CN104045151A - 一种基于生物电化学原理的原位沼气提纯反应器及方法 - Google Patents

一种基于生物电化学原理的原位沼气提纯反应器及方法 Download PDF

Info

Publication number
CN104045151A
CN104045151A CN201410293550.7A CN201410293550A CN104045151A CN 104045151 A CN104045151 A CN 104045151A CN 201410293550 A CN201410293550 A CN 201410293550A CN 104045151 A CN104045151 A CN 104045151A
Authority
CN
China
Prior art keywords
reaction tank
cathode
biological
methane
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410293550.7A
Other languages
English (en)
Other versions
CN104045151B (zh
Inventor
王凯军
徐恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201410293550.7A priority Critical patent/CN104045151B/zh
Publication of CN104045151A publication Critical patent/CN104045151A/zh
Application granted granted Critical
Publication of CN104045151B publication Critical patent/CN104045151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种基于生物电化学原理的原位沼气提纯反应器及方法,属于环境保护与可再生能源利用领域;反应器包括反应池、参考电极、生物阴极、阳极室和化学阳极,其中参考电极固定在反应池的侧部开孔处且其下部浸没在反应池的液体中,生物阴极和阳极室位于反应池中,化学阳极位于阳极室中,反应池同时充当阴极室和厌氧消化池,通过恒电位仪控制生物阴极电势,生物阴极启动期结束后,其表面形成同时具有产沼和沼气提纯功能的生物膜,连续运行时调整有机负荷和阴极电势,可达到同步厌氧产沼和原位沼气提纯最佳性能;本发明将生物法和原位法两种理念同时融合到沼气提纯过程中,不仅实现了甲烷增量和碳减排,而且简化了沼气提纯系统。

Description

一种基于生物电化学原理的原位沼气提纯反应器及方法
技术领域
本发明属于环境保护与可再生能源利用领域,特别涉及一种基于生物电化学原理的原位沼气提纯反应器及方法。
背景技术
我国沼气行业在沼气产量和已建大中型沼气工程数量方面,均已位居世界第一,但沼气的利用手段单一,整体利用水平低下,且中小规模和分散式沼气工程居多。目前,能实现沼气的高效高值利用的一种重要技术是将生物质厌氧消化产生的沼气精制形成生物天然气(Bio-Natural Gas,BNG),该技术的核心是沼气提纯,其目的在于去除沼气中的二氧化碳,以增加沼气的热值和能量密度,满足天然气沃泊系数要求。当前成熟的沼气提纯技术均属于纯物化法范畴,主要包括变压吸附(PSA)、洗涤和膜分离等,物化法的缺点在于只能作为后处理单元,因此较适合大中型沼气精制工程,对于小规模和分散式沼气精制工程而言,其经济可行性不高;同时,纯物化类沼气提纯技术会或多或少产生不必要的副产物,对这些副产物的处理处置又将进一步增加整个沼气提纯工艺系统的复杂性,导致投资大、运行成本高。因此,在能源结构调整和温室效应控制等新形势下,新型沼气提纯技术研发具有重要的现实和科学意义。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于生物电化学原理的原位沼气提纯反应器及方法,解决了传统物化法沼气提纯技术对小规模及分散式沼气精制工程的经济可行性不高、容易产生不必要副产物等问题,同时能有效改善厌氧产沼性能。
为了实现上述目的,本发明采用的技术方案是:
一种基于生物电化学原理的原位沼气提纯反应器,包括反应池5、参考电极3、生物阴极6、阳极室7和化学阳极8,其中参考电极3固定在反应池5的侧部开孔处且其下部浸没在反应池5的液体中,生物阴极6和阳极室7位于反应池5中,化学阳极8位于阳极室7中,所述反应池5同时充当阴极室和厌氧消化池,其底部设有进水口,顶部设有排气口9和出水口。
所述反应池5进水口经管道连接有进水池1和进水泵2,出水口经管道连接有出水池10,所述参考电极3、生物阴极6和化学阳极8经导线连接至恒电位仪4。
所述参考电极3嵌入在丁基橡胶塞中。
所述生物阴极6和化学电极8均由未抛光的石墨材料制成。
所述生物阴极6有多个,相互并联设置。
所述阳极室7占反应池5体积的10-20%,其整体或液体浸没部分由阳离子交换膜卷制而成,两端用丁基橡胶塞堵住,并用环氧树脂进行整体密封处理。
本发明同时提供了基于所述反应器的原位沼气提纯方法,包括以下步骤:
步骤一,进水池1中的原废水在进水泵2作用下进入到反应池5,经厌氧消化处理后经反应池5出水口排入出水池10;
步骤二,向阳极室7内注入电解液,其无机盐组分与反应池5中溶液相同,不添加任何有机物,直接由水作为电子供体;
步骤三,启动恒电位仪4,并将生物阴极6的电势控制在-600~-800mV(相对于标准氢电极);
步骤四,在生物阴极6启动期,将普通厌氧污泥接种到反应池5内,使最终污泥浓度维持在3-5g/L;按照普通厌氧消化池启动方式进行操作,启动期结束后,阴极表面形成同时具有产沼和沼气提纯功能的生物膜;原废水中有机物通过厌氧消化过程产生沼气,提纯后沼气经反应池5顶部排气口9得以收集。
所述的生物阴极6表面生物膜包含生物电甲烷(electromethanogenesis)和嗜氢甲烷化的甲烷古菌以及其他厌氧消化微生物。
在连续运行期,实时监测沼气中二氧化碳浓度高低,通过调整厌氧有机负荷和生物阴极6电势,以达到同步厌氧产沼和原位沼气提纯最佳性能。
本发明的技术原理:
生物电化学技术二氧化碳去除机制主要有3种。
a)生物电甲烷化(electromethanogenesis),部分甲烷菌能直接利用电子将二氧化碳转化成甲烷(CO2+8H++8e-→CH4+2H2O);
b)生物电化学辅助产氢+嗜氢甲烷化,生物阴极能产生氢气,嗜氢甲烷菌原位利用氢气将二氧化碳转成成甲烷(CO2+4H2→CH4+2H2O);
c)电化学产碱+二氧化碳碱吸收,由于氢离子从阳极室经阳离子交换膜传递到阴极室的过程存在部分限制,导致阴极室产碱,能原位吸收部分二氧化碳。
以上3种机制都能实现原位沼气提纯功能。
与现有技术相比,本发明具有以下特点和有益效果:
本发明能同时将生物法和原位法两种理念融合到沼气提纯过程中,实现甲烷增量和沼气提纯的同时,不仅能大幅度减少二氧化碳排放,而且通过电化学产碱+二氧化碳碱吸收过程可以补充厌氧消化过程所需碱度;本发明中的低生物阴极电势有助于提高厌氧甲烷菌的活性,改善厌氧消化性能;本发明顺利将厌氧消化和沼气提纯进行原位耦合,实现两者的一体化与同步性,简化了沼气精制系统,尤其适合中小型厌氧产沼系统。
附图说明
图1为本发明实施例的一种基于生物电化学原理的原位沼气提纯反应器的结构示意图。
图2为本发明实施案例沼气提纯效果图。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。
如图1所示,一种基于生物电化学原理的原位沼气提纯反应器,主要包括参考电极3、反应池5、设于反应池内的生物阴极6、阳极室7、化学阳极8。参考电极3、生物阴极6和化学阳极8经导线连接至恒电位仪4。参考电极3首先嵌入丁基橡胶塞中,其整体再固定在反应池5的侧部开孔处,使参考电极3下端浸没在反应池的液体中。生物阴极6和阳极室7直接位于反应池5中,化学阳极8位于阳极室7中。反应池5同时充当阴极室和厌氧消化池,且其底部设有进水口,顶部分别设有出水口和排气口9,进水口经管道连接有进水池1和进水泵2,出水口经管道连接有出水池10。生物阴极6和化学电极8均由未抛光的石墨材料制成,在实际工程放大应用过程中,可以并联布置多个生物阴极6以提高沼气提纯效率。阳极室7占正反应池5体积的10-20%,其整体或液体浸没部分由阳离子交换膜卷制而成,两端用丁基橡胶塞堵住,并用环氧树脂对其整体进行密封处理。
基于上述反应器结构,在本发明实施例中,一种基于生物电化学原理的原位沼气提纯方法,主要包括以下步骤:
步骤一,进水池1中的原废水在进水泵2作用下进入到反应池5,经厌氧消化处理后经反应池5出水口排入出水池10。
步骤二,向阳极室7内注入电解液,其无机盐组分与反应池5中溶液相当,但不添加任何有机物,直接由水作为电子供体。
步骤三,启动恒电位仪4,并将生物阴极6的电势控制在-600~-800mV(相对于标准氢电极)。
步骤四,在生物阴极启动期,将普通厌氧污泥接种到反应池5内,使最终污泥浓度维持在3-5g/L;按照普通厌氧消化池启动方式进行操作,启动期结束后,阴极表面形成同时具有产沼和沼气提纯功能的生物膜;原废水中有机物通过厌氧消化过程产生沼气,提纯后沼气经反应池5顶部排气口9得以收集。
步骤五,在连续运行期,通过监测沼气中二氧化碳浓度高低,合理调整厌氧有机负荷和生物阴极6电势,以达到同步厌氧产沼和原位沼气提纯最佳性能。所述的生物阴极6表面生物膜包含生物电甲烷(electromethanogenesis)和嗜氢甲烷化的甲烷古菌以及其他厌氧消化微生物。
下面通过具体实验来说明本发明反应器及方法的使用效果。
实验所采用的原位沼气提纯反应器由体积为1L的微生物燃料电池的反应瓶改制而成。厌氧消化有效体积约为0.8L。生物阴极和阳极尺寸为25.4mm*76.2mm*12.7mm。阳极室由CMI-7000阳离子交换膜(MembranesInternational Inc.)卷制而成,占反应器体积的12%。
进水pH为6.5~7.5,碱度为1200mg/L(以CaCO3计);进水有机物有乙醇、乙酸和丙酸组成,总浓度(以COD计)为400mg/L;反应器内温度控制在35-37℃;通过恒电位仪将生物阴极的电势控制在-700mV(相对于标准氢电极)。阳极室内电解液与反应池溶液中的无机盐组分如表1所示。定期泵入高纯水以补充阳极室内消耗掉的水分。同时为了避免阳极产生的氧气对厌氧消化过程产生影响,实验中利用80%N2-20%CO2混合气对阳极室溶液进行微曝气以吹脱产生的氧气。为便于比较,同时设置了对照试验。
表1阳极室内电解液与反应池溶液中的无机盐组分
生物阴极启动期持续7天,在连续运行期,考察了两种不同有机负荷下的原位沼气提纯效果。阶段A(0~10d)的有机负荷为0.125gCOD·L-1·d-1,阶段B(10~22d)的有机负荷为0.25gCOD·L-1·d-1。如图2所示,在两种有机负荷条件下,提纯反应器产生的沼气中二氧化碳浓度都明显低于对照试验结果,这说明本发明所述方法均取得了较好的沼气提纯效果。
对于本技术领域的普通技术人员来说,在上述原理的基础上,还可以对本发明所述方法做出若干改变和改进,这些改变和改进也应包含在本发明的保护范围之内。

Claims (10)

1.一种基于生物电化学原理的原位沼气提纯反应器,其特征在于,包括反应池(5)、参考电极(3)、生物阴极(6)、阳极室(7)和化学阳极(8),其中参考电极(3)固定在反应池(5)的侧部开孔处且其下部浸没在反应池(5)的液体中,生物阴极(6)和阳极室(7)位于反应池(5)中,化学阳极(8)位于阳极室(7)中,所述反应池(5)同时充当阴极室和厌氧消化池,其底部设有进水口,顶部设有排气口(9)和出水口。
2.根据权利要求1所述的基于生物电化学原理的原位沼气提纯反应器,其特征在于,所述反应池(5)进水口经管道连接有进水池(1)和进水泵(2),出水口经管道连接有出水池(10)。
3.根据权利要求1所述的基于生物电化学原理的原位沼气提纯反应器,其特征在于,所述参考电极(3)、生物阴极(6)和化学阳极(8)经导线连接至恒电位仪(4)。
4.根据权利要求1所述的基于生物电化学原理的原位沼气提纯反应器,其特征在于,所述参考电极(3)嵌入在丁基橡胶塞中。
5.根据权利要求1所述的基于生物电化学原理的原位沼气提纯反应器,其特征在于,所述生物阴极(6)和化学电极(8)均由未抛光的石墨材料制成。
6.根据权利要求1所述的基于生物电化学原理的原位沼气提纯反应器,其特征在于,所述生物阴极(6)有多个,相互并联设置。
7.根据权利要求1所述的基于生物电化学原理的原位沼气提纯反应器,其特征在于,所述阳极室(7)占反应池(5)体积的10-20%,其整体或液体浸没部分由阳离子交换膜卷制而成,两端用丁基橡胶塞堵住,并用环氧树脂进行整体密封处理。
8.基于权利要求1所述反应器的原位沼气提纯方法,包括以下步骤:
步骤一,进水池(1)中的原废水在进水泵(2)作用下进入到反应池(5),经厌氧消化处理后经反应池(5)出水口排入出水池(10);
步骤二,向阳极室(7)内注入电解液,其无机盐组分与反应池(5)中溶液相同,不添加任何有机物,直接由水作为电子供体;
步骤三,启动恒电位仪(4),并将生物阴极(6)的电势控制在-600~-800mV(相对于标准氢电极);
步骤四,在生物阴极(6)启动期,将普通厌氧污泥接种到反应池(5)内,使最终污泥浓度维持在3-5g/L;按照普通厌氧消化池启动方式进行操作,启动期结束后,阴极表面形成同时具有产沼和沼气提纯功能的生物膜;原废水中有机物通过厌氧消化过程产生沼气,提纯后沼气经反应池(5)顶部排气口(9)得以收集。
9.根据权利要求8所述方法,其特征在于:所述的生物阴极(6)表面生物膜包含生物电甲烷(electromethanogenesis)和嗜氢甲烷化的甲烷古菌以及其他厌氧消化微生物。
10.根据权利要求8所述方法,其特征在于:在连续运行期,实时监测沼气中二氧化碳浓度高低,通过调整厌氧有机负荷和生物阴极(6)电势,以达到同步厌氧产沼和原位沼气提纯最佳性能。
CN201410293550.7A 2014-06-26 2014-06-26 一种基于生物电化学原理的原位沼气提纯反应器及方法 Active CN104045151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410293550.7A CN104045151B (zh) 2014-06-26 2014-06-26 一种基于生物电化学原理的原位沼气提纯反应器及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410293550.7A CN104045151B (zh) 2014-06-26 2014-06-26 一种基于生物电化学原理的原位沼气提纯反应器及方法

Publications (2)

Publication Number Publication Date
CN104045151A true CN104045151A (zh) 2014-09-17
CN104045151B CN104045151B (zh) 2015-09-30

Family

ID=51498607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410293550.7A Active CN104045151B (zh) 2014-06-26 2014-06-26 一种基于生物电化学原理的原位沼气提纯反应器及方法

Country Status (1)

Country Link
CN (1) CN104045151B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176614A (zh) * 2015-09-21 2015-12-23 中国科学院成都生物研究所 一种微生物电化学原位沼气脱硫的方法
CN108061811A (zh) * 2017-12-15 2018-05-22 重庆晓微城企业孵化器有限公司 方便培植液置换的生物传感器
CN109748384A (zh) * 2017-11-01 2019-05-14 云南师范大学 一种利用mec强化uasb生产生物天然气的反应器
WO2019199888A1 (en) * 2018-04-10 2019-10-17 Lawrence Livermore National Security, Llc Electromethanogenesis reactor
WO2020041894A1 (en) * 2018-08-30 2020-03-05 Wanger Greg Systems and methods for remediating aquaculture sediment
CN111926045A (zh) * 2020-08-20 2020-11-13 重庆大学 利用有机固废厌氧发酵制甲烷的电化学反应器以及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250004A (zh) * 2008-02-05 2008-08-27 中国科学院沈阳应用生态研究所 用零价铁提高uasb产ch4作用及磷酸盐去除率的装置与方法
CN202729944U (zh) * 2012-05-29 2013-02-13 昆明理工大学 一种印染废水处理装置
EP2703364A1 (fr) * 2012-08-31 2014-03-05 Arcbiogaz Installation démontable pour la production de biogaz
CN203959919U (zh) * 2014-06-26 2014-11-26 清华大学 一种基于生物电化学原理的原位沼气提纯反应器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250004A (zh) * 2008-02-05 2008-08-27 中国科学院沈阳应用生态研究所 用零价铁提高uasb产ch4作用及磷酸盐去除率的装置与方法
CN202729944U (zh) * 2012-05-29 2013-02-13 昆明理工大学 一种印染废水处理装置
EP2703364A1 (fr) * 2012-08-31 2014-03-05 Arcbiogaz Installation démontable pour la production de biogaz
CN203959919U (zh) * 2014-06-26 2014-11-26 清华大学 一种基于生物电化学原理的原位沼气提纯反应器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176614A (zh) * 2015-09-21 2015-12-23 中国科学院成都生物研究所 一种微生物电化学原位沼气脱硫的方法
CN109748384A (zh) * 2017-11-01 2019-05-14 云南师范大学 一种利用mec强化uasb生产生物天然气的反应器
CN108061811A (zh) * 2017-12-15 2018-05-22 重庆晓微城企业孵化器有限公司 方便培植液置换的生物传感器
CN108061811B (zh) * 2017-12-15 2023-05-23 重庆晓微城企业孵化器有限公司 方便培植液置换的生物传感器
WO2019199888A1 (en) * 2018-04-10 2019-10-17 Lawrence Livermore National Security, Llc Electromethanogenesis reactor
WO2020041894A1 (en) * 2018-08-30 2020-03-05 Wanger Greg Systems and methods for remediating aquaculture sediment
CN111926045A (zh) * 2020-08-20 2020-11-13 重庆大学 利用有机固废厌氧发酵制甲烷的电化学反应器以及方法
CN111926045B (zh) * 2020-08-20 2023-01-31 重庆大学 利用有机固废厌氧发酵制甲烷的电化学反应器以及方法

Also Published As

Publication number Publication date
CN104045151B (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
CN104045151B (zh) 一种基于生物电化学原理的原位沼气提纯反应器及方法
Kadier et al. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production
CN104478178B (zh) 微生物电解两段式污泥厌氧消化装置及利用该装置产甲烷的方法
Lai et al. Hydrogen-driven microbial biogas upgrading: advances, challenges and solutions
CN105176614B (zh) 一种微生物电化学原位沼气脱硫的方法
CN104743663B (zh) 利用高有机物高氨氮废水强化产甲烷的生物电化学反应装置和方法
CN102352309B (zh) 一种电解促进厌氧发酵装置及其应用
CN101831462B (zh) 一种预处理和电化学强化污泥厌氧发酵产氢方法
CN104261559B (zh) 一种利用微生物电解强化升流式套筒厌氧消化产甲烷反应器处理废液的方法
CN113234590B (zh) 一种沼气制备装置及方法
CN109553163A (zh) 一种电解处理高氨氮废水的方法
CN102492506A (zh) 有机废水脱除沼气中二氧化碳的方法及其装置
CN109179938A (zh) 一种基于阳极促进污泥厌氧消化和阴极二氧化碳还原的厌氧微生物电化学处理工艺
CN104762635A (zh) 电辅助将乙醇转化为乙酸的同时产甲烷的方法与装置
CN110183029B (zh) 一种将有机废水转化为乙酸的装置与方法
CN101275233B (zh) 一种采用醇类为原料的制氢方法
CN203346383U (zh) 利用有机废弃物制氢的装置
CN109912154A (zh) 一种微生物电解池高效产氢并且抑制产甲烷的方法
CN203959919U (zh) 一种基于生物电化学原理的原位沼气提纯反应器
CN107043693A (zh) 一种自吸氧式管式光生物反应器
CN101476132B (zh) 生物电化学制氢装置及利用该装置制取氢气的方法
CN210215110U (zh) 一种碳氮磷同步高效去除的污水处理系统
CN202246675U (zh) 电解促进厌氧发酵装置
CN103255182B (zh) 一种同时生产生物气和脂肪酸的方法及其反应系统
CN111574011A (zh) 一种剩余污泥低温热水解预处理耦合微生物电解池厌氧消化产甲烷的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant