CN104040924A - 在网络通信路径中具有周期传输过滤器的共享的波长锁定器 - Google Patents

在网络通信路径中具有周期传输过滤器的共享的波长锁定器 Download PDF

Info

Publication number
CN104040924A
CN104040924A CN201280048041.7A CN201280048041A CN104040924A CN 104040924 A CN104040924 A CN 104040924A CN 201280048041 A CN201280048041 A CN 201280048041A CN 104040924 A CN104040924 A CN 104040924A
Authority
CN
China
Prior art keywords
signal
wavelength
light
transmission
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280048041.7A
Other languages
English (en)
Other versions
CN104040924B (zh
Inventor
沈晓安
王同庆
雷红兵
白聿生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority claimed from PCT/CN2012/082413 external-priority patent/WO2013044863A1/en
Publication of CN104040924A publication Critical patent/CN104040924A/zh
Application granted granted Critical
Publication of CN104040924B publication Critical patent/CN104040924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0276Transmission of OAMP information using pilot tones

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

一种装置,包括多个光传输器以及由所述多个光传输器共享的波长锁定器。用于波长锁定器操作的周期传输过滤器在网络通信路径中,且对从所述多个光传输器到网络的光传输进行整形。一种装置,包括至少一个处理器,用于接收与包括导频音的光信号的部分对应的预过滤信号并接收与通过周期传输过滤器的所述光信号的部分对应的后过滤信号,其中,所述光信号的过滤的部分指向到网络中去。所述处理器也用于基于将调制的传输信号的绝热逻辑一位置与所述周期传输过滤器的频谱传输峰对齐的正交检测技术进行波长锁定。

Description

在网络通信路径中具有周期传输过滤器的共享的波长锁定器
本申请要求于2011年09月29日递交的发明名称为“在网络通信路径中具有周期传输过滤器的共享的波长锁定器”的第13/248517号美国专利申请的优先权,其内容通过如复制引用全部合入本文中。
技术领域
本发明涉及通信网络,以及,在特别实施例中,涉及一种在网络通信路径中具有周期传输过滤器的共享的波长锁定器。
背景技术
传统的波分复用(wavelength division multiplexing,WDM)传输器阵列可运用半导体激光作为光传输器。所述激光的性能以及因此WDM系统通常由其波长稳定性及到达范围判断。所述WDM激光阵列的波长可由于制造过程变动、设备年龄、温度、或者其它因素而不同。波长锁定能甚至当所述激光的波长随着时间变化时有利于信号完整性。
提供波长锁定的一个方法已是运用反馈系统将真正的激光输出波长与目标激光输出波长比较。之后,能调节激光输出以对于偏差进行纠正。对于离散传输器,波长锁定器用于每一激光。由于单独的光传输器的个数增加,波长锁定的复杂度和成本也可增加。所需要的是提供有效的和有成本效益的波长锁定的方法,尤其在每个激光器配一个锁定器的方法不实际的传输器阵列的情况中。扩展传输器的到达范围通常涉及激光上的广泛的工程,使得所述传输器更加昂贵。同时,费用不高的传输器,如那些直接利用调制的激光的,通常具有短的到达范围。
发明内容
在一项实施例中,本发明包括一种装置,包括多个光传输器和一个由所述多个光传输器共享的波长锁定器。用在所述波长锁定器的操作中的周期传输过滤器位于网络通信路径中,且将从所述多个光传输器到网络的光传输进行整形。
在一项实施例中,本发明包括一种装置,包括至少一个处理器,所述处理器用于接收与包括导频音的光信号的部分对应的预过滤信号并接收与通过周期传输过滤器的光信号的部分对应的后过滤信号,其中,所述光信号的过滤的部分指向到网络中。所述处理器还被用于根据将调制的传输信号的绝热逻辑一位置与周期传输过滤器的频谱传输峰值对齐的正交检测技术进行波长锁定。
在一项实施例中,本发明包括一种方法,包括处理器接收与来自直接调制的激光(direct modulated laser,DML)传输器的光信号对应的数字化信号以及与来自信号生成器的导频音对应的数字化信号。所述方法也包括根据所述数字化信号以及根据与在网络通信路径中将调制的DML传输器输出的绝热逻辑一位置与周期传输过滤器的频谱传输峰值对齐的正交检测进行波长锁定。
从结合附图和所附权利要求书进行的以下详细描述将更清楚地理解这些和其它特性。
附图说明
为了更完整地理解本发明,现参考以下结合附图和详细描述进行的简要描述,其中类似参考数字表示类似部分。
图1是WDM激光传输器的实施例的俯视图。
图2是多个来自标准具的传输频谱的实施例的图。
图3是10G上DML频谱的图。
图4是用于来自直接调制的激光的调制的NRZ数据的瞬变的、绝热的线性调频脉冲的图。
图5是WDM激光波长锁定装置的实施例的示意图。
图6是WDM激光波长锁定方法的实施例的流程图。
图7表明调整用于特别应用的TDM波长锁定的方法。
图8是利用图9的方法的DML阵列的瀑布曲线。
图9是常规目的计算机系统的实施例的示意图。
具体实施方式
首先应当理解,尽管下文提供了一个或更多实施例的说明性实施,所公开的系统和/或方法可使用任意个数的技术来实施,不论是当前已知的或存在的。本发明不应以任何方式受限于下文说明的说明性实施、附图、和技术,包括本文说明和描述的示例性设计和实施,但本发明可在所附的权利要求书的范围之内及其等同物的全部范围之内被修改。
本文公开的是实际的、有成本效益的技术,以提高利用直接调制的激光(directlymodulated laser,DML)的密集波分复用(dense wavelength division multiplexing,DWDM)传输器的性能。尤其地,所公开的发明提供一种方法以及装置,其中,单个周期传输过滤器(例如,标准具)用于共享的波长锁定器操作以及用于将指向到网络中的光传输器信号进行频谱整形。通过这种方法,稳定用于所述传输器阵列的波长,并增加用于光传输器信号的到达范围。在DWDM网络中,波长锁定器,像基于标准具的锁定器,通常用于保证每一传输器在所需要的波长如ITU网格上运行。在所公开的发明中,相同的标准具现在能用于实现波长稳定性(通过将所述标准具用于波长锁定器操作)以及DML的更长到达范围(通过将所述标准具用于将指向到网络中的光传输器信号进行整形)。
如本文所公开的激光传输器系统实施例可包括多个光传输器,如激光、光电二极管、其它用于在光波长传输电磁波的设备、或者其组合。所述光波长可包括可见波长范围、红外线波长范围、紫外辐射(ultraviolet,UV)波长范围、或者其它光波长范围的至少一部分。在一项实施例中,所述光传输器可以是离散传输器单元,可以相互之间耦合。例如,所述离散光传输器可在阵列安排中挂载在芯片、板卡、或光平台上。当被实施在芯片上时,一个阵列的传输器可称为集成传输器。所述光传输器也可耦合到光耦合器,如复用器,可用于将来自不同的光传输器的输出合并成为单个输出。来自所述不同的光传输器的所述输出可具有不同的波长,且来自所述光耦合器的所述输出可包括所述光传输器的所述不同的波长。所述光耦合器可置于相同的或者不同的芯片、板卡、或光平台上。所述光耦合器可通过多个纤维或波导耦合到所述光传输器,也可通过额外的纤维或波导耦合到输出。此外,所述激光传输器系统可包括信号生成器和波长锁定装置,可耦合到所述光传输器以及所述光耦合器。所述信号生成器可提供到任何所述光传输器的输出上的导频信号,且所述波长锁定装置可使用所述导频音锁定光传输器的波长,如下文所述。在替代性实施例中,所述激光传输器系统的组件的至少一些可集成到芯片如平面光波导功率(planar lightwavecircuit,PLC)中去。
图1是WDM激光传输器100的实施例的俯视图。在至少一些实施例中,所述WDM激光传输器100可对应于从如本文所述的为共享的波长锁定器操作以及为将光传输信号输出到网络(提升DML的到达范围)的频谱整形而使用单个周期传输过滤器(例如,标准具)中获益的DWDM传输器阵列。如所示,所述WDM激光传输器100可包括平台110、激光切块120(文中也称为光传输器)、阶梯130、多个第一通道140、阵列式波导(arrayedwaveguide,AWG)150、以及可选地第二通道155。所述WDM激光传输器100也可包括或者可耦合到纤维160。这些组件可按照已知的配置如混合集成配置或者单片配置进行配置。所述WDM激光传输器100可发射多个明确的密集WDM(dense WDM,DWDM)通道,如在国际电信联盟电信标准化部门(International Telecommunication UnionTelecommunication Standardization Sector,ITU-T)G.694.1中所述,和/或粗WDM(coarseWDM,CWDM)通道,如在ITU-T G.694.2中所述。因此,所述WDM激光发射器100可适合于用在骨干和/或接入光网络中。
在一项实施例中,所述平台110可用于容纳和集成所述WDM激光传输器100的组件。具体地,所述平台110可包括集成、绑定、和/或支持所述WDM激光传输器100的组件的至少一种材料。所述平台110可通过沉积过程产生,例如在芯片或基片中。进一步地,所述平台110可包括在不同站点的多个层,可通过沉积和/或蚀刻产生。所述层可将所述WDM传输器100的其他组件如所述第一通道140、所述AWG150、以及所述第二通道155绑到一起。此外,所述层可挂载或支持所述WDM激光传输器100的组件,如所述激光切块120。在一项实施例中,所述平台110可包括电介质材料如二氧化硅(silicondioxide,SiO2)的薄膜层,可通过化学沉积如化学溶液沉积(chemical solution deposition,CSD)、化学气相沉积(chemical vapor deposition,CVD)、以及等离子增强化学气相沉积(plasma-enhanced CVD,PECVD)沉淀在基片上。替代性地,可通过物理沉积如热蒸发、溅射、脉冲激光沉积、或者阴极电弧沉积(cathodic arc deposition,arc-PVD)沉淀所述膜层。也可使用其他沉积过程,包括反应溅射、分子束外延(molecular beam epitaxy,MBE)、有机金属气相外延(metalorganic vapor phase epitaxy,MOVPE)、拓扑取向、或者任何其它合适的过程。也可通过湿化学蚀刻或干等离子蚀刻在所述平台110的一些区域蚀刻所述薄膜层。所述薄膜层可小于大约1mm如大约10微米厚。
所述激光切块120可以是所述WDM激光传输器100的光发射组件。所述激光切块120可耦合到所述平台110且包括多个集成的半导体激光,可配置在阵列中。例如,可通过在芯片上的多个对齐的站点沉淀激光材料如磷化铟(indium phosphide,InP)或砷化镓(gallium arsenide,GaA)产生半导体激光阵列。替代性地,可通过化学或电化学掺杂将所述激光材料添加到所述芯片。所述激光切块120可以是激光二极管、异质结构激光、量子阱激光、量子级联激光、分布反馈(distributed feedback,DFB)激光、其组合、或者其它。所述激光切块120可用于在基本相同的方向上传输多个光波,例如,从所述阵列的相同侧。所述激光切块120也可用于在多个长达带宽的波长上传输所述光波。在一项实施例中,所述波长可保持大约相同的值的间距,其中,任何两个波长的值之间的差可以是大约相同的。在一项实施例中,所述激光切块120可通过绑定耦合到所述平台110。
在一项实施例中,可通过所述阶梯130和所述平台110容纳所述激光切块120。例如,可将所述阶梯130置于所述平台110的一个边缘,并耦合到所述激光切块120。所述阶梯130可包括所述平台110的层,可通过蚀刻或沉积产生,且因此可包括与所述平台110相同的材料,例如,SiO2。所述阶梯130也可耦合到外部电组件,可用于运行和/或调制所述WDM激光传输器110,如下文所述。
可将从所述激光切块120发射来的光通过所述第一通道140传输到所述WDM激光传输器100的其他组件。因此,所述第一通道140可耦合到所述激光切块120以及所述AWG150,且可与所述激光切块120对齐。所述第一通道140可包括多个波导,可用于运送从所述激光切块120到所述AWG150的光。所述波导可以是电介质波导,可包括比所述周围的平台110具有更高电容率或介电常数的电介质材料。例如,所述第一通道140可通过在所述平台110上沉淀更高系数材料层、蚀刻所述周围的区域、之后沉淀与所述平台110相同的材料直到所述沉淀的材料形成上部包层而产生。这样的过程可在所述通道140周围产生相同的包层材料。因此,通过从所述激光切块120到所述AWG150的完全内部反射可引导所述光波通过所述第一通道140。
可将由所述第一通道140传输的光波在所述AWG150合并成为单个光波,且因此从所述WDM激光传输器100传输。相应地,所述AWG150可耦合到所述第一通道140和所述第二通道155。所述AWG150可以是用于将多个来自所述第一通道140的光波合并成为在所述第二通道155中传播的合并光波的光复用(multiplex,MUX)。例如,所述AWG150可包括多个光栅波导,可具有不同的长度,其中,每两个邻近的光栅波导可具有大约相同的长度差。所述光波可对应于在所述激光切块120中的单独半导体激光,其中,每一光波可具有不同的波长。所述光波可通过所述光栅波导传播,经过由邻近的光栅波导之间的长度差造成的相的变化,且在所述AWG150的输出上建设性地干扰所述合并光波。因此,所述合并光波可包括所述单独光波的所有波长。所述光栅波导可以是电介质光栅波导,可包括与所述第一通道140相同的材料,且可通过与用于产生所述第一通道140的过程相似的过程产生。
可使用所述第二通道155和所述纤维160将所述合并光从所述WDM激光传输器100传输。所述第二通道155可包括电介质波导,类似于所述第一通道140。所述第二通道155可耦合到所述AWG150和所述纤维160,且因此可引导所述合并光从所述AWG150到所述纤维160。所述第二通道155可通过与用于产生所述第一通道140的过程相似的过程产生。在一项实施例中,所述第一通道140、所述AWG150、以及所述第二通道155可置于所述平台110的相同的层中,且可与所述激光切块120对齐。
在一项实施例中,所述纤维160可以是光纤,可用于将所述合并光波从所述WDM激光传输器100传输到光系统,如光电信系统或光网络。尤其地,所述纤维160可用于传输WDM信号,如上文所述的DWDM和/或CWDM信号。所述纤维160可以是如ITU-T标准G.652所定义的标准单模纤维(single mode fiber,SMF)、如ITU-T标准G.653所定义的色散位移SMF、如ITU-T标准G.654所定义的截止位移SMF、如ITU-T标准G.655所定义的非零色散位移SMF、如ITU-T标准G.656所定义的宽带非零色散位移SMF、多式纤维、或者任何其它类型的纤维。所有的本文所描述的标准通过引用合入本文中。
与运用具有周期传输过滤器(例如,标准具)的共享的波长锁定器方案以实现波长稳定性以及DWDM传输器阵列的所有DML的更长到达范围的所公开的技术成对比,在WDM应用中使用的传统的波长锁定方案可为每一波长(例如,为大约100千兆赫(GHz)的波长间距)使用单独的波长锁定器。替代性地,如本文所公开的,由于所述周期传输过滤器在所述数据传输路径中的位置以及由于所述激光频率与共享的波长锁定器方案的微调,所公开的技术与现有的共享的波长锁定器方案区别开来。尽管关于图1的讨论描述通常如何混合集成DWDM传输器阵列,所公开的共享的锁定器技术不限于集成的传输器阵列。相反地,任何离散传输器也能使用所述锁定器用于波长稳定性,只要其波长在ITU网格上间距均匀。在性能提升方面,所述集成不限于DML。
根据至少一些实施例,所公开的装置与方法利于为所述激光的频谱根据所述绝热逻辑一位置确定激光光传输器的锁定点。本文所公开的为锁定选择所述绝热逻辑一位置通过削减瞬变的线性调频脉冲与所述绝热逻辑零位置导致色散的削减。此外,能运用单个的导频信号生成器,因此最小化成本和复杂度。如本文所公开的,正交检测可用于同时稳定WDM激光传输器(例如,WDM激光传输器100)的多个激光。
如本文所公开的正交检测的使用具有大量明确的特征。在所述标准具的传输函数的峰而不是其斜面锁定。此外,与激光轮廓相对的锁定点经常在与所述标准具的传输函数卷积之后其谱密度是最高的。当适当地使用这样的锁定器时,这些特性能提供有力的方式以提升将要稳定的激光的性能,尤其是DML的性能。
图2是多个来自标准具的传输频谱的实施例的图。在图2中,从50GHz自由频谱范围标准具波长锁定器与参考信号得到所述传输频谱。直线是所述参考信号,而周期线来自通过所述标准具传输的所述信号。通过用足够窄的线宽(比所述标准具的线宽更窄)扫描激光以及将所接收到的信号连结成所述激光波长的函数得到这些频谱。
图3显示在10G用NRZ调制操作的DML的原始频谱。在所述激光阀值之上38mA的偏置电流以及50mA的峰到峰调制取得此频谱。在所述频谱顶部的尖峰接近于所述绝热逻辑一位置,在更长的波长侧的第二峰代表所述绝热逻辑零位置,且之间的任何事物随着加宽是所述瞬变的线性调频脉冲的结果,是DML的特征。
所述DML的瞬变的、绝热的线性调频脉冲是限制基于DML的传输器的到达范围的损耗的主要来源。图4提供每一线性调频脉冲组件当其在光纤中向下传导时在调制的NRZ数据中扮演的角色的绘画图。由于瞬变的线性调频脉冲以及纤维的色散,脉冲的前沿比下降沿传导得更快,导致所述脉冲的加宽。此外,所述绝热的线性调频脉冲引起逻辑一的级别比逻辑零的具有更高的频率(更短的波长)。在频率方面的这一差别导致当所述数据在纤维中传播时的符号间干扰(inter-symbol interference,ISI),阻止其被所述接收器正确地解析。这些是为什么基于DLM技术的传输器通常受限于在高数据率不要求长的到达范围(例如,在10G及以上到达长于40km)的应用的原因。
近来,已经努力致力于将DML与二氧化硅AWG集成以形成DWDM传输器阵列用于传输网络中。此混合集成结果证明是用于地铁/区域网络的线侧的高密度、低成本的收发信机的优秀解决方案。然而,因为其在DML中出现的大的瞬变、绝热线性调频脉冲,其到达范围受限于没有色散补偿。例如,可在每一跨度中与光放大器(如,例如,掺铒光纤放大器(erbium-doped fiber amplifier,EDFA))一起添加一个色散补偿模块以使得所述DWDM传输网络正常地工作。然而,这增加了建设网络的成本。
图5是波长锁定系统200的实施例的示意图。所述波长锁定系统200包括所述WDM激光传输器100、信号生成器202、所述纤维160、在预过滤分离器210A与后过滤分离器210B之间的过滤器212、耦合到所述预过滤分离器210A与后过滤分离器210B的光电(optical-electrical,OE)转换器218、模数(analog-to-digital,A/D)转换器222、信号处理器224、处理器230、以及数模(digital-to-analog,D/A)转换器234,如在图5中所示的配置。在一些实施例中,所述OE转换器218以自由空间光直接连接到所述两个分离器210A和210B,且其被集成到一起以形成基于标准具的波长锁定器的光部分。如所示,所述WDM激光传输器100可包括所述激光切块120、所述第一通道140、所述AWG150、以及所述第二通道155,可与上文所述的基本上相同。
在一项实施例中,所述信号生成器202可以是电波形生成器且可以被安排以将导频信号叠加到所述激光切块的单独的激光器的输出上去。所述信号生成器202可为在所述激光切块120中所有激光器的所有或子集生成单独的导频信号。将所述导频信号叠加到所述激光切块120的激光的输出上去利于后续从多个激光波形中明确该激光器的输出。在其它实施例中,所述导频信号既可称为导频音也可称为高频振动。在一项实施例中,所述导频信号可以是低频交流(alternating current,AC)正弦波。在替代性实施例中,所述导频信号可以是方波、锯齿波、或者三角波。所述导频波形的频率可低于所述激光传输器的输出的频率,如大约所述激光传输器的输出的频率的千分之一、大约所述激光传输器的输出的频率的百万分之一、或者所述激光传输器的输出的频率的任何其它分数。在一项实施例中,所述导频信号的振幅对所述激光传输器合并的输出的平均功率的关系可称为调制深度(modulation depth,MD)。可将所述MD选择如其少于所述激光传输器的输出,如大约所述激光传输器输出的平均功率的百分之一、大约所述激光生成器输出的平均功率的千分之一、或者所述激光传输器输出的功率的任何其它分数。可将所述导频信号的MD与频率的值选择如其最小化与所述WDM激光传输器100的输出的干扰。
在一项实施例中,所述WDM激光传输器100的输出可指向到所述纤维160中去。可将所述预过滤分离器210A安排在所述过滤器212之前以将来自所述纤维160的信号分割为两个信号:指向到过滤器212中去的第一预过滤信号以及指向到所述OE转换器218中去的第二预过滤信号。所述过滤器212可修改、更改、或延迟与所述第二预过滤信号相对的所述第一预过滤信号。在一项实施例中,所述过滤器214可以是法布里-珀罗干涉仪的一个、或者其它合适的过滤器,且可以是中空的、实心的、或者其它配置。在一些举例中,所述过滤器212可称为标准具。在一项实施例中,所述过滤器212可以是50GHz标准具、100GHz标准具、或者其它合适的频率范围或间距的标准具。同时,可将所述后过滤分离器210B安排在所述过滤器212之后以将所述过滤器212的输出分割为两个信号:指向到网络中去的第一后过滤信号以及指向到所述OE转换器218中去的第二后过滤信号。在一项实施例中,所述预过滤分离器210A及后过滤分离器210B可以是双棱镜型、半银镜型、双色镜型、或者其它合适的分离器。
在至少一些实施例中,所述OE转换器218可接收来自预过滤分离器210A的所述第二预过滤信号(所述第二预过滤信号在文中有时称为参考信号),且可通过纤维接收来自所述后过滤分离器210B的第二后过滤信号。替代性地,所述OE转换器218可以通过自由空间光直接连接到所述两个分离器210A和210B。在这样的实施例中,省去在所述OE转换器218与分离器210A、210B之间的纤维(例如,OE转换器218形成所述基于标准具的波长锁定器的集成部件)。所述OE转换器218可使用光电转换过程以将所述第二预过滤信号与所述第二后过滤信号从光信号转换为电信号。在一项实施例中,所述OE转换器218可以是光电二极管(photodiode,PD)或者其它合适的光电转换器。
所述A/D转换器222可接收来自所述OE转换器218的所述第二后过滤信号和所述参考信号。所述A/D转换器222可将所述第二后过滤信号和所述参考信号从模拟信号转换为数字信号。A/D转换器222在本领域是众所周知的,且在本文中可使用任何合适的A/D转换器。
所述信号处理器224可接收来自所述A/D转换器222的所述第二后过滤信号和所述参考信号。之后,由所述信号处理器224处理此两个信号中的每一个,将它们从时间域转换为频率域。例如,所述信号处理器224可实施傅里叶变换、快速傅立叶变换(fastFourier transformation,FFT)、或者任何其它合适的时间域到频率域处理的形式。
之后,所述处理器230可处理所述信号数据以利于所述激光切块120的单独的激光的波长锁定。在一项实施例中,所述信号数据在数学上可由以下表达式表示:
F s ( ω p ) = Σ t V s ( t ) · e - i ω p t
F r ( ω p ) = Σ t V r ( t ) · e - i ω p t
其中,Fs是所述第二后过滤信号的函数,且Fr是所述参考信号的函数。Fs与Fr可表示由所述OE转换器218检测的频率域波形,其中,ωp是所述导频信号的频率,Vs(t)是所述第二后过滤信号的时间域波形,且Vr(t)是所述参考信号的时间域波形。在一些实施例中,本文所述的得到的正交检测是提升DML性能的基础。这是因为,所述正交检测技术允许DML在一旦用NRZ格式编码所述数字数据则与所述调制的激光频谱的绝热1的位置同时也是标准具的峰上被锁定。
对于所述正交检测,可运用额外的术语以代表所述波长锁定系统200的方面。例如,P可用于代表将被锁定的激光的光输出信号的功率,ΔP可代表所述导频信号的MD,以及Iet可代表所述过滤器212的传输函数。此外,Δωa可代表绝热的线性调频脉冲,且Δωth可代表热的线性调频脉冲,均可由所述导频信号引入。术语φth可用于代表与所述绝热的线性调频脉冲相对的热的线性调频脉冲的相延迟,且I'et可代表Iet关于频率的第一导数。给定这些定义,可得到所述第二后过滤信号与所述参考信号的比率α,例如,在一项实施例中,以下表达式可代表α的真实的与想象的要素:
I = Re [ F s ( ω p ) F r ( ω p ) ] = I et ( ω c ) + P ΔP · I ' et ( ω c ) · ( Δ ω a + Δ ω th · cos ( φ th ) )
I = Im [ F s ( ω p ) F r ( ω p ) ] = P ΔP · I ' et ( ω c ) · Δ ω th · sin ( φ th )
其中,I代表α的同相要素,Q代表α的正交要素,ωc是将被波长锁定的激光的频率。对于I与Q的两个表达式可以是通过忽略所述过滤器212的传输函数的第二以及更高阶导数得到的近似值。此外,α的正交要素Q可与所述过滤器212的传输函数I'et的第一导数成比例。另外,由所述导频信号引发的绝热的线性调频脉冲不促成正交反应。进一步地,所述热的线性调频脉冲以及所述相关的相延迟仅可促成所述正交频率反应的级数。可通过所述调制深度的反函数增强所述正交要素,且因此所述正交要素可提供增强的信号检测。所述信号特征可表示所述正交要素可利于光激光传输器的有效的波长锁定。
本文所述的正交要素技术的特征提供与调制的DML传输器的绝热逻辑一位置非常接近的锁定点。单独的传输器之间的变化仅可影响所述错误信号强度,而不是所述锁定点。此外,在所述错误信号强度上此变化的影响可通过导频信号频率与MD的恰当的选择而最小化。在一项实施例中,恰当的导频信号频率可大于或等于大约十kHz且少于或等于大约500kHz,或者其它合适的频率。在另一实施例中,恰当的MD可以是所述WDM输出的平均功率的输出功率的大约百分之二,所述WDM输出的平均功率的输出功率的大约百分之五,或者所述WDM输出的功率的其它分数。因此,所述处理器230可确定是否所述光传输器(例如,激光切块120)被锁定到所述恰当的波长上去。如果光传输器或者激光切块120未被锁定到所述恰当的波长上去,所述处理器230可生成恰当的调整信号。
所述D/A转换器234可接收来自所述处理器230的调整信号。所述D/A转换器234可将所述调整信号从数字信号转换为模拟信号。D/A转换器234在本领域是众所周知的,且在本文中可使用任何合适的D/A转换器。
在一项实施例中,可安排所述OE转换器218、所述A/D转换器222、以及所述信号处理器224具有单独的端口或通道以管理所述两个单独的信号。在另一实施例中,可通过为所述信号的每一个恰当地安排单独的组件OE转换器218、A/D转换器222、和/或信号处理器224来管理所述两个单独的信号。替代性地或者此外,所述OE转换器218、所述A/D转换器222、所述信号处理器224、所述处理器230、和/或所述D/A转换器234可以是如所示的离散组件或者可合并到一起成为单个组件。
在一项实施例中,可运用α的正交要素作为时间域复用(time-domainmultiplexing,TDM)的要素以进行所述WDM激光传输器100的多个单独激光的波长锁定。在一项实施例中,当所述信号生成器202将导频信号应用于在时隙tn的第一激光光传输器n时,可运用TDM。所述波长锁定器可基于应用于所述激光光传输器n的导频信号的认知检测所述激光光传输器n的波长λn,并指导所述激光光传输器n将其波长λn调整到目标波长。可为用于传输器n+1的下一时隙tn+1等重复这一操作,直到所有激光光传输器相应地被波长锁定。
在至少一些实施例中,可将所述绝热逻辑一位置的定位选择为与所述标准具峰稍微的偏移,以进一步优化在所述系统中的传输性能。所述偏移的典型范围是在0与+/-10G之间,可通过将所述正交检测方法修改为在所需要的点锁定来完成。例如,可为具有等于值的第一集合的Q与I的特别的DML进行所述正交检测方法,以实现与调制的DML传输器输出的绝热逻辑一位置非常接近的锁定点(例如,当Q=0,所述锁定点在朝向所述绝热逻辑零位置的绝热逻辑一位置的稍微向右)。一旦实现此锁定点,分析所述调制的DML传输器输出,以确定是否特别的应用需要调整所述调制的DML传输器输出的形状。如示例,可通过改变所述DML的温度直至来自所述标准具的所述调制的DML信号输出具有所需要的形状来调整所述调制的DML传输器输出的形状。一旦所述温度调整对于所述DML是已知的,可基于所述温度调整将用于所述正交检测的Q和I设置为值的第二集合。在一些实施例中,所述温度调整和所述对于Q和I的正交检测调整使能锁定点在所述绝热逻辑一位置的中心或者在所述调整的DML传输器输出的绝热逻辑一位置(较短波长侧)的稍微向右。对于图4的替代性方法是其中每一通道使用其自身的高频振动频率(导频音)以控制多个激光的频分复用的使用。
概括地说,图5的波长锁定系统200对应于具有多个光传输器(例如,激光切块120)以及由所述多个光传输器共享的波长锁定器(所述反馈环)的装置。波长锁定系统200的过滤器212用于所述波长锁定器的操作,且在网络通信路径中以将来自所述多个光传输器120的光传输整形到网络。如图4所示,所述过滤器212的输出的部分指向到所述网络中去,且所述过滤器212的输出的另一部分指向到所述反馈环中去。
在所述波长锁定器反馈环中的处理器230用于基于所述过滤器212的传输频谱峰为所述光传输器的每一个调整波长。由所述过滤器212进行的频谱整形基于所述过滤器212的预定的Q值以及所述DML运行特征。如前所讨论的,可通过本文所公开的正交检测方法调整所述光传输器120的波长,以将所述调制的数据信号的绝热逻辑一位置与所述过滤器212的传输频谱峰对齐。替代性地,通过将所述调制的数据信号的绝热逻辑一位置与所述过滤器212的传输频谱峰偏移预定的量(例如,通过Q和I的值的调整以及通过调整所述DML的温度)可调整所述光传输器120的波长。
图6表明TDM波长锁定方法300的实施例。在块302,所述方法300开始。在块304,可生成导频信号,例如,使用所述信号生成器,并可将所述导频信号与将被波长锁定的WDM激光传输器的激光的输出信号合并。在块306,可通过,例如,预过滤分离器将WDM激光传输器与所述导频信号的合并的输出信号分离为第一预过滤信号和第二预过滤信号(参考信号)。在块308,所述第一预过滤信号通过过滤器,如标准具过滤器。
在块310,所述过滤器输出通过,例如,后过滤分离器被分离为第一后过滤信号和第二后过滤信号。在块312,所述第二预过滤信号与所述第二后过滤信号指向检测器,如OE转换器。在块314,来自所述检测器的输出信号指向信号转换器。换言之,可通过,例如,A/D转换器处理所述第二后过滤信号和所述参考信号。在一项实施例中,所述A/D转换器可包含存储器(未显示)以暂时收集和存储大量的所述信号。在一项实施例中,所述大量的所述存储的信号可以是共计足以提供所述导频信号的频率的解析的时间,例如,所述导频信号的周期的大约十分之一、所述导频信号的周期的大约十分之二、所述导频信号的周期的大约十分之七、或者所述导频信号的频率的其它合适的分数。
在块316,所述第二后过滤信号的信号A/D转换器输出以及所述参考信号的信号A/D转换器输出可经过额外的处理,如,由信号处理器。在一项实施例中,所述信号处理器可处理所述第二后过滤信号和所述参考信号,其中,处理可包括所述信号的FFT处理。因此,所述波长锁定系统可得到α的正交要素。α的正交要素的级数与符号可提供来自所述目标波长的所述WDM激光传输器的输出波长的偏差的信息。例如,如果α的符号是正的且α的级数对应于3GHz的偏移,可指导所述WDM激光传输器将其波长在负的方向上调整3GHz。
在块318,所述信号处理器的输出可指向处理器。在一项实施例中,所述处理器可包括微处理器、计算机、或者任何其它计算设备。在块320,关于所述激光波长的调整的级数与方向进行确定。在块322,可将信息发送到WDM激光传输器,指导所述WDM激光传输器将其波长调整至恰当的波长。在一项实施例中,所述调整可运用调整所述激光的温度或者其它调整方式以将所述WDM激光传输器的波长调整至所述目标。在块324,可认为所述WDM激光传输器的波长被锁定在所述目标波长。在块326,如果有更多将被锁定的激光,所述波长锁定系统可移动至在所述激光切块上的下一激光,通过如本文所述的TDM方案。在块328,可为在所述激光切块中的N个激光的每一个重复方法300。如果在块326,没有更多将被锁定的激光,所述方法300可止于块330。
概括地说,可由波长锁定器反馈环和/或处理器进行如本文所述的波长锁定方法(例如,方法300)。这样的波长锁定方法可包括接收至少一个对应于来自光传输器的光信号以及来自信号生成器的导频音的数字化信号。波长锁定方法也可包括确定所述导频音的绝热逻辑一位置并将所述绝热逻辑一位置与在光网络通信路径中的过滤器的传输频谱峰比对。例如,可通过将对应于所述光信号的预过滤版本的第一数字化信号与对应于所述光信号的后过滤版本的第二数字化信号相比较来完成确定所述导频音的绝热逻辑一位置。进一步地,为了将所述绝热逻辑一位置与过滤器的传输频谱峰相比较,波长锁定方法可确定所述绝热逻辑一位置的正交要素。
波长锁定方法也可包括确定是否需要基于所述比较调整来自所述光传输器的输出。如果需要调整所述光传输器的输出,波长锁定方法可基于所述检测的绝热逻辑一位置从所述过滤器的传输频谱峰的距离生成控制信号。替代性地,可基于所述检测的绝热逻辑一位置从所述过滤器的传输频谱峰的距离以及基于预定的偏移生成所述控制信号。
图7表明为特别的应用(例如,为特别的到达范围)调整TDM波长锁定的方法400。可与,例如,图6的波长锁定方法300一起实施图7的调整方法400。在块402,所述方法400开始。在块404,使用Q和I等于值的第一集合的正交检测进行对于DML的波长锁定。在块406,分析来自所述波长锁定的DML的调制的信号输出。如果所述调制的信号输出形状对于所述应用(决定块408)是不恰当的,更新所述DML的温度并分析所述调制的信号输出以为Q和I确定值的另一集合(块412)。之后,所述方法400转到决定块408。如果所述调制的信号输出形状对于所述应用(决定块408)是恰当的,保持最近的DML温度以及Q和I等于值的最近的集合的波长锁定(块410),且所述方法止于块414。
图8显示使用所提出的方法的一些实验结果。此处使用具有相对于其峰定位偏移10GHz的~5.5dB衰减的标准具,以同时提升和稳定具有200GHz的通道间距的阵列式10GDML传输器。在实验中使用的偏置和调制的电流分别为80mA和50mA。在图8中,将来自不同到达范围(40km和80km)的瀑布与其背靠背的一个进行比较,其显示由于传播而导致的弱色散代价。本文所公开的标准具方案不仅将所述波长锁定到其各自的ITU网格,也提升其到达范围,暗示所述传输器有潜力在不使用EDFA的情况下用于40-km的应用以及在DWDM网络中不需要DCM的情况下用于80km——常规DML不可得到的性能。
在一项实施例中,可与现成的可能商业上可用的组件一起实施本文所教授的系统及方法。在一项实施例中,可将本发明的波长锁定系统200实施为频率锁定系统,且因此,可在频率域情景中描述和/或实施一些实施例。
图9表明典型的、常规目的计算机,适合于实施本文所公开的任何组件的一个或更多实施例。所述计算机500包括与包括次存储504的存储器设备通信的处理器502(可称为中央处理单元或者CPU)、只读存储器(read-only memory,ROM)506、随机存取存储器(random access memory,RAM)508、输入/输出(input/output,I/O)设备510、以及网络连接性设备512。所述处理器可被实施为一个或更多CPU芯片,或者可以是一个或更多应用专用集成电路(application-specific integrated circuit,ASIC)的部分。
通常,所述次存储504由一个或更多磁盘驱动或磁带机组成,且用于数据的非易变存储,如果RAM508不足够大来容纳所有工作数据,用作溢出数据存储设备。次存储504可用于当选择程序用于执行时存储加载到RAM508中去的此程序。所述ROM506用于存储指示以及或许在程序执行期间读取的数据。ROM506是相对于次存储504的更大的存储器容量通常有着小的存储器容量的非易变存储器设备。所述RAM508用于存储易变数据以及或许存储指示。通常,接入到ROM506以及RAM508比接入到次存储504更快。
根据实施例,所述处理器502或230可接收对应于包括导频音的光信号的部分的预过滤信号,且可接收对应于通过过滤器的光信号的部分的后过滤信号,其中所述光信号的过滤的部分指向网络中去。所述处理器502或230可进一步地使用Q和I等于值的第一集合(例如,Q=0)的正交检测为DML进行波长锁定。此第一波长锁定将调制的数据信号的绝热逻辑一位置对齐至非常接近于所述标准具的传输频谱峰。如果需要为所述特别的应用进行进一步的调整,更新所述DML的温度,并分析所述调制的信号输出以确定Q和I的值的第二集合,能上传到所述处理器502或230。随后,所述处理器205或230可使用Q和I等于值的所述第二集合的正交检测为在所述更新的温度运行的DML进行波长锁定。此第二波长锁定将所述绝热逻辑一位置的中心(或者略微离向更短波长侧或更长波长侧)与所述标准具的传输频谱峰对齐。换言之,为所述特别的应用与激光微调所述波长锁定以扩展所述传输到达范围。
公开了至少一个实施例,且由本领域普通技术人员进行的所述实施例和/或所述实施例的特性的变动、合并、和/或修改均在本发明的范围之内。由合并、集成、和/或省略所述实施例的特性而产生的替代性实施例也在本发明的范围之内。当明确地陈述数字范围或限定时,可理解,此明确的范围或限定包括属于所述明确陈述的范围或限定(例如,从大约1到大约10包括2、3、4等;大于0.10包括0.11、0.12、0.13等)之内的类似级数的迭代范围或限定。例如,任何时候当公开了下限Rl和上限Ru的数字范围时,具体地公开了属于所述范围的任何数字。尤其地,具体地公开了在所述范围之内的以下数字:R=Rl+k*(Ru-Rl),其中,k是增量为百分之1的范围从百分之1到百分之100的变量,例如,k是百分之1、百分之2、百分之3、百分之4、百分之5、……、百分之50、百分之51、百分之52,、……、百分之95、百分之96、百分之97、百分之98、百分之99、百分之100。此外,也具体地公开了由如在上文中所定义的两个R数字所定义的任何数字范围。关于权利要求的任何元素,术语“可选地”的使用意味着需要所述元素,或者替代性地,不需要所述元素,替代均在所述权利要求的范围之内。更广义的术语如包含、包括、以及具有的使用可理解为对更狭义的术语如由……组成、基本上由……组成、以及基本上由……构成提供支持。相应地,保护的范围不由上文所述的描述限定,但由接下来的权利要求定义,该范围包括所述权利要求的题材的所有等同物。每一与每个权利要求作为说明书的进一步公开并入,且所述权利要求是本发明的实施例。本发明中的引用的讨论并非承认其是现有技术,尤其是任何具有在本申请的优先权日期之后的公布日期的引用。因此,通过引用并入本发明中所引用的所有专利、专利申请、以及公布的公开,达到其给本发明提供示例性的、过程上的、或者其它细节补充的程度。
虽然在本发明中提供了几个实施例,可理解,在不脱离本发明的精神及范围的情况下,可能以许多其它具体的形式收录所公开的系统以及方法。现有的示例将被认为是说明性的而不是限定性的,且其目的不限于本文所给的细节。例如,可将所述各种各样的元素与组件合并或集成在另一系统,或者可省略、或不实施某些特性。
此外,在不脱离本发明的范围的情况下,可将在所述各种各样的实施例中被描述为并被说明为离散或单独的技术、系统、子系统、以及方法与其他系统、模块、技术、或者方法合并或集成。可将被显示为或被讨论为耦合、直接耦合、或相互通信的其它条目抑或在电上、机械地、或在其它方面间接地耦合或者通过某个接口、设备、或中间组件通信。更改、替换、以及变更的其它示例可由本领域技术人员确定,且可在不脱离本文所公开的精神及范围的情况下进行。

Claims (20)

1.一种装置,其特征在于,包括:
多个光传输器;以及
由所述多个光传输器共享的波长锁定器,其中,用于所述波长锁定器的操作的周期传输过滤器在网络通信路径中,且对从所述多个光传输器到网络的光传输进行整形。
2.根据权利要求1所述的装置,其特征在于,进一步包括:
信号生成器,耦合到所述光传输器,用于提供导频音给所述光传输器的每一个;以及
处理器,位于与所述波长锁定器对应的反馈环之内,其中,所述处理器用于基于所述周期传输过滤器的传输频谱峰为所述光传输器的每一个调整波长。
3.根据权利要求2所述的装置,其特征在于,所述周期传输过滤器的输出的部分指向到所述网络中去,且所述周期传输过滤器的所述输出的另一部分指向到所述反馈环中去。
4.根据权利要求1所述的装置,其特征在于,每一光传输器对应于直接调制的激光(directly modulated laser,DML),且其特征在于,所述周期传输过滤器的所述传输频谱用于通过削减色散将一个范围的DML传输扩展到至少阀值量。
5.根据权利要求1所述的装置,其特征在于,所述周期传输过滤器是为输出到所述网络的光传输器信号进行频谱整形的标准具,且其特征在于,所述频谱整形基于为所述周期传输过滤器的预定的Q值并基于具有所述周期传输过滤器的所述传输频谱的所述光传输器信号的绝热逻辑一位置。
6.根据权利要求2所述的装置,其特征在于,所述处理器基于具有可调整的Q和I值的正交检测进行波长锁定。
7.根据权利要求6所述的装置,其特征在于,所述处理器调整Q和I值以微调调制的传输信号的绝热逻辑一位置与所述周期传输过滤器的所述传输频谱峰的对齐。
8.根据权利要求1所述的装置,其特征在于,所述处理器基于通过在所述反馈环中的预过滤路径接收的输入调整每一波长,所述预过滤路径包括在所述周期传输过滤器之前的光分离器、光电二极管、模数转换器、以及快速傅立叶变换(fast Fourier transformation,FFT)逻辑。
9.根据权利要求1所述的装置,其特征在于,所述处理器基于通过在所述反馈环中的后过滤路径接收的输入调整每一波长,所述后过滤路径包括在所述周期传输过滤器之后的光分离器、光电二极管、模数转换器、以及快速傅立叶变换(fast Fourier transformation,FFT)逻辑。
10.根据权利要求1所述的装置,其特征在于,在与应用于所述多个光传输器的导频音对应的高频振动的顺序的时分复用(time-division multiplexing,TDM)使用中,按照顺序锁定对于所述多个光传输器的波长。
11.根据权利要求1所述的装置,其特征在于,在频分复用(frequency-divisionmultiplexing,FDM)中,锁定对于所述多个光传输器的波长,其中,每一频率通道使用其自身的高频振动频率以控制多个光传输器。
12.一种装置,其特征在于,包括:
至少一个处理器,用于:
接收与包括导频音的光信号的部分对应的预过滤信号;
接收与通过周期传输过滤器的所述光信号的部分对应的后过滤信号,其中,所述光信号的过滤的部分指向到网络中去;以及
基于将调制的传输信号的绝热逻辑一位置与所述周期传输过滤的频谱传输峰对齐的正交检测技术进行波长锁定。
13.根据权利要求12所述的装置,其特征在于,由所述处理器进行的所述正交检测基于可调整的Q和I值。
14.根据权利要求13所述的装置,其特征在于,所述处理器用于实施Q和I值以将调制的传输信号的绝热逻辑一位置从所述标准具的传输频谱峰偏移预定的量。
15.根据权利要求12所述的装置,其特征在于,所述周期传输过滤器包括位于到所述网络的通信路径的标准具。
16.一种方法,其特征在于,包括:
处理器接收与来自直接调制的激光(direct modulated laser,DML)传输器的光信号以及来自信号生成器的导频音对应的数字化信号;以及
处理器基于所述数字化信号以及基于以将调制的DML传输器输出的绝热逻辑一位置与在网络通信路径中的周期传输过滤器的频谱传输峰对齐的正交检测进行波长锁定。
17.根据权利要求16所述的方法,其特征在于,进行波长锁定包括将对应于所述光信号的预过滤版本的第一数字化信号与对应于所述光信号的后过滤版本的第二数字化信号进行比较。
18.根据权利要求16所述的方法,进一步包括,基于所述进行的波长锁定,确定是否调制的DML传输器输出的形状对于预定的传输到达范围是恰当的。
19.根据权利要求18所述的方法,进一步包括,如果所述调制的DML传输器输出的所述形状对于所述预定的传输到达范围不是恰当的,调整所述DML传输器的温度。
20.根据权利要求19所述的方法,进一步包括,基于所述DML传输器的所述调整的温度调整与正交检测对应的Q和I值,以及使用所述调整的Q和I值进行波长锁定。
CN201280048041.7A 2011-09-29 2012-09-29 在网络通信路径中具有周期传输过滤器的共享的波长锁定器 Active CN104040924B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/248,517 2011-09-29
US13/248,517 US8934787B2 (en) 2011-09-29 2011-09-29 Shared wavelength locker with a periodic transmission filter in a network communication path
PCT/CN2012/082413 WO2013044863A1 (en) 2011-09-29 2012-09-29 Shared wavelength locker with a periodic transmission filter in a network communication path

Publications (2)

Publication Number Publication Date
CN104040924A true CN104040924A (zh) 2014-09-10
CN104040924B CN104040924B (zh) 2018-02-23

Family

ID=47992686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280048041.7A Active CN104040924B (zh) 2011-09-29 2012-09-29 在网络通信路径中具有周期传输过滤器的共享的波长锁定器

Country Status (2)

Country Link
US (1) US8934787B2 (zh)
CN (1) CN104040924B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113060A (zh) * 2015-01-16 2017-08-29 日本电信电话株式会社 站侧装置和波长控制方法
CN107210935A (zh) * 2015-01-16 2017-09-26 华为技术有限公司 用于从光信号中去除导频音的方法和系统
WO2019137371A1 (zh) * 2018-01-10 2019-07-18 中兴通讯股份有限公司 波长锁定装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573961B1 (en) * 2011-09-12 2016-04-13 ADVA Optical Networking SE An optical frequency locking method and device for optical data transmission
CN104410463A (zh) * 2014-11-25 2015-03-11 中国航天科技集团公司第五研究院第五一三研究所 一种基于量子级联激光器的激光通信方法及系统
JP7019283B2 (ja) * 2016-02-15 2022-02-15 古河電気工業株式会社 波長可変型レーザモジュールおよびその波長制御方法
US10673205B2 (en) * 2016-02-15 2020-06-02 Furukawa Electric Co., Ltd. Wavelength tunable laser module and method of controlling wavelength thereof
US20180017735A1 (en) * 2016-07-13 2018-01-18 Futurewei Technologies, Inc. Wavelength Division Multiplexer/Demultiplexer with Flexibility of Optical Adjustment
CN115220979B (zh) * 2022-09-20 2022-11-25 中诚华隆计算机技术有限公司 一种多核处理器的测试方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048063A1 (en) * 2000-09-07 2002-04-25 Jung Yeun Chol Multi-wavelength locking method and apparatus for wavelength division multiplexing (WDM) optical communication system
CN101247199A (zh) * 2007-02-13 2008-08-20 华为技术有限公司 波长漂移检测装置、波长锁定系统及其方法
CN101674135A (zh) * 2008-09-09 2010-03-17 华为技术有限公司 滤波锁定方法、装置
WO2011044789A1 (en) * 2009-10-14 2011-04-21 Huawei Technologies Co.,Ltd. Wavelength Locker for Simultaneous Control of Multiple Dense Wavelength Division Multiplexing Transmitters
CN102055546A (zh) * 2009-10-28 2011-05-11 华为技术有限公司 一种锁定光信号的波长的方法、装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560252B1 (en) 2000-07-20 2003-05-06 Jds Uniphase Inc. Method and device for wavelength locking
US7639955B2 (en) 2004-09-02 2009-12-29 Finisar Corporation Method and apparatus for transmitting a signal using a chirp managed laser (CML) and an optical spectrum reshaper (OSR) before an optical receiver
US20070012860A1 (en) * 2005-05-05 2007-01-18 Daniel Mahgerefteh Optical source with ultra-low relative intensity noise (RIN)
US8285151B2 (en) 2006-10-20 2012-10-09 Futurewei Technologies, Inc. Method and system for hybrid integrated 1XN DWDM transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048063A1 (en) * 2000-09-07 2002-04-25 Jung Yeun Chol Multi-wavelength locking method and apparatus for wavelength division multiplexing (WDM) optical communication system
CN101247199A (zh) * 2007-02-13 2008-08-20 华为技术有限公司 波长漂移检测装置、波长锁定系统及其方法
CN101674135A (zh) * 2008-09-09 2010-03-17 华为技术有限公司 滤波锁定方法、装置
WO2011044789A1 (en) * 2009-10-14 2011-04-21 Huawei Technologies Co.,Ltd. Wavelength Locker for Simultaneous Control of Multiple Dense Wavelength Division Multiplexing Transmitters
CN102055546A (zh) * 2009-10-28 2011-05-11 华为技术有限公司 一种锁定光信号的波长的方法、装置和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113060A (zh) * 2015-01-16 2017-08-29 日本电信电话株式会社 站侧装置和波长控制方法
CN107210935A (zh) * 2015-01-16 2017-09-26 华为技术有限公司 用于从光信号中去除导频音的方法和系统
CN107113060B (zh) * 2015-01-16 2019-09-03 日本电信电话株式会社 站侧装置和波长控制方法
CN107210935B (zh) * 2015-01-16 2020-01-21 华为技术有限公司 用于从光信号中去除导频音的方法和系统
WO2019137371A1 (zh) * 2018-01-10 2019-07-18 中兴通讯股份有限公司 波长锁定装置及方法

Also Published As

Publication number Publication date
US8934787B2 (en) 2015-01-13
US20130084073A1 (en) 2013-04-04
CN104040924B (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN104040924A (zh) 在网络通信路径中具有周期传输过滤器的共享的波长锁定器
CN102396174B (zh) 用于同步控制多个密集波分复用光发射机的波长锁定器
EP1994653B1 (en) Method and system for integrated dwdm transmitters
KR100342431B1 (ko) 파장분할다중방식 광통신시스템을 위한 다파장 안정화방법및 장치
US5805755A (en) Self-aligned transition from ridge to buried heterostructure waveguide, especially for multi-wavelength laser array integration
US5173794A (en) Wavelength division multiplexing using a tunable acousto-optic filter
US8073342B2 (en) Method and apparatus for transmitting optical signals
TWI496425B (zh) 光發射機
US9528875B2 (en) Optical frequency tracking and stabilization based on extra-cavity frequency
Yoshikuni Semiconductor arrayed waveguide gratings for photonic integrated devices
CN101566777B (zh) 基于边带注入锁定用于产生高频微波的集成光电子器件
US9570886B2 (en) Tunable laser and method of tuning a laser
US20030165286A1 (en) Wavelength division multiplex transmission system
Soares et al. Monolithically integrated InP wafer-scale 100-channel× 10-GHz AWG and Michelson interferometers for 1-THz-bandwidth optical arbitrary waveform generation
US7352968B2 (en) Chirped managed, wavelength multiplexed, directly modulated sources using an arrayed waveguide grating (AWG) as multi-wavelength discriminator
Hosseini et al. Extended C-band tunable multi-channel InP-based coherent receiver PICs
WO2013044863A1 (en) Shared wavelength locker with a periodic transmission filter in a network communication path
US20090016738A1 (en) Compact all-optical clock recovery device
Liu et al. AWG-Based Monolithic $4\times 12$ GHz Multichannel Harmonically Mode-Locked Laser
JP2001235639A (ja) 波長値を比較し、多重化するための装置および単色源を監視するためのシステム
Maher et al. Implementation of a cost-effective optical comb source in a WDM-PON with 10.7 Gb/s data to each ONU and 50km reach
Tangdiongga et al. Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter
US9461770B2 (en) Method and system for floating grid transceiver
CN101719630A (zh) 一种用于全光时钟恢复的弯曲波导双波长激光器
JP2002258074A (ja) 光信号処理回路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant