CN104025356A - 具有二氧化碳废气利用的零排放发电站 - Google Patents

具有二氧化碳废气利用的零排放发电站 Download PDF

Info

Publication number
CN104025356A
CN104025356A CN201280031148.0A CN201280031148A CN104025356A CN 104025356 A CN104025356 A CN 104025356A CN 201280031148 A CN201280031148 A CN 201280031148A CN 104025356 A CN104025356 A CN 104025356A
Authority
CN
China
Prior art keywords
energy
energy resource
reformate
fuel
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280031148.0A
Other languages
English (en)
Other versions
CN104025356B (zh
Inventor
徐世薰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTEK Corp
Original Assignee
ZTEK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTEK Corp filed Critical ZTEK Corp
Publication of CN104025356A publication Critical patent/CN104025356A/zh
Application granted granted Critical
Publication of CN104025356B publication Critical patent/CN104025356B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B21/00Combinations of two or more machines or engines
    • F01B21/04Combinations of two or more machines or engines the machines or engines being not all of reciprocating-piston type, e.g. of reciprocating steam engine with steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2474Mixing means, e.g. fins or baffles attached to the plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/86Carbon dioxide sequestration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1665Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及利用CO2废气的清洁能源系统、可再生能源系统或零排放能源系统(ZEES)。所述能源系统可以包括燃料处理器、能源催化反应器和发电机。所述燃料处理器可以将天然气、生物气或合成气中的CH4组分催化转化为包含H2、CO、CO2和H2O物质的重整产品。所述能源反应器可以将气体形式的重整产品转化为液体燃料。所述发电机可以使用燃料处理器的输出和/或能源反应器的输出发电。

Description

具有二氧化碳废气利用的零排放发电站
相关申请
本申请要求2012年4月18日提交的美国临时申请号61/635,176、2012年5月4日提交的美国临时申请号61/482,495和2011年8月16日提交的美国临时申请号61/515,900的优先权,其内容在此通过引用并入本文。
发明背景
本申请涉及清洁能源系统、可再生能源系统或零排放能源系统(ZEES),和更特别地涉及基于化学原理的具有二氧化碳废气利用的发电站(CPPP)。
现在,遏制温室气体(GHG)排放的政府努力已经依靠各个地区和国家的法律持续了一段时间。通常,大部分地区和国家认同到2020年将温室气体排放减少到低于1990年水平的25%的过渡目标,和到2050年减少80%的总体目标。然而据报道,由于差距较大,该目标不太可能实现,除非在不远的将来发展出革命性的技术。
当能源系统使用石油燃料时,由于有利的用于减排的系统硬件特性,可以计算碳信用额度(carbon credit)并将其应用于项目融资。当采用可再生燃料时,,将计算由于燃料的特性的额外碳信用额度。因此,出现了将与可再生燃料系统相关的碳信用额度进行组合的可能,所述可再生燃料系统可以被看作是这种具有负性的CO2足迹的系统。
清洁技术也可能收到由各个地区和国家的机构管理的可再生能源信用额度(REC)。可以只根据所使用的燃料类型应用REC。根据其工作原理判断,燃料电池系统不具有可再生特性。
发明概述
本申请提供了清洁能源系统、可再生能源系统或具有二氧化碳废气利用的零排放能源系统(ZEES)。本申请利用化学原理来同步发电和转化能源,从而消除发电站排放的二氧化碳,并引入用于输送的新液体燃料源。本申请提供的能源系统解决了当前能源行业中两个最严重的问题:石油燃料短缺和由温室气体(GHG)排放导致的全球变暖。在一个实施方式中,当含碳流与匹配量的H2被用于液体燃料生产并且H2单独用于发电时,所述清洁能源系统是零排放能源系统。当采用可再生原料时,所述能源系统构成负性的二氧化碳足迹,因而潜在地获得双倍的碳信用额度。
根据本发明的一个实施,生成清洁能量,并且由该系统产生的任何温室气体(GHG)被保留和被用于帮助生产高价值的燃料。本申请提供的能源系统可以被适当地定制,以用于任何安装、以可负担的成本将可得的城市固体废物(MSW)或生物质转化为清洁能源并具有低碳足迹。所述能源系统可以同样应用于包括煤炭和其它固体碳氢燃料的原料。
在一个实施方式中,所述能源系统可以包括燃料处理器、能源催化反应器和发电机。该燃料处理器将天然气、生物气或合成气中的CH4组分催化转化为包含H2、CO、CO2和H2O物质的重整产品。该能源反应器可以将气体形式的重整产品转化为液体燃料。该发电机可以使用燃料处理器的输出和/或能源反应器的输出发电。
在一个实施方式中,该燃料处理器可以包括部分氧化、自热和蒸汽甲烷重整器。重整产品可以用水变换工艺处理,以具有不同的在约0%至约20%之间变化的CO对CO2的百分率。燃料处理器的重整产品可以用变压吸附工艺进行处理,以形成两种流动流:1)高纯度H2流;2)高浓度的碳(CO、CO2)内容物。CO2可以用水变换工艺处理至20%的最大量水平,并且通过变压吸附处理,以生成浓缩的CO2流。浓缩的CO2流可以在油井现场被用于三次采油(Enhanced Oil Recovery)(CO2-EOR)。
在实施方式中,从燃料处理器产生的H2、CO和CO2可以在能源反应器中用甲醇合成催化剂处理成液体形式的甲醇(CH3OH)。甲醇可以在能源反应器中用合适的催化剂进一步处理成液体形式的DME(CH3OCH3)。DME在催化能源反应器中用另一种合适催化剂进一步处理成液体形式的汽油。由于合成气中CO2和CO的高浓度,来源于可再生原料的H2、CO2和CO碳的混合物可以用于生产航空燃料、丙烷、柴油或重质液体燃料。
根据本发明的教导,可以操作清洁能源系统,以最大化将碳用于生产:a)液体生物燃料,包括甲醇、乙醇、丙醇和丁醇,以及b)液体合成燃料,包括DME、汽油、丙烷、丁烷、航空燃料和柴油。能源反应器利用化学催化剂或生物催化剂。能源反应器可以是化学催化剂床,比如固定床、结构化床、悬浮床或具有集成换热器的微通道。能源反应器可以采用单功能催化剂、双功能催化剂或多功能催化剂,以实现性能改善。能源反应器可以采用包括各种酵母、细菌和酶的生物催化剂。
在实施方式中,重整产品可以以下面的燃料电池发电机中的一种应用于发电,包括固体氧化物燃料电池(SOFC)、熔融碳酸盐燃料电池(MCFC)、质子交换膜燃料电池(PEMFC)、磷酸燃料电池(PAFC)和碱性燃料电池(AFC)。SOFC应用于以下三种装置中的一种:固体氧化物燃料电池;由固体氧化物燃料电池和燃气轮机单元构成的混合系统;由固体氧化物燃料电池和蒸汽轮机单元构成的混合系统。重整产品可以应用于以下面的发电机的一种中来发电,包括内燃机、燃气轮机或蒸汽轮机。
在实施方式中,重整器可以是包括得自光伏(PV)、风或潮汐波的电能输入的混合重整系统(Hybrid Reforming System),从而满足对重整器的吸热热输入和重整产品压缩过程的能源需求。清洁能源系统可以是包括得自PV、风和潮汐波电能输入的混合系统(Hybrid System),从而支持对系统能源需求,以及用液体燃料产品的存储能力为这些能量来源的间歇期提供补救。
在实施方式中,清洁能源系统可以应用于使用可再生原料,所述可再生原料包括包括具有原料处理器的城市固体废物、城市污水、农场动物废物、生物质和木质生物质。城市污水和农场动物废物可以首先通过消化池进行处理以产生沼气,其包含CH4、CO2和CO。城市固体废物、农场生物质、木质生物质可以首先通过气化器进行处理以产生合成气,所其包含CH4、CO2和CO。
在实施方式中,原料处理器可以是合成气产生器,其包括热驱动、等离子体或微波驱动的气化器。原料处理器可以是合成气产生器,其归类为被Tennessee的Hathaway Renewable Energy公司所称的挥发器(volatilizer)。所述挥发器提供热值超过500Btu/ft3的富CH4合成气,而不是通常选择的提供典型热值为300Btu/ft3的富H2合成气的气化器。生物质原料可以包括森林废物、社区(市区)废物、固相煤,其通过挥发器产生由CH4、H2、CO、CO2和其它次要物质组成的热值超过500Btu/ft3的合成气和作为固体残留的生物炭或木炭。生物炭作为用于商业用途的活性炭的具有商业价值;并且要求碳信用额度和可再生能源信用额度。
在实施方式中,生物质原料可以包括液相或淤泥状废物,其通过挥发器产生热值超过500Btu/ft3的合成气,所述合成气由CH4、H2、CO、CO2和其它次要的固体残留物质构成。挥发器可以在不经历燃烧,而是经历外源加热物理步骤下处理生物质。外部加热源可来源于合成气的再循环部分,其提供高于1000℃的清洁燃烧的高温热源。外部热源可来源于SOFC发电机的800℃至1000℃的高温废气流或混合发电机的600℃至800℃的高温废气流。挥发器在热源的上述范围内的温度下操作。
附图说明
本发明的前述和其它目的、特征和优点将从下面的描述中和所附附图中将是显而易见的,其中类似的参考字符在所有不同的视图中表示相同的部件。附图举例说明了本发明的原理。
图1是说明包括本申请提供的实施方式的清洁技术应用的方框图。
图2是在根据本发明教导的说明性实施方式中的具有CO2废气利用r示例性清洁能源系统或零排放能源系统(ZEES)的方框图。
图3是根据本发明教导提供的零排放能源系统(ZEES)的概览图。
图4显示了示例性重整器的结构,其可以用于图3描述的零排放能源系统(ZEES)中。
图5显示了示例性能源反应器的结构,其可以应用于图3描述的零排放能源系统(ZEES)中。
图6描述了根据本发明教导的示例性清洁能源系统的另一个实施方式,其支持图7的太阳能储存和图8的用于采油的CO2-EOR。
图7是说明性实施方式中的示例性能源系统的方框图,其支持光伏(PV)太阳能储存,用于本地电网使用。
图8显示了示例性实施方式中提供的示例性的CO2-三次采油(EOR)系统。
发明详述
图1是说明包括本申请提供的实施方式的清洁技术应用的方框图。燃料处理器120可以接收天然气、煤气或可再生气体,并处理所述气体以产生H2、CO2和/或H2和CO2的混合物。可以除去硫磺组分,并且可以分离H2和CO2
产生的氢气可以用于固体氧化物燃料电池(SOFC)系统。燃料电池通过电化学过程而不是在传统燃烧系统中使用的热力学过程来产生不含有SOx或NOx的清洁尾气。SOFC还具有的优点在于它的清洁尾气保持在高温,这适合于驱动传统的系统用于额外的发电。总的尾气保持清洁,同时电力输出或系统效率加倍。
SOFC可与加热、通风和空气调节(HVAC)系统进行集成,从而利用来自SOFC的热尾气来执行使人舒适的功能。当能源成本上升时,SOFC-HVAC系统可以用单一系统执行所有必要的发电功能,从而可用于服务家庭和社区。
采用零排放系统(ZES)来使用来自HECP系统的CO2,在HECP系统中,H2被充分利用,而CO2作为不想要的排放物而被排放到空气中。CO2在HECP系统中以浓缩流产生供随后收集。在一个实施方式中,CO2气体可以用于注入到油田或油井,以提高油的生产。CO2气体可以进行压缩用于CO2-EOR(三次采油)。在没有天然CO2供给(其通常只提供给大型油田主)服务的地区,这可以给所有小型和中型油田主提供机会在他们井中获得CO2的益处。公知的水平钻孔技术在与CO2注入结合时,其可以提供更深和更宽地到达地下,以及在通过用于提油的生产的CO2的作用彻底清扫沙粒中的进一步的益处。
本发明的实施方式提供了零排放能源系统(ZEES),其用于消除来自传统发电站的CO2排放物,以及引入新液体燃料源以供输运。该实施方式将化学原理用用同步发电和能源转化。燃料在发电之前首先进行处理以确保清洁排放。将无论是石油来源的还是生物来源的烃燃料均按照蒸汽甲烷重整反应处理成H2、CO、CO2和H2O,并且共同构成重整产品。重整产品可以被分离成两种气体流:1)H2流;2)含碳流。H2流主要用于发电,其只排放H2O(例如:水分子)。碳流在与来自H2流的合适量的氢气结合时,可以被催化反应形成液体燃料,例如甲醇(CH3OH)。利用合适的催化剂可以进一步衍生为其它液体燃料物质。该能源系统可以提供解决方案来同时解决当前能源工业中的问题:石油燃料短缺和由温室气体(GHG)排放导致的全球变暖。在该能源系统中,产生清洁能量,并且温室气体CO2被保留并被用于高价值燃料的生产。
ZEES为能源工业提供了以下益处:ZEES为Solar Electric项目提供了液体化学品形式的存储方案;ZEES为发电的排放问题提供了彻底的解决方案;ZEES促进了全球油的产量,从而缓解了国际政治困扰;ZEES作为GTL有利于天然气转向方便的液体形式;ZEES作为BTL有利于可再生生物原料转变成商业能源;ZEES作为化学反应器可同等效力地处理石油燃料或生物燃料;ZEES与可再生电力混合后用于存储能更好地为未来的Smart Grid服务;因而ZEES提供了向更好燃料选择的宽松过渡。
图2是根据本发明教导的具有CO2废气利用的示例性清洁能源系统或零排放能源系统(ZEES)的示意性方框图。ZEES是唯一有资格在靠近能源、市场地点处分配或安装并且具有用于异地消费的可运输产品。在本申请的说明书中,零排放能源系统是指这种种能源系统,其处理输入的原料(例如天然气或可再生气体)并产生电力,并基本上零排放CO和CO2气体到大气中。通过处理输入原料而产生的CO和CO2气体可以被利用来生产液体燃料。通过处理输入的原料而产生的CO和CO2气体也可以被注入油井来提高采油。
能源系统100可包括燃料处理器120(例如重整器)、能量催化反应器130和发电机140。燃料处理器120可以是重整器,其将可再生原料(例如富甲烷气体)转化成包含H2、CO和CO2的重整产品,其进而可以被引入到燃料电池(例如固体氧化物燃料电池SOFC)中。在重整器内部,任何存在于反应物中的硫可以被除去。反应物压力可以调节。水可以进行去电离处理,以防止对系统中的设备腐蚀并且预先处理用于清洁排放的反应物。燃料处理器120输出的重整产品可被处理成两种分离流:富H2流和含CO和CO2的碳流。
能源催化反应器130根据已知技术将H2与CO和CO2在催化反应下转化成液体形式的化学品。甲醇已经被确认为衍生自合成气或生物气的基本的液体化学品,其利用了商业上可得的甲醇催化反应器。甲醇可被进一步处理成各种级别的醇(例如乙醇、戊醇、丁醇)和各种商业燃料(例如汽油、航空燃料和柴油)。气态燃料物质难以从生产工厂运输或分配至市场地点。因此,能够将其转化成液体形式用于存储以及向市场运送是令人期望的。它还具有被用作运输的燃料或车用燃料的优势。
发电机140可使用来源于重整器120的富H2流来发电,其副产物为水。这是令人期望和有效的发电模式。传统的发电机(例如内燃机、燃气轮机或蒸汽轮机)也可以由H2流产生动力。燃料电池是有关H2燃料的合适的发电机种类。能源系统100将各种输入气体(例如天然气、合成气或生物气)转换成富氢体,其可以通过燃料电池的电化学反应进行使用。混合SOFC-GT的燃气轮机(GT)部分能够重新使用SOFC的排气,从而将组合循环系统的总效率提高到约70%。
当可再生原料处理器110被添加到燃料处理器120之前时,零排放能源系统(ZEES)可被进一步地应用于可再生应用中。挥发涉及将有机物质转换成合成气和生物炭的最新一代技术。挥发过程比上一代的“气化”技术更简单和更清洁。上一代的气化技术使用高温和有时使用高压以将物质重整成想要的组分。该过程非常复杂并且具有高的附加能源成本。挥发在缺氧环境中使用间接热以使生物质分解成甲烷(45%)、CO(15%)、H2(15%)和其它碳氢化合物。所得合成气是非常清洁的产品并具有大于600Btu/scf的LHV,该数值是以前技术的能源密度的两倍多。该实施方式中利用的挥发单元是模块化的,并且可以以2.5MW的增量被堆叠以放大该处理。每一个挥发单元每天可处理30吨含有低于20%水分的MSW或生物质。挥发器也可以安装在拖车上以生产用于可运输要求的合成气。该挥发器可同样地被应用于其它原料,包括煤和所有其它固体碳氢化合物燃料。
图3是示例性实施方式中提供的零排放能源系统300的概览图。清洁能源系统300可包括燃料处理器320、能源反应器331和332以及发电机342。燃料处理器320可以是重整器系统,其将燃料来源(例如天然气、生物气或合成气)中的甲烷组分催化裂解成H2、CO、CO2和H2O物质并结合输出流,其全体被称为重整产品。发电分枝322把用来发电的燃料反应物进料给燃料电池或其它传统发电机或形成发电机342的引擎。能源反应器331和332(例如气体到液体反应器)是由重整产品的液体化学品生产分枝321供料。
燃料处理器320可以是部分氧化、自热或蒸汽甲烷重整器。如果蒸汽供应是无限制的,那么蒸汽甲烷重整器提供最佳性能的纯净氢气生产。重整器之后的水变换处理器可被处理器(未显示)控制,以具有不同的在约0%至约20%范围的CO与CO2百分率。
上述反应被表示为:
蒸汽甲烷重整CH4+H2O→3H2+CO
水气体变换反应CO+H2O→CO2+H2
重整产品可在变压吸附过程中被进一步处理成两种流动流:1)高纯H2流;2)高浓度的碳(CO、CO2)内容物。
当重整产品在水变换处理器中被处理到20%的最大水平且具有低或痕量CO时,它可以被进一步通过变压吸附工艺处理,以产生浓缩的CO2流。浓缩的CO2流可在油井现场被用于三次采油(CO2-EOR),如图6和图8中所示。
液体化学品分枝321携带H2、CO和CO2的混合物,其经由热交换器322、冷凝器323、压缩器324和热交换器325而被引入到具有甲醇合成催化剂的能源反应器331中用于生产液体甲醇。冷凝器323可从重整产品中提取水,并且压缩器324在重整产品进入热交换器325之前将其压缩。甲醇可以经由热交换器333、压缩器334和热交换器335被进一步引入到具有合适催化剂的第二能源反应器332中,以生产液体形式的DME(CH3OCH3)。产生的DME在具有合适催化剂的催化能源反应器中可被进一步地处理成液体形式的普通汽油。DME或汽油可经由热交换器336被送到存储器341。
上述反应可被表示为:
甲醇合成:2H2+CO→CH4O
二甲醚(DME)合成:2CH4O→CH3OCH3+H2O
零排放能源系统300可以被操作以最大化使用碳生产:a)液体生物燃料,包括甲醇、乙醇、丙醇和丁醇,以及b)液体合成燃料,包括DME、汽油、丙烷、丁烷、航空燃料和柴油。
能源反应器331或332分别利用化学催化剂或生物催化剂。能源反应器331或332采用各种可能结构之一的化学催化剂床,包括固定床、结构化床、悬浮床或集成热交换器的微通道。该微通道反应器呈圆柱形结构。能源反应器331或332可采用单功能催化剂、双功能催化剂或多功能催化剂以实现性能的改善。双功能或多功能催化剂是由单个催化剂的基本化合物充分混合形成的,导致了接近即时的连锁反应而没有不必要的时间延迟。这种创新有助于减小反应器的尺寸和数量,因而使得系统建造的成本降低。能源反应器331或332也可采用包括由各种酵母、细菌和酶组成的生物催化剂。
H2流322可通过具有二氧化碳零排放的发电机342被用于发电,发电机342通过采用燃料电池或其它的传统发电机。燃料电池发电机可选自来自以下类型中的一种:固体氧化物燃料电池(SOFC)、熔融碳酸盐燃料电池(MCFC)、质子交换膜燃料电池(PEMFC)、磷酸燃料电池(PAFC)和碱性燃料电池(AFC)。高性能的SOFC具有三种构造:固体氧化物燃料电池;由固体氧化物燃料电池和燃气轮机单元构成的混合系统;由固体氧化物燃料电池和蒸汽轮机单元构成的混合系统。传统的发电机包括以下的发电机中的一种,其选自内燃机、燃气轮机或蒸汽轮机。
可在整个系统中采用各种泵或阀门,以帮助调节或控制各种流体流量。这些部件可以通过控制器或处理器350控制。
图4显示了示例性重整器或燃料处理器的结构,该重整器或燃料处理器适合在图3描述的零排放能源系统(ZEES)中使用。重整器10可包括穿插有催化剂板和提供有反应物的内部或外部集管的堆叠导热板。催化剂板与导热板紧密地热接触,使得它的温度密切跟踪导热板的温度,所述导热板可被设计为在板的面内达到接近等温的状态。在各种不同的任选实施方式中,可以使用一种或多种催化剂,其在所述导热板的面内沿流动方向分布。重整器可被作为蒸汽重整器或部分氧化重整器来操作。当作为蒸汽重整器操作时,用于(吸热)蒸汽重整反应的热能是通过辐射和/或传导外部提供给导热板。这产生了一氧化碳、氢、蒸汽和二氧化碳。当作为部分氧化重整器操作时,一部分天然气通过存在的燃烧催化剂和重整催化剂的辅助被氧化。这产生了一氧化碳、氢、蒸汽和二氧化碳。因为催化剂板和导热板之间的紧密热接触,堆叠组件内没有过热温度可产生。该板设计的细节可以进行改变以适应各种各样的集管的实施方式,这些实施方式提供了一个或多个用于引入、预热和排出反应物的入口或出口部。
重整器10包括许多导热板12和重整板14,它们交替堆叠在一起形成沿轴28延伸的堆叠的重整结构13。重整器包括与板12、14的内部部分12A、14A流体连通的流体管道16。重整器10优选安装在气密性外壳或壳体(housing)20的内部。示出的重整器可被用于执行蒸汽和氧化重整两者。用于重整过程所必需的热可以通过辐射、传导或对流内部提供(经由碳氢化合物燃料的部分氧化)或外部提供(经由远程热源,如波浪线26所示)给重整器10。
将要由重整器10进行重整的反应物通过轴向的流体集管16引入到设备中。反应物优选包含碳氢化合物燃料和重整试剂(例如空气、氧气、水或CO2)的混合物,其在引入支管16之前或者在重整器内部预混合。示出的重整器10包括至少一个递送燃料/重整试剂混合物到重整器的集管,而不是为每一种气体成分提供单独的输入集管。向重整器10引入预混合反应物提供了相对简单的设计。
反应混合物22经由任何适当的手段(例如经由流体管道)被引入到集管16。混合物22通过反应物通道24进入重整器内部,该反应物通道形成于相邻的导热板12和重整板14之间。该通道可包含通过压纹形成的任何表面凹陷或凸起,并且其构成了从集管16向堆叠的重整结构13的外围表面13A延伸的基本上连续的流体通道。所述通道也可通过利用导热板或重整板来形成,所述导热板或重整板由多孔材料制成或者具有涂覆其上或在其上形成的电力重整催化剂材料,从而允许反应物通过重整器。
图5显示了图3描述的零排放能源系统(ZEES)中的示例性反应器的结构。反应器510可以是圆柱形催化反应器或者圆柱形微通道(CMC)反应器,所述圆柱形微通道反应器具有包含催化剂圆柱形微通道(CMC)结构,其将用作催化反应器。反应器510可包括限定了腔室528的外壳512(housing),其具有入口522和出口524。所述外壳可具有任何选定的形状或尺寸,并且优选具有圆柱形形状。束状元件514安装在腔室528的内部。束状元件可包括导管和可缠绕于导管的多片层526。多片层526可包括至少两个片,其限义了狭窄的流动体积。束状元件514也可构造为一系列的管。束状元件514可包括贯穿外壳512并在入口518和出口520之间延伸的导管516。入口和出口没有与腔室528直接连通。
在实施方式中,束状元件包括双层。形成于双层之间的空间被指定为B侧(线路B)。形成于卷起的双层之间的空间被指定为A侧(线路A)。A侧允许沿着反应器的轴线的径直流动路径,并具有流入口522和流出口524。B侧在双层之间呈现出螺旋状的流动路径,并具有流入口518和流出口520。圆形屏障或多孔板被放置和固定在圆柱体的一端(底部),其在竖直放置用于操作时,允许装载合适尺寸的催化剂以填充反应器的A侧。可移除圆形屏障或多孔板可被放置在另一端(顶部)。B侧被用作热流体流动通过的路径,用于温度调节,加热或冷却。
“双层”之间的空间和“螺旋形卷起的双层”之间的空间可以在焊接和卷起之前被形成于片中的凹坑支撑。所述空间可被控制在毫米尺寸,以提供通过金属层从A侧上的介质到B侧介质之间的出色的热传递能力。卷起的结构呈现出很大的表面积,其被包装在小的圆柱形体积之内。
图6描述了根据本发明教导的示例性清洁能源系统600的另一个实施方式,该清洁能源系统支持图7的太阳能储存和图8的用于采油的CO2-EOR。零排放能源系统600可包括燃料处理器620、能源反应器631和632、储存器641和发电机642,其基本上与上面关于图3描述的元件相同。
零排放能源系统600可被应用于使用可再生原料,所述可再生原料包括具有原料处理器的城市固体废物、城市污水、农场动物废物、生物质和木质生物质。城市污水和农场动物废物可通过消化池首先进行处理,以产生生物气,生物气包括甲烷CH4、CO2和CO。城市固体废物、农场生物质、木质生物质可以通过气化器610进行处理以产生合成气,所述合成气包含甲烷CH4、CO2和CO。
原料处理器可以是选自热驱动、等离子体或微波驱动的气化器的合成气发生器。归类为挥发器610的理想合成气发生器提供热值超过500Btu/ft3的富CH4合成气,而不是普通选择的气化器提供的典型热值为300Btu/ft3的富CH4合成气。可再生原料包括森林废物、社区(市区)废物、固相煤和甚至液相废物或泥浆状废物,它们经过挥发器产生合成气和其它次级物质,包括作为固体残留物的可变量的生物炭或木炭。
挥发器610可在物理步骤下处理生物质,不经历燃烧而是经历外部热源的加热。外部加热源可来自于合成气的再循环部分,其提供高于1000℃的清洁燃烧的高温热源。外部加热源也可来自于SOFC发电机的800℃至1000℃的高温废气流或混合发电机的600℃至800℃的高温废气流。
留在挥发器610中的生物炭作为用于商业用途活性炭而具有商业价值,并且可要求碳信用额度和可再生能源信用额度。
当含碳流与匹配量的H2被用于生产液体燃料并且H2单独用于发电时,清洁能源系统600是零排放能源系统。当应用于使用可再生原料时,该系统构成负性的CO2足迹从而获得双倍的碳信用额度。
图7是说明性实施方式中的示例性能源系统的方框图,该能源系统支持用于本地电网使用的光伏(PV)太阳能储存。该能源系统被提供给商业智能电网建设,并且作为光伏能量间歇期的补充。对于低成本的氢生产,利用了包括得自PV太阳能发电机743的电能输入的混合重整系统720,并结合使用了可再生生物质,所述可再生生物质通过可再生原料处理器710进行处理。电能储存机理经由吸热化学重整反应的能源消耗、蒸汽产生和重整产品压缩而发生,其构成了多至50%的用于该处理的能源输入。储存介质可以是生物甲醇(甲醇)或与之相当的液体燃料,其在能源反应器730中产生并储存在液体燃料储存器741中。发电机740可以按照需要来操作,而不是按照不稳定的太阳能供应。图7中表示的概念可在图6中的ZEES系统600中实施。
图8显示了示例性实施方式提供的CO2-三次采油(EOR)系统。随着能源价格的快速上涨,对石油和天然气开采和生产的兴趣日益高涨,其依赖于先进的增产技术来提高采收率。如上面所讨论的,重整器系统820从输入的资源(例如天然气)生产重整产品。压缩器821压缩重整产品。氢822可用于发电机842中以发电。CO2气体823可在油田现场被注入到油井830中,以增加油生产。
由于重整器是现场安装,该系统可极大地提高运营收入。此外,固定CO2的信用额度(sequestration credit)可显著抵销燃料电池或重整器系统的资本成本,其提高了采用图6中的这种先进ZEES系统600来增加油和天然气生产的经济动力。
如上所述,本申请的实施方式将化学原理用于同步地发电和转化能源。实施方式消除了来自发电站的CO2排放以及引入了传输送的新液体燃料源。因此,本申请提供了同时解决当前能源行业中两个最严重问题的方案:石油燃料短缺和由温室气体排放导致的全球变暖。在该实施方式中,温室气体被保留并被用于生产高价值的燃料。本发明可同样适用于可再生原料和其它原料,包括煤和固体碳氢化合物燃料。
因此,由前体说明进行清楚描述的那些可以看出,本发明有效地达到了上面提出的目标。由于可以在上述结构中作出某些改变,而不会偏离本发明的范围,因此旨在将包含在上文描述中或显示在附图中的所有内容解释为示例性的,并且不具有限制性含义。
也可以理解,以下的权利要求是为了涵盖本文描述的发明的一般特征和特定特征,以及因为语言的关系可以被认为落入其中的本发明范围的所有陈述。
前面已经描述过本发明,其中所要求的内容是新的并且希望受到专利证书保护的是:

Claims (22)

1.清洁能源系统,其包括:
燃料处理器,其接收天然气、生物气或合成气并且将所述天然气、生物气或合成气中的甲烷组分催化转化为包含H2、CO、CO2和H2O物质的重整产品,
能源反应器,其将气体形式的重整产品转化为液体燃料,
和发电机,其使用燃料处理器的输出或能源反应器的输出发电,
其中所述系统是零排放发电站,其具备在靠近能源、市场地点处安装的资格,并且具有用于异地消费的可运输产品。
2.权利要求1所述的能源系统,其中所述燃料处理器包括部分氧化重整器、自热重整器或蒸汽甲烷重整器。
3.权利要求2所述的能源系统,其中所述重整产品用水变换工艺进行处理,从而具有不同的在约0%至约20%之间变化的CO对CO2百分率。
4.权利要求2所述的能源系统,其中所述重整产品根据变压吸附工艺进行处理,以形成相对纯的氢气流和包含至少CO和CO2的高度浓缩的碳流。
5.权利要求1所述的能源系统,其中所述CO2根据水变换工艺处理至约20%的最大量水平,并且通过变压吸附工艺处理以形成浓缩的CO2流。
6.权利要求1所述的能源系统,其进一步包括:
冷凝器,其安置在所述燃料处理器和所述能源反应器之间,用于从所述重整产品中提取水,和
第一热交换器,其安置在所述冷凝器和所述燃料处理器之间,用于和所述重整产品进行热交换。
7.权利要求6所述的能源系统,其进一步包括:
第一压缩器,其安置在所述冷凝器和所述能源反应器之间,以压缩所述冷凝器的重整产品输出,
第二能源反应器,其安置在所述能源反应器和所述发电机之间,用于将重整产品进一步处理成液体燃料,
第二热交换器,其安置在所述能源反应器和所述第二能源反应器之间,用于控制重整产品的温度,
第二压缩器,其安置在所述第二热交换器和所述第二能源反应器之间,用于压缩所述第二热交换器的重整产品输出,
储存罐,其用于储存液体燃料,和
第三热交换器,其安置在所述第二能源反应器和所述储存罐之间。
8.权利要求1所述的能源系统,其中所述燃料处理器包括:
多个导热板,和
多个催化剂板,
其中所述导热板与所述催化剂板交替堆叠在一起,以形成堆叠。
9.权利要求1所述的能源系统,其中所述能源反应器包括:
外壳,其限定了具有入口和出口的腔室,和
束状元件,其安装在具有管道和流的腔室内,所述管道在入口和出口之间延伸,所述流限定安置管道周围的结构。
10.权利要求1所述的能源系统,其进一步包括与所述燃料处理器的输入联接的可再生原料处理器。
11.权利要求1所述的能源系统,其中H2、CO和CO2在所述能源反应器中利用甲醇合成催化剂被进一步处理成液体形式的甲醇(CH3OH),并且所述甲醇在能源反应器中用合适的催化剂被进一步处理成液体形式的DME(CH3OCH3)。
12.权利要求1所述的能源系统,其中由于合成气中高浓度的CO和CO2,来源于可再生原料的H2、CO2和CO的混合物被用于生产甲醇、乙醇、丙醇、航空燃料、丙烷、柴油或重质液体燃料。
13.权利要求1所述的能源系统,其中所述反应器利用化学催化剂或生物催化剂。
14.权利要求1所述的能源系统,其中所述反应器是构造为以下结构之一的化学催化剂床:固定床、结构化床、悬浮床或具有集成热交换器的微通道,其中所述微通道反应器呈圆柱形结构。
15.权利要求1所述的能源系统,其中所述反应器采用单功能催化剂、双功能催化剂或多功能催化剂来实现性能改进。
16.权利要求1所述的能源系统,其中所述重整器是包括得自PV、风和潮汐波的电能输入的混合重整系统,以满足对重整器的吸热热输入和重整产品压缩工艺的能源需求。
17.权利要求1所述的能源系统,其中所述系统是包括得自PV、风和潮汐波的电能输入的混合系统,以支持对系统的能源需求,以及用所述产品的液体燃料形式的存储能力为这些能量来源的间歇期提供补救。
18.权利要求1所述的能源系统,其中所述系统被应用于使用可再生原料,所述可再生原料包括具有原料处理器的城市固体废物、城市污水、农场动物废物、生物质和木质生物质。
19.权利要求1所述的能源系统,其中在含碳流与匹配量的H2被用于液体燃料生产并且H2单独被用于发电时,所述系统是零排放能源系统。
20.权利要求19所述的能源系统,其中在应用于使用可再生原料时,构成负性的二氧化碳足迹,从而获得双倍碳信用额。
21.一种发电方法,其包括:
接收天然气、生物气或合成气并且将天然气、生物气或合成气中的CH4组分催化转化为包含H2、CO、CO2和H2O物质的重整产品;
将气体形式的重整产品转化成液体燃料;
将液体燃料储存在储存器中;和
使用从重整产品或储存在储存器中的液体燃料中分离的氢气来发电。
22.权利要求21所述的方法,其中从所述重整产品中分离的CO2被注入到油井以提高采油(EOR),同时实现零排放发电状态。
CN201280031148.0A 2011-05-04 2012-05-04 具有二氧化碳废气利用的零排放发电站 Expired - Fee Related CN104025356B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161482495P 2011-05-04 2011-05-04
US61/482,495 2011-05-04
US201161515900P 2011-08-06 2011-08-06
US61/515,900 2011-08-06
US201261635176P 2012-04-18 2012-04-18
US61/635,176 2012-04-18
PCT/US2012/036640 WO2012151545A2 (en) 2011-05-04 2012-05-04 Zero emission power plant with co2 waste utilization

Publications (2)

Publication Number Publication Date
CN104025356A true CN104025356A (zh) 2014-09-03
CN104025356B CN104025356B (zh) 2017-04-26

Family

ID=47108261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280031148.0A Expired - Fee Related CN104025356B (zh) 2011-05-04 2012-05-04 具有二氧化碳废气利用的零排放发电站

Country Status (3)

Country Link
US (2) US20140165569A1 (zh)
CN (1) CN104025356B (zh)
WO (1) WO2012151545A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107810252A (zh) * 2015-06-24 2018-03-16 卡尔·维尔纳·迪特里希 用于制造甲烷的结合水的水解作用的布杜阿尔反应
CN108779050A (zh) * 2015-12-17 2018-11-09 阿沃赛特英菲尼特公立有限公司 生产甲醇产物的集成系统和方法
CN109449454A (zh) * 2018-10-31 2019-03-08 张俊霞 一种利用荒煤气的固体氧化物燃料电池装置
CN110168153A (zh) * 2016-11-01 2019-08-23 柯利亚·库赛 以二氧化碳为原料结合整体生产方法制造可再生或部分可再生碳纤维

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130164806A1 (en) 2011-12-22 2013-06-27 Iogen Bio-Products Corporation Method for producing renewable fuels
EP2816096B1 (de) * 2013-06-18 2021-05-12 Evonik Operations GmbH Verfahren und vorrichtung zur speicherung von überschussenergie
US10024533B2 (en) * 2014-06-16 2018-07-17 Ctp Biotechnology Llc System and process for combusting cleaned coal and beneficiated organic-carbon-containing feedstock
US10018355B2 (en) 2014-06-16 2018-07-10 CTP Biotechnology, LLC System and process for combusting coal and beneficiated organic-carbon-containing feedstock
US10619173B2 (en) 2014-07-22 2020-04-14 Iogen Corporation Process for using biogenic carbon dioxide derived from non-fossil organic material
US10202622B2 (en) 2014-07-22 2019-02-12 Iogen Corporation Process for producing fuel using two fermentations
EP3215458A1 (en) * 2014-11-03 2017-09-13 Ztek Corporation Renewable energy storage and zero emission power system
US11434509B2 (en) 2014-12-08 2022-09-06 Iogen Corporation Process for using biogenic carbon dioxide derived from non-fossil organic material
US10522860B2 (en) 2015-06-09 2019-12-31 Honeywell International Inc. Systems for hybrid fuel cell power generation
GB2540798A (en) * 2015-07-28 2017-02-01 John Brown Allan Method of recaiming and utilizing water and carbon dioxide from the exhaust system of an internal combustion engine to achieve a near zero greenhouse gas
CA3021637C (en) 2016-04-21 2021-07-06 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
CA3022534C (en) 2016-04-29 2021-01-26 Fuelcell Energy, Inc. Methanation of anode exhaust gas to enhance carbon dioxide capture.
IT201700073797A1 (it) * 2017-06-30 2018-12-30 Milano Politecnico Processo di conversione di biogas in prodotti chimici ad alto valore aggiunto.
US10946359B2 (en) * 2018-01-09 2021-03-16 Innoveering, LLC Fuel reformation for use in high speed propulsion systems
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
CN110555595B (zh) * 2019-08-09 2023-04-11 四川大学 一种基于能量枢纽的沼-风-光全可再生能源系统及其方法
GB2585987B (en) * 2019-08-27 2021-11-10 Iogen Corp Method for producing a fuel using renewable hydrogen
CA3148744A1 (en) * 2019-08-27 2021-03-04 Patrick J. Foody Method for producing fuel using renewable methane
IT201900016775A1 (it) * 2019-09-19 2021-03-19 Milano Politecnico Processo di conversione di biogas in prodotti chimici ad alto valore aggiunto.
KR20230011914A (ko) 2020-03-11 2023-01-25 퓨얼셀 에너지, 인크 탄소 포집을 위한 증기 메탄 개질 유닛
CA3169264A1 (en) * 2020-10-06 2022-04-14 Paul A. Allinson Carbon-neutral process for generating electricity
EP4323308A1 (en) 2021-04-15 2024-02-21 Iogen Corporation Process and system for producing low carbon intensity renewable hydrogen
CA3214954A1 (en) 2021-04-22 2022-10-27 Patrick J. Foody Process and system for producing fuel
WO2023064800A1 (en) * 2021-10-12 2023-04-20 Echeneidae Inc. Fluid chamber thermal management system and/or method
US11807530B2 (en) * 2022-04-11 2023-11-07 Iogen Corporation Method for making low carbon intensity hydrogen
US20240336478A1 (en) * 2023-04-04 2024-10-10 Iogen Corporation Method for making low carbon intensity hydrogen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696871A (en) * 1985-10-22 1987-09-29 Imperial Chemical Industries Plc Electricity production
US4909808A (en) * 1987-10-14 1990-03-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Steam reformer with catalytic combustor
CN1222256A (zh) * 1996-04-12 1999-07-07 兹特克公司 热强化小型转化炉
CN101200655A (zh) * 2006-12-11 2008-06-18 通用电气公司 使用非混合燃料处理器的系统和方法
US20090041641A1 (en) * 2006-03-10 2009-02-12 Intelligent Energy, Inc. Hydrogen purification process and system
CN101466634A (zh) * 2006-04-11 2009-06-24 特尔莫科技有限公司 固体碳质材料合成气生产方法及装置
US20100175320A1 (en) * 2006-12-29 2010-07-15 Pacific Renewable Fuels Llc Energy efficient system and process for the continuous production of fuels and energy from syngas
US7882692B2 (en) * 2004-04-16 2011-02-08 Clean Energy Systems, Inc. Zero emissions closed rankine cycle power system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316134B1 (en) * 1999-09-13 2001-11-13 Ballard Generation Systems, Inc. Fuel cell electric power generation system
US20030008183A1 (en) * 2001-06-15 2003-01-09 Ztek Corporation Zero/low emission and co-production energy supply station
US6630260B2 (en) * 2001-07-20 2003-10-07 General Motors Corporation Water vapor transfer device for a fuel cell power plant
CN101906023B (zh) * 2003-03-06 2013-05-22 国际石油开发帝石株式会社 制备合成气的方法,使用合成气制备二甲醚的方法和合成气制备炉
US7964176B2 (en) * 2005-03-29 2011-06-21 Chevron U.S.A. Inc. Process and apparatus for thermally integrated hydrogen generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696871A (en) * 1985-10-22 1987-09-29 Imperial Chemical Industries Plc Electricity production
US4909808A (en) * 1987-10-14 1990-03-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Steam reformer with catalytic combustor
CN1222256A (zh) * 1996-04-12 1999-07-07 兹特克公司 热强化小型转化炉
US7882692B2 (en) * 2004-04-16 2011-02-08 Clean Energy Systems, Inc. Zero emissions closed rankine cycle power system
US20090041641A1 (en) * 2006-03-10 2009-02-12 Intelligent Energy, Inc. Hydrogen purification process and system
CN101466634A (zh) * 2006-04-11 2009-06-24 特尔莫科技有限公司 固体碳质材料合成气生产方法及装置
CN101200655A (zh) * 2006-12-11 2008-06-18 通用电气公司 使用非混合燃料处理器的系统和方法
US20100175320A1 (en) * 2006-12-29 2010-07-15 Pacific Renewable Fuels Llc Energy efficient system and process for the continuous production of fuels and energy from syngas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107810252A (zh) * 2015-06-24 2018-03-16 卡尔·维尔纳·迪特里希 用于制造甲烷的结合水的水解作用的布杜阿尔反应
CN108779050A (zh) * 2015-12-17 2018-11-09 阿沃赛特英菲尼特公立有限公司 生产甲醇产物的集成系统和方法
CN110168153A (zh) * 2016-11-01 2019-08-23 柯利亚·库赛 以二氧化碳为原料结合整体生产方法制造可再生或部分可再生碳纤维
CN109449454A (zh) * 2018-10-31 2019-03-08 张俊霞 一种利用荒煤气的固体氧化物燃料电池装置
CN109449454B (zh) * 2018-10-31 2022-03-18 邵阳学院 一种利用荒煤气的固体氧化物燃料电池装置

Also Published As

Publication number Publication date
WO2012151545A3 (en) 2014-05-08
US20140165569A1 (en) 2014-06-19
WO2012151545A2 (en) 2012-11-08
US20170130582A1 (en) 2017-05-11
CN104025356B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN104025356B (zh) 具有二氧化碳废气利用的零排放发电站
Sikiru et al. Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation
US20160060537A1 (en) Renewable energy storage and zero emission power system
Nikolaidis et al. A comparative overview of hydrogen production processes
Armor Catalysis and the hydrogen economy
Malik et al. Overview of hydrogen production technologies for fuel cell utilization
US9771822B2 (en) Carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system
CN105210223B (zh) 熔融碳酸盐燃料电池的集成运行
AU2005304174B2 (en) A method of and an apparatus for producing and regulating electrical power
US20030008183A1 (en) Zero/low emission and co-production energy supply station
Wang et al. Techno-economic analysis and optimization of a novel hybrid solar-wind-bioethanol hydrogen production system via membrane reactor
Ayodele et al. The potential role of green hydrogen production in the South Africa energy mix
CN108780906A (zh) 熔融碳酸盐燃料电池的集成运行
EP3215458A1 (en) Renewable energy storage and zero emission power system
CN107221695A (zh) 一种以生物质气化制氢的燃料电池系统及其发电方法
Vasileiadis et al. Biomass reforming process for integrated solid oxide-fuel cell power generation
CN105720285A (zh) 一种封闭式燃料电池氢源系统
Worku et al. Recent advances and challenges of hydrogen production technologies via renewable energy sources
Sharifi et al. Power-to-X
CN101436672A (zh) 燃料电池发电系统及方法
Specchia et al. Modeling study on the performance of an integrated APU fed with hydrocarbon fuels
Budzianowski et al. Analysis of solutions alleviating CO2 emissions intensity of biogas technology
Lipman What will power the hydrogen economy? Present and future sources of hydrogen energy
Onwuemezie Overview and prospects of low-emissions hydrogen (H2) energy systems: Roadmap for a sustainable H2 economy.
Aggarangsi et al. Biogas Utilization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170426

Termination date: 20200504

CF01 Termination of patent right due to non-payment of annual fee