A publication Critical patent/CN104050330A/zh
Application granted granted Critical
Publication of CN104050330B publication Critical patent/CN104050330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种升流式厌氧发酵生物制氢反应器的优化设计方法,属于环境工程技术领域。所述方法是基于计算流体力学技术的数值模拟方法,研究不同水力上升流速条件下反应器内部流态特征及其对制氢反应器产氢速率的影响;采用欧拉‑欧拉气液固三相流体模型获得液相速度场、固相体积分率、发酵气体氢气组分体积分率等详细流场信息,在此基础上,耦合生化反应动力学模型并对反应器产氢速率进行动态模拟和预测,并且根据各流场反馈对制氢反应器的影响,将模拟得到的不同流态数据进行综合分析,从而确定最佳水力上升流速,为升流式厌氧发酵生物制氢反应器的优化设计提供一种高效的方法。本发明技术成熟稳定,具有效果直观、周期短、成本节省的特点。

Description

升流式厌氧发酵生物制氢反应器的优化设计方法及其应用
技术领域
本发明属于环境工程技术领域,涉及一种升流式厌氧发酵生物制氢反应器的优化设计方法。
背景技术
氢气是一种清洁、高效、可再生的能源载体,是化石燃料的理想替代品之一。基于废水有机质的厌氧发酵生物制氢技术具有能源回收和污染控制的双重意义。升流式厌氧发酵生物制氢反应器是利用厌氧颗粒污泥处理废水、同时将废水中有机质转化为氢气的复杂系统,在气、液、固三相体系内发生诸多生物化学反应的工艺过程,是目前生物制氢的主要工艺类型之一。该反应器借助较高的液体表面水力上升流速使得颗粒污泥层处于膨胀状态,促进反应器进水与颗粒污泥的充分接触,提高液固传质效率,有助于微生物底物和代谢产物在颗粒污泥内外进行有效扩散与输运。为此,阐明反应器内部的微生物学、化学和物理学特征,是提高工艺系统制氢效能的关键环节。其中,反应器内部的流场特性对生化反应过程会有很大影响,水力停留时间和循环流量等参数将直接影响基质转化率和产物收率等工艺结果,水力上升流速形成的速度场均匀性将影响反应器的有效工作容积,而局部流场的剪切效应则将改变微生物细胞的生理状态。但是,目前对于该反应器的优化主要集中在生物和化学特征方面,较少从反应器内部流场的物理特征及其对生化反应过程的影响去优化反应器的设计、运行与放大。
计算流体力学是流体力学理论研究的一个分支,它主要通过有限差分、有限单元或者有限体积等方法将描述流体运动的控制方程离散后,利用计算机进行数值求解,最终获得特定条件下的流体信息,从而揭示流体运动的物理特征和变化规律。计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。随着相关技术的飞速发展,计算流体力学已经逐渐作为一种反应器流场研究新手段而日益受到重视并得以广泛应用。在环境工程技术领域中,无论是废水生物反应器的设计、运行和放大,还是在废水处理新技术与新工艺的研发方面均有重要的理论意义与实际价值。目前,国内外已经有很多的计算流体力学模拟软件,它们提供大量的物理模型、高效的数值解法和友好的用户操作界面,大部分软件还提供程序接口,用户可以根据特殊需求进行模型开发与耦合。
目前,国内对基于废水有机质的生物制氢反应器流场机理研究较少,在实际反应器设计中经常凭借经验开展,而在工艺设计过程中往往存在参数依据有限或是实际数据无法获取等情况,使得反应器设计带有一定的不确定性,难以进行参数优化选择。在大多数情况下,基于废水有机质的厌氧生物制氢反应器在工艺设计、运行管理和工程放大等方面依赖经验多于科学,但是,利用一些理想的、经验的关联公式所得到的结果很难体现实际流场对工艺负载反应的影响,而对多种概念反应器进行实际尝试与对比在时间与经济上都是不允许的。为此,借助成熟的流体力学机理模型对生物制氢反应器进行模拟与仿真,并将所得数据信息作为反应器设计的理论依据,同时可以用于制氢反应器的运行管理与工程放大。
发明内容
本发明的目的在于提供一种升流式厌氧发酵生物制氢反应器的优化设计方法,以达到反应器内部水力流场的最优化设计。
本发明提出的升流式厌氧发酵生物制氢反应器的优化设计方法,利用基于计算流体力学技术(Computational Fluid Dynamics,简称CFD)的数值模拟软件,研究不同水力上升流速条件下反应器内部的流态特征及其对制氢反应器产氢速率的影响;采用欧拉-欧拉气液固三相流体模型获得了液相速度场、固相体积分率、发酵气体氢气组分体积分率等详细流场信息,在此基础上,利用生化反应动力学对反应器产氢速率进行动态模拟和预测,并且根据各流场反馈对制氢系统的影响,将模拟得到的不同流态数据进行综合分析,从而确定最优的水力上升流速,实现升流式厌氧发酵生物制氢反应器内部水力流场的优化设计。具体步骤包括:
(一)前处理:几何建模与网格划分
利用ANSYS GAMBIT 2.4.6按照升流式厌氧发酵生物制氢反应器的几何尺寸,进行三维几何建模和网格划分,其中:建模过程将升流式厌氧发酵生物制氢反应器按照上下两个部分进行建模,建模过程将生物制氢反应器划分为进水区、反应区、三相分离区、溢流槽与集气区,忽略反应器三相分离挡板、溢流挡板的厚度,将其近似为薄表面结构;网格生成采用非结构化四面体网格生成方法,并且采用局部网格加密对进水区和三相分离区两个计算域中壁面附近的网格点重新布置,以确保网格质量和计算精度;为了优化计算网格,划分多套疏密不同的计算域网格,并进行网格压降差异比较,选择压降差异最小的网格作为最终的计算网格,同时为各模型选择并命名边界类型,导出对应的网格文件。
(二)计算求解:计算模型选择、边界条件定义与迭代求解
采用欧拉-欧拉多相流体模型模拟升流式厌氧发酵生物制氢反应器中气、液、固三相流运动规律,其中,废水、污泥和发酵气体视为三种不同的连续流(废水为第一相、污泥和发酵气体分别为第二和第三相),建立湍流模型模拟反应器内部流场,所述湍流模型采用标准的湍动能耗散率(k-ε)模型。
(1)计算模型选择
1)控制方程
在欧拉-欧拉多相流体模型中,质量守恒方程和动量守恒方程,均在三维计算域中得到求解;气、液、固三相根据各自的体积分率共享压力场;每一相的运动由各自对应的动量守恒方程和质量守恒方程控制。
各相的质量守恒方程,亦即连续方程,如下:
其中,ρk是相k的浓度,λk是相k的体积分率,uk是相k的速度矢量;在如下公式中,角标L、S、G分别代表液相、固相和气相。
由于各相假定为不可压缩,所以式(1)可以简化为:
▽(ρkλkuk)=0 (2)
各相的动量平衡方程,如下:
其中,p是压力,μef是有效粘度,g是重力加速度,MI,LG是气相与液相之间的传动力,MI,LS是固相与液相之间的传动力;
满足兼容性条件的体积分率如下:
2)相间作用力方程
在模拟过程中,固相和气相作用于液相的曳力可以通过如下公式计算:
其中,CD是曳力系数,d是气泡直径(dG)或者污泥颗粒直径(dS)。
对于气相与液相之间的曳力系数CD,LG可以由Schiller-Naumann曳力模型获得,如下:
其中,Re是相对雷诺数,可通过如下获得:
对于固相与液相之间的曳力模型CD,LS可以由Wen-Yu曳力模型获得,如下:
相应的雷诺数可以由下式获得:
另外,垂直作用于固相与气相的相对运动方向上的升力可通过下式获得:
ML,LG=CLρLλG(uG-uL)×(▽×uL) (13)
ML,LS=CLρLλS(uS-uL)×(▽×uL) (14)
3)湍流模型
在初步探究多相流模拟运动规律时,我们假定单相流k-ε湍流模型能够考察本研究的湍流效应。相对而言,由于存在次相对主相的诸多影响,多相流湍动模拟是非常复杂而且计算耗量巨大的工程。因此,我们假定湍流效应只局限于液相中。
液相的湍流粘度可通过k-ε湍流模型获得:
液相的湍动能(k)和能量耗散率可通过下式获得:
其中,ΠkL代表了固相对液相的影响以及分散的湍动程度的预测,ΠεL代表了对固相湍动程度的预测,这都可由Techen理论获得。湍动模型中的参数都取用标准值:Cε1=1.44,Cε2=1.92,Cμ=0.09,σk=1.0,σε=1.3。
4)葡萄糖发酵降解动力学模型
根据生物厌氧发酵产氢反应中气相和液相的发酵产物,葡萄糖的乙醇型发酵可表示为:
C6H12O6+H2O→CH3COOH+CH3CH2OH+2H2+2CO2 (18)
糖蜜废水中的葡萄糖降解速率遵循Michaelis-Menten公式,如下:
式中,r为葡萄糖(底物)降解速率,mol/(L·h);
rm为最大降解速率,mol/(L·h);
Km为米氏常数,mol/L;
C为葡萄糖(底物)浓度,mol/L。
在正常运行的生物制氢反应器中,底物浓度C<0.0016mol/L,因此有Km+C≈Km。所以,经过简化后的葡萄糖表观降解速率为:
robs=kobsC (20)
式中,robs为葡萄糖表观降解速率,mol/(L·h);kobs为表观速率常数,2.06h-1
因此,葡萄糖降解速率为:
robs=2.06C (21)
(2)边界条件定义
在数值计算过程中,对废水泵入升流式厌氧发酵生物制氢反应器的入口设定为固定流量入口边界条件,边界紊流条件设定为低紊流强度(<5%)。处理后的混合液流出升流式厌氧发酵生物制氢反应器的出口设定为大气压条件下的静压力出口边界条件。反应器顶部的发酵气体出口边界设定为脱气边界条件。其中,所有其他固体表面,包括挡板、反应器壁均设定为壁面边界条件,对于混合液是无滑移壁面,对于发酵气体是自由滑动壁面。
(3)迭代求解
利用ANSYS FLUENT 7.0求解器,采用高解析格式求解,其中求解Navier-Stocks方程采用分离式解法中的SIMPLE算法,均方根残差收敛标准为1.0E-4,以液相速度参数和湍动能参数作为残差收敛检验窗口,进行稳态迭代计算,直到残差收敛,保存计算结果。
(三)后处理:流场信息获取与优化选择
将计算结果进行可视化处理,得到不同水力上升流速工况下每个稳态模拟的液相速度场、固相体积分率、发酵气体氢气组分体积分率等详细流场信息,并且根据各流场反馈对制氢系统产氢速率的影响,将模拟得到的不同流态数据进行分析与比较,从而确定最佳水力上升流速,实现升流式厌氧发酵生物制氢反应器内部水力流场的优化设计。
有益效果:
本发明提出一种升流式厌氧发酵生物制氢反应器的优化设计方法,与传统经验、半经验关联式进行优化设计的方法相比,其优势在于:
(1)CFD可提供实验方法很难获取的、全息的数据。利用双欧拉方法可模拟反应器中复杂的气-液-固多相流运动;利用欧拉-拉格朗日方法能够对颗粒之间的相互作用以及颗粒运动轨迹等现象进行描述;
(2)CFD模型,属于机理模型,是建立于基本物理定律和理论之上,在经验关联式或实验数据匮乏之时,CFD技术可以解决工程设计等实际工程问题;
(3)对于工程放大研究而言,CFD有很大的优势,鉴于CFD技术为机理模型,原则上不限制结构形式、结构尺寸、工艺参数和操作参数,借助模拟手段可直接跳过“实验室-小试-中试-工业”传统放大过程的某些环节,可节省大量资金和时间,在模拟的过程中可获取大量数据,放大的结果较为可靠;
(4)CFD技术,不仅可获得反应器所承载的反应过程的深入理解,而且可以为过程故障的根本原因、关键部分以及扩产能力等问题提供评估结果,进一步验证各种优化改造方案的优劣;
(5)CFD技术辅助开发环境中,许多传统开发环境无法验证的新设想,可以很容易得到验证和反馈;再者,设计师可直接利用CFD评估数据验证新想法,有助于进行技术创新。此外,由于极低的重复成本,CFD技术使包含大量设计循环的优化设计成为可能。
附图说明
图1 优化方法流程图;
图2 升流式厌氧发酵生物制氢反应器的几何模型示意图;
图3 升流式厌氧发酵生物制氢反应器上半部分网格单元划分示意图;
图4 升流式厌氧发酵生物制氢反应器下半部分网格单元划分示意图;
图5 最佳工况流场信息,其中:
A.反应器水力上升流速0.5mm/s的液相速度分量矢量分布图;
B.反应区水力上升流速0.5mm/s的污泥体积分率云图;
C.反应区水力上升流速0.5mm/s的发酵气体中氢气组分质量分率云图;
图中:
1—反应区 2—进水区 3—边壁 4—溢流槽 5—气体收集区 6—三相分离区。
具体实施方式
以下结合附图和发明人依照本发明的技术方案所完成的具体事例,对本发明作进一步的详细描述。
依据本发明的技术方案,升流式厌氧发酵生物制氢反应器优化设计步骤如下:
1.根据升流式厌氧发酵生物制氢反应器实际几何尺寸,在ANSYS GAMBIT 2.4.6中进行模型构建和网格划分,进行边界条件定义和计算域类型设置,导出网格文件;
2.将生成的网格文件导入ANSYS FLUENT 7.0求解器中,选择相应的计算模型,确定一组不同的水力上升流速分别作为计算初值,并定义相应的边界条件,进行稳态模拟的迭代计算,直到残差收敛,保存计算结果;
3.将计算结果进行后期可视化处理,得到不同水力上升流速工况下的水力流场信息;通过工艺要求对模拟结果进行综合比较,得到最佳水力上升流速,实现对升流式厌氧发酵生物制氢反应器水力流场的设计优化。
实施例1:
以有效容积为3.35升的升流式厌氧发酵生物制氢反应器为例进行水力流场优化设计的过程,具体操作如下:
(一)前处理:几何建模与网格划分
按照升流式厌氧发酵生物制氢反应器的实际几何尺寸(如图2示意图所示),利用ANSYS GAMBIT 2.4.6对反应器进行几何建模和网格划分,建模过程中忽略反应器三相分离挡板、溢流挡板等的厚度,将其近似为薄表面结构。
在网格划分过程中采用如图3和图4所示的非结构化四面体网格生成方法,并且采用局部网格加密对进水区和三相分离区两个计算域中壁面附近的网格点重新布置,以确保网格质量和计算精度。为了优化计算网格,划分了三套疏密不同的计算域网格,并进行网格压降差异分析,最终选择了网格数为14440,节点数15341,面数29780的计算网格。
对每个模型进行选择并定义边界类型,导出目标反应器模型的Mesh网格文件,命名为EGSB-Mesh。
(二)计算求解:计算模型选择、边界条件设置与迭代求解
(1)计算模型选择
将EGSB-Mesh文件导入ANSYS FLUENT 7.0中,开始定义计算模型。采用欧拉-欧拉多相流体模型模拟升流式厌氧发酵生物制氢反应器中气、液、固三相流,废水、污泥和发酵气体视为三种不同的连续流(废水为第一相、污泥和发酵气体分别为第二和第三相),建立湍流模型模拟反应器内部流场,所述湍流模型采用标准的湍动能耗散率(k-ε)模型,模拟与预测废水厌氧发酵产氢过程采用葡萄糖降解动力学模型,以上各模型方程具体见公式(1)-公式(20)。
(2)边界条件定义
模拟涉及的主要物质参数为:废水浓度为1050kg/m3;污泥床中的污泥占反应区体积的35%,污泥浓度1460kg/m3,污泥颗粒粒径1mm,初始体积分率为0.55;氢气密度为1.225kg/m3,氢气气泡粒径为0.1mm。对废水泵入升流式厌氧发酵生物制氢反应器的入口设定为固定流量入口边界条件,边界紊流条件设定为低紊流强度(<5%)。处理后的混合液流出升流式厌氧发酵生物制氢反应器的出口设定为大气压条件下的静压力出口边界条件。反应器顶部的发酵气体出口边界设定为脱气边界条件。其中,所有其他固体表面,包括挡板、反应器壁均设定为壁面边界条件,对于混合液是无滑移壁面,对于发酵气体是自由滑动壁面。
(3)迭代求解
升流式厌氧发酵生物制氢反应器模拟运行于一台配置CoreTM 2 Duo CPUT9300 2.5GHz处理器和6GB内存的计算机。模拟占用内存较大,采用64位Windows操作系统支撑模拟运算。采用高解析格式求解,其中求解Navier-Stocks方程采用分离式解法中的SIMPLE算法,均方根残差收敛标准为1.0E-4,以液相速度参数和湍动能参数作为残差收敛检验窗口,进行稳态迭代计算,模拟运算在33500次迭代后实现收敛。
按以上步骤,分别对升流式厌氧发酵生物制氢反应器在不同水力上升流速条件下(0.3mm/s、0.5mm/s、0.9mm/s)的3个稳态工况进行模拟,直到收敛得到3组计算结果,并保存。
(三)后处理:流场信息获取与优化选择
利用TecPlot软件将计算结果进行可视化处理,得到不同水力上升流速工况下升流式厌氧发酵生物制氢反应器每个稳态模拟的速度场、污泥体积分率、发酵气体氢气组分体积分率等流场信息,根据各流场信息对厌氧生物制氢工艺的影响将模拟结果进行综合比较,获得如图5所示最优模拟工况信息,从而得到最佳水力上升流速。
结论:
通过计算模拟与分析可发现,反应器水力上升流速为0.3mm/s时,反应区的颗粒污泥与废水接触程度较差,传质效果欠佳,氢气生成和释放缓慢;当水力上升流速提高至0.5mm/s时,能够保证反应区颗粒污泥与液流的充分接触和混合,加速生化反应进程,发酵气体在适当剪切的扰动下,更容易从污泥中得到释放;当水力上升流速继续增加至0.9mm/s时,反应区的污泥床接近流化状态,出现污泥流失现象,不利于厌氧发酵产氢。鉴于此,本实施例中水力上升流速0.5mm/s为该升流式厌氧发酵生物制氢反应器的最佳水力优化设计工况,产氢速率高达1.05L/L·h,相比0.3mm/s和0.9mm/s两个工况,反应器产氢速率分别高出39.9%和31.3%。

Claims (2)

1.一种升流式厌氧发酵生物制氢反应器的优化设计方法,包括如下步骤:前处理—几何建模与网格划分;计算求解—计算模型选择、边界条件定义与迭代求解;后处理—流场数据获取与优化比选;具体步骤如下:
(一)前处理:几何建模与网格划分
利用ANSYS GAMBIT 2.4.6按照厌氧生物制氢反应器的几何尺寸,进行三维几何建模和网格划分,其中:建模过程将升流式厌氧发酵生物制氢反应器按照上下两个部分进行建模;网格生成采用非结构化四面体网格生成方法,并且采用局部网格加密对进水区和三相分离区两个计算域中壁面附近的网格点重新布置,同时为各模型选择并命名边界类型,导出几何模型的网格文件;
根据升流式厌氧发酵生物制氢反应器实际几何尺寸,在ANSYS GAMBIT 2.4.6中进行模型构建和网格划分,进行边界条件定义和计算域类型设置,导出网格文件;
(二)计算求解:计算模型选择、边界条件定义与迭代求解
采用欧拉-欧拉多相流体模型模拟升流式厌氧发酵生物制氢反应器中气、液、固三相流运动规律,其中,废水、污泥和发酵气体视为三种不同的连续流,建立湍流模型模拟反应器内部流场,所述湍流模型采用标准的湍动能耗散率k-ε模型;
(1)计算模型选择
1)控制方程
在欧拉-欧拉多相流体模型中,质量守恒方程和动量守恒方程,均在三维计算域中得到求解;气、液、固三相根据各自的体积分率共享压力场;每一相的运动由各自对应的动量守恒方程和质量守恒方程控制;
各相的质量守恒方程,亦即连续方程,如下:
其中,ρk是相k的浓度,λk是相k的体积分率,uk是相k的速度矢量;在如下公式中,角标L、S、G分别代表液相、固相和气相;
由于各相假定为不可压缩,所以式(1)简化为:
各相的动量平衡方程,如下:
其中,p是压力,μef是有效粘度,g是重力加速度,MI,LG是气相与液相之间的传动力,MI,LS是固相与液相之间的传动力;
满足兼容性条件的体积分率如下:
2)相间作用力方程
在模拟过程中,固相和气相作用于液相的曳力通过如下公式计算:
其中,CD是曳力系数,d是气泡直径dG或者污泥颗粒直径dS
对于气相与液相之间的曳力系数CD,LG由Schiller-Naumann曳力模型获得,如下:
其中,Re是相对雷诺数,通过如下获得:
对于固相与液相之间的曳力模型CD,LS由Wen-Yu曳力模型获得,如下:
相应的雷诺数由下式获得:
另外,垂直作用于固相与气相的相对运动方向上的升力通过下式获得:
ML,LG=CLρLλG(uG-uL)×(▽×uL) (13)
ML,LS=CLρLλS(uS-uL)×(▽×uL) (14)
3)湍流模型
在初步探究多相流模拟运动规律时,我们假定单相流k-ε湍流模型能够考察本研究的湍流效应,我们假定湍流效应只局限于液相中;
液相的湍流粘度通过k-ε湍流模型获得:
液相的湍动能k和能量耗散率通过下式获得:
其中,ΠkL代表了固相对液相的影响以及分散的湍动程度的预测,ΠεL代表了对固相湍动程度的预测,这都由Techen理论获得;湍动模型中的参数都取用标准值:Cε1=1.44,Cε2=1.92,Cμ=0.09,σk=1.0,σε=1.3;
4)葡萄糖发酵降解动力学模型
根据生物厌氧发酵产氢反应中气相和液相的发酵产物,葡萄糖的乙醇型发酵表示为:
C6H12O6+H2O→CH3COOH+CH3CH2OH+2H2+2CO2 (18)
糖蜜废水中的葡萄糖降解速率遵循Michaelis-Menten公式,如下:
式中,r为葡萄糖降解速率,mol/L·h;
rm为最大降解速率,mol/L·h;
Km为米氏常数,mol/L;
C为葡萄糖浓度,mol/L;
在正常运行的生物制氢反应器中,底物浓度C<0.0016mol/L,因此有Km+C≈Km;所以,经过简化后的葡萄糖表观降解速率为:
robs=kobsC (20)
式中,robs为葡萄糖表观降解速率,mol/L·h;kobs为表观速率常数,2.06h-1
因此,葡萄糖降解速率为:
robs=2.06C (21)
(2)边界条件定义
在数值计算过程中,对废水泵入升流式厌氧发酵生物制氢反应器的入口设定为固定流量入口边界条件,边界紊流条件设定为低紊流强度;处理后的混合液流出升流式厌氧发酵生物制氢反应器的出口设定为大气压条件下的静压力出口边界条件;反应器顶部的发酵气体出口边界设定为脱气边界条件;其中,所有其他固体表面,包括挡板、反应器壁均设定为壁面边界条件,对于混合液是无滑移壁面,对于发酵气体是自由滑动壁面;
(3)迭代求解
利用ANSYS FLUENT 7.0求解器,采用高解析格式求解,其中求解Navier-Stocks方程采用分离式解法中的SIMPLE算法,均方根残差收敛标准为1.0E-4,以液相速度参数和湍动能参数作为残差收敛检验窗口,进行稳态迭代计算,直到残差收敛,保存计算结果;
将生成的网格文件导入ANSYS FLUENT 7.0求解器中,选择相应的计算模型,确定一组不同的水力上升流速分别作为计算初值,并定义相应的边界条件,进行稳态模拟的迭代计算,直到残差收敛,保存计算结果;
(三)后处理:流场信息获取与优化选择
将计算结果进行可视化处理,得到不同水力上升流速工况下每个稳态模拟的液相速度场、固相体积分率、发酵气体氢气组分体积分率详细流场信息,并且根据各流场反馈对制氢系统产氢速率的影响,将模拟得到的不同流态数据进行分析与比较,从而确定最佳水力上升流速,实现升流式厌氧发酵生物制氢反应器内部水力流场的优化设计;
将计算结果进行后期可视化处理,得到不同水力上升流速工况下的水力流场信息;根据最大化厌氧发酵产氢速率的工艺要求对模拟结果进行综合比较,得到最佳水力上升流速,实现对升流式厌氧发酵生物制氢反应器水力流场的设计优化。
2.根据权利要求1所述升流式厌氧发酵生物制氢反应器的优化设计方法,其特征在于,具体操作步骤如下:
以有效容积为3.35升的升流式厌氧发酵生物制氢反应器进行水力流场优化设计:
(一)前处理:几何建模与网格划分
按照升流式厌氧发酵生物制氢反应器的实际几何尺寸,利用ANSYS GAMBIT 2.4.6对反应器进行几何建模和网格划分,建模过程中忽略反应器三相分离挡板、溢流挡板的厚度,将其近似为薄表面结构;
在网格划分过程中采用非结构化四面体网格生成方法,为了优化计算网格,划分了三套疏密不同的计算域网格,并进行网格压降差异分析;
对每个模型进行选择并定义边界类型,导出目标反应器模型的Mesh网格文件,命名为EGSB-Mesh;
(二)计算求解:计算模型选择、边界条件设置与迭代求解
(1)计算模型选择
将EGSB-Mesh文件导入ANSYS FLUENT 7.0中,开始定义计算模型;采用欧拉-欧拉多相流体模型模拟升流式厌氧发酵生物制氢反应器中气、液、固三相流,废水、污泥和发酵气体视为三种不同的连续流,建立湍流模型模拟反应器内部流场,所述湍流模型采用标准的湍动能耗散率k-ε模型,模拟与预测废水厌氧发酵产氢过程采用葡萄糖降解动力学模型;
(2)边界条件定义
定义模拟涉及的主要物质参数:废水浓度、污泥床中的污泥占反应区体积、污泥浓度、污泥颗粒粒径、初始体积分率、氢气密度和氢气气泡粒径,对废水泵入升流式厌氧发酵生物制氢反应器的入口设定为固定流量入口边界条件,边界紊流条件设定为低紊流强度;处理后的混合液流出升流式厌氧发酵生物制氢反应器的出口设定为大气压条件下的静压力出口边界条件;反应器顶部的发酵气体出口边界设定为脱气边界条件;其中,所有其他固体表面,包括挡板、反应器壁均设定为壁面边界条件,对于混合液是无滑移壁面,对于发酵气体是自由滑动壁面;
(3)迭代求解
升流式厌氧发酵生物制氢反应器模拟运行于一台配置CoreTM2 Duo CPU T93002.5GHz处理器和6GB内存的计算机;模拟占用内存较大,采用64位Windows操作系统支撑模拟运算;采用高解析格式求解,其中求解Navier-Stocks方程采用分离式解法中的SIMPLE算法,均方根残差收敛标准为1.0E-4,以液相速度参数和湍动能参数作为残差收敛检验窗口,进行稳态迭代计算,模拟运算在33500次迭代后实现收敛;
按以上步骤,分别对升流式厌氧发酵生物制氢反应器在不同水力上升流速条件下的3个稳态工况进行模拟,直到收敛得到3组计算结果,并保存;
(三)后处理:流场信息获取与优化选择
利用TecPlot软件将计算结果进行可视化处理,得到不同水力上升流速工况下升流式厌氧发酵生物制氢反应器每个稳态模拟的速度场、污泥体积分率、发酵气体氢气组分体积分率流场信息,根据各流场信息对厌氧生物制氢工艺的影响将模拟结果进行综合比较,依据最大化厌氧发酵产氢速率的工艺要求,获得最优模拟工况信息,从而得到最佳水力上升流速和反应器产氢速率。
CN201410293478.8A 2014-06-26 2014-06-26 升流式厌氧发酵生物制氢反应器的优化设计方法及其应用 Active CN104050330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410293478.8A CN104050330B (zh) 2014-06-26 2014-06-26 升流式厌氧发酵生物制氢反应器的优化设计方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410293478.8A CN104050330B (zh) 2014-06-26 2014-06-26 升流式厌氧发酵生物制氢反应器的优化设计方法及其应用

Publications (2)

Publication Number Publication Date
CN104050330A CN104050330A (zh) 2014-09-17
CN104050330B true CN104050330B (zh) 2018-07-10

Family

ID=51503158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410293478.8A Active CN104050330B (zh) 2014-06-26 2014-06-26 升流式厌氧发酵生物制氢反应器的优化设计方法及其应用

Country Status (1)

Country Link
CN (1) CN104050330B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104657595B (zh) * 2015-01-23 2018-01-02 中国空气动力研究与发展中心高速空气动力研究所 一种单颗粒曳力模型系数标定方法
CN107563051B (zh) * 2017-08-30 2019-04-02 南京大学 微界面强化反应器气泡尺度构效调控模型建模方法
CN108446480B (zh) * 2018-03-15 2020-07-31 厦门大学 一种适用于一维平推流反应器动态模型求解方法
CN109145370B (zh) * 2018-07-13 2022-11-15 湘潭大学 一种基于cfd的循环流化床回料管结构优化设计方法
CN110277141B (zh) * 2019-06-10 2023-03-24 中南大学 一种基于cfd的重金属废水硫化沉淀反应器优化方法
CN110759458B (zh) * 2019-09-19 2021-09-28 江苏新宜中澳环境技术有限公司 一种臭氧反应器内反应分布的优化设计方法
CN110993034A (zh) * 2019-11-26 2020-04-10 华南理工大学 一种基于cfd的环己烷无催化氧化反应反应器的模拟方法
CN111473908A (zh) * 2020-04-20 2020-07-31 北京理工大学 用于共轨喷油器的压力室的压力测量装置、方法及系统
CN112100944B (zh) * 2020-09-24 2022-05-24 华东交通大学 基于cfd模拟与piv测量的多尺度条件下厌氧消化流场可视化方法及应用
CN113420954A (zh) * 2021-05-08 2021-09-21 中国电建集团华东勘测设计研究院有限公司 基于机理模型的工程管理业务信息化方法
CN114580231B (zh) * 2022-01-27 2022-11-01 中国农业大学 基于动量传递的模拟好氧发酵通风系统的建模方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857305A (zh) * 2010-06-30 2010-10-13 哈尔滨工业大学 升流式反应器反应区流体力学模型的构建方法
CN101872379A (zh) * 2010-06-30 2010-10-27 哈尔滨工业大学 升流式生物制氢反应器流场模拟方法
CN102855342A (zh) * 2012-05-29 2013-01-02 同济大学 一种厌氧连续流搅拌槽式生物制氢反应器的优化设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857305A (zh) * 2010-06-30 2010-10-13 哈尔滨工业大学 升流式反应器反应区流体力学模型的构建方法
CN101872379A (zh) * 2010-06-30 2010-10-27 哈尔滨工业大学 升流式生物制氢反应器流场模拟方法
CN102855342A (zh) * 2012-05-29 2013-01-02 同济大学 一种厌氧连续流搅拌槽式生物制氢反应器的优化设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EGSB生物制氢反应器流场数值模拟与优化;王旭;《中国优秀硕士学位论文全文数据库》;20120315;第C041-20页 *
典型废水厌氧处理反应器流场分析与优化研究;张冰;《中国博士学位ielunwen全文数据库 工程科技I辑》;20111115;第B027-36页 *

Also Published As

Publication number Publication date
CN104050330A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
CN104050330B (zh) 升流式厌氧发酵生物制氢反应器的优化设计方法及其应用
Laurent et al. A protocol for the use of computational fluid dynamics as a supportive tool for wastewater treatment plant modelling
Wang et al. A hydrodynamics–reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation
CN102855342A (zh) 一种厌氧连续流搅拌槽式生物制氢反应器的优化设计方法
Zhang et al. A novel airlift reactor enhanced by funnel internals and hydrodynamics prediction by the CFD method
Lange et al. Unsteady-state operation of trickle-bed reactors
Devi et al. Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller
Pang et al. Numerical study on dynamics of single bubble rising in shear-thinning power-law fluid in different gravity environment
CN106021659A (zh) 一种冲蚀-二氧化碳腐蚀耦合作用下的天然气注采井管柱腐蚀速率的确定方法
Guo et al. Numerical simulation of separation process for enhancing fine particle removal in tertiary sedimentation tank mounting adjustable baffle
Pang et al. Numerical study of bubbly upflows in a vertical channel using the Euler–Lagrange two-way model
Zhang et al. CFD simulation and experiment of residence time distribution in short-contact cyclone reactors
Setarehshenas et al. Impacts of solid-phase wall boundary condition on CFD simulation of conical spouted beds containing heavy zirconia particles
Bombardelli et al. Hierarchical modeling of the dilute transport of suspended sediment in open channels
Vaishnavi et al. Numerical studies of bubble formation dynamics in gas-liquid interaction using Volume of Fluid (VOF) method
Tang et al. Computation of gas-liquid flow in a square bubble column with Wray-Agarwal one-equation turbulence model
D'Bastiani et al. CFD simulation of anaerobic granular sludge reactors: A review
Zhang et al. Structural characteristics of a spiral symmetry stream anaerobic bioreactor based on CFD
Kim et al. Modeling long-time behaviors of industrial multiphase reactors for CO2 capture using CFD-based compartmental model
Zhang et al. Modeling of gas–liquid flow in a rotating packed bed using an Eulerian multi‐fluid approach
Song et al. Study on the flow characteristics of the pulsating intermittent liquid-solid fluidized bed with sinusoidal liquid velocity
Chang et al. Gas–liquid swirling-sparger configured along a toroidal distributor for the intensification of gas–liquid contacting
Huang et al. 3‐D Simulations of an Internal Airlift Loop Reactor using a Steady Two‐Fluid Model
Hjertager et al. Computational fluid dynamics simulation of bioreactors
Song et al. Study on hydrodynamic characteristics of the liquid-solid circulating fluidized bed with a central pulsating nozzle by numerical approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant