CN104021310A - 基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法 - Google Patents

基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法 Download PDF

Info

Publication number
CN104021310A
CN104021310A CN201410282738.1A CN201410282738A CN104021310A CN 104021310 A CN104021310 A CN 104021310A CN 201410282738 A CN201410282738 A CN 201410282738A CN 104021310 A CN104021310 A CN 104021310A
Authority
CN
China
Prior art keywords
centerdot
wheel
ukf
alpha
psi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410282738.1A
Other languages
English (en)
Other versions
CN104021310B (zh
Inventor
李克强
陈龙
边明远
罗禹贡
张书玮
秦兆博
向勇
连小珉
王建强
杨殿阁
郑四发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201410282738.1A priority Critical patent/CN104021310B/zh
Publication of CN104021310A publication Critical patent/CN104021310A/zh
Application granted granted Critical
Publication of CN104021310B publication Critical patent/CN104021310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本发明公开一种基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法,通过:实时采集车辆的各种传感器信号,利用车辆纵向动力学方程和模型的几何坐标关系对各轮滑移率和侧偏角估计;然后将估计的滑移率、垂向力、侧偏角等传给基于修正Dugoff模型的UKF系数计算模块,得到非线性系统的系数向量,将此向量与实时估计的纵向力发送到UKF路面峰值附着系数估计模块,求取峰值附着系数。本方法应用车辆状态观测系统实时采集信号,保证了计算的实时性,对于没有拟合过的路面情况估计准确度高。应用修正Dugoff轮胎模型和UKF理论,使得求解过程简单,运算量小、快捷,收敛时间短。本方法鲁棒性良好,能够较好的识别各轮的路面情况,适用于路面峰值附着系数的实时估计。

Description

基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法
技术领域
本发明涉及一种分布式驱动电动汽车的路面峰值附着系数估算方法,特别是关于一种基于UKF与修正Dugoff轮胎模型的路面峰值附着系数估算方法。
背景技术
路面峰值附着系数:是指轮胎与地面间作用的纵向力、侧向力的合力与垂向力之比的最大值。目前国内外对于路面峰值附着系数实时估算方法已经进行了大量研究。这些方法可以分为基于原因的方法和基于效果的方法两类。前者利用超声波传感器等来检测路面状况来估算路面附着系数,该类方法需要外加昂贵的传感器,并且对于环境的依赖程度较高。后者方法则是直接利用车辆与轮胎的动力学特性来估计路面附着系数,例如用μ-s曲线斜率(附着系数与滑移率曲线)估算路面附着系数的方法、利用侧向力或回正力矩与轮胎侧偏角的关系估计的方法。该类方法虽然不用加装额外的传感器,但各方法使用的工况有局限性,不能实现纵、侧向力耦合存在的路面峰值附着系数实时估算,且多数方法仅能实现转向轮或者驱动轮的路面峰值附着系数估计。
从观测器的角度分析,大部分学者采用基本卡尔曼滤波算法或者扩展卡尔曼算法来解决小滑移率条件下(线性轮胎特性区域)的路面峰值附着系数实时估算,这两种滤波器不适于应用于强非线性区下的路面峰值附着系数实时估算。而无迹卡尔曼滤波(UKF)算法由于使用无迹(UT)变换来处理均值和协方差的非线性传递,对非线性函数的概率密度分布进行近似,用一系列确定样本来逼近状态的后验概率密度,不需要求导计算Jacobian矩阵。UKF没有线性化忽略高阶项,因此它特别适用于强非线性区下的路面峰值附着系数实时估算。
从轮胎模型的角度分析,相关研究为保证求解的实时性,应用较为简单的轮胎模型,如Dugoff轮胎模型、多项式轮胎模型,但这些模型在强非线性区的精度较低。而在2014年美国汽车工程学会年会上发表的修正Dugoff轮胎模型能够在保持较简单的形式的前提下,较大的提高了在强非线性区的精度。
分布式电驱动车辆区别于传统内燃机驱动的车辆,其四个车轮由四个轮毂电机直接驱动,具有响应快速、传动链短等优点。电机的驱动转矩精确可知,这样就可以实时准确估计出轮胎的纵向力。
发明内容
针对现有的路面峰值附着系数算法只适用工况单一的问题,本发明目的是提供一种基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法,用以实时准确的估计各种工况下的路面情况。
为实现上述目的,本发明采取以下技术方案:一种基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法,适用于分布式驱动电动汽车每个车轮的路面峰值附着系数估算,该方法包括以下步骤:
1)建立一种车辆路面峰值附着系数估算系统,包括用以获得参数的:一设置在车辆驱动系统上的驱动力矩传感器、一设置在转向柱管处的方向盘转角传感器、一设置在车轮处的轮速传感器、一设置在整车质心处的车速传感器和惯性传感器,以及包括用以计算处理的:一车轮滑移率计算模块、一基于纵向动力学的轮胎力估计模块、一侧偏角计算模块、一基于修正Dugoff模型的UKF系数计算模块和一UKF路面峰值附着系数估计模块;
2)估算过程为:在车辆运行过程中,整车控制器取某两个相邻的采样时刻k-1和k,分别从驱动力矩传感器接收车辆的驱动力矩信号Ti(k),从轮速传感器接收实时的轮速信号ωi(k-1)和ωi(k),从车速传感器接收实时的纵向车速信号vx(k)以及侧向车速信号vy(k),从惯性传感器接收实时的纵向加速度信号ax(k)和侧向加速度信号ay(k)以及横摆角速度信号发送到基于纵向动力学的轮胎力估计模块、侧偏角计算模块和车轮滑移率计算模块;
3)基于纵向动力学的轮胎力估计模块根据实时采集到的驱动力矩信号Ti(k)、轮速信号ωi(k-1)和ωi(k),纵向加速度信号ax(k)和侧向加速度信号ay(k),计算出各车轮的纵向力Fxi(k)、垂向力Fzi(k),将垂向力Fzi(k)发送到基于修正Dugoff模型的UKF系数计算模块;将纵向力Fxi(k)发送到UKF路面峰值附着系数估计模块;
4)车轮侧偏角计算模块根据接收到的实时方向盘转角信号ωsw(k)、纵向车速信号vx(k)、侧向车速信号vy(k)和横摆角速度信号计算各车轮的侧偏角αi(k),并将结果发送给车轮滑移率计算模块和基于修正Dugoff模型的UKF系数计算模块;
5)车轮滑移率计算模块根据接收到的实时纵向车速信号vx(k)、侧向车速信号vy(k)和横摆角速度信号各车轮的侧偏角αi(k)和轮速信号ωi(k)计算车轮的滑移率si(k),并将结果发送给基于修正Dugoff模型的UKF系数计算模块;
6)基于修正Dugoff模型的UKF系数计算模块根据侧偏角计算模块、滑移率计算模块和基于纵向动力学的轮胎力估计模块发送过来的侧偏角αi(k)、滑移率si(k)、车轮的垂向力Fzi(k),利用修正Dugoff模型算法计算得到建立UKF滤波器所需的非线性系统的系数a1i(k)、a2i(k)、a3i(k)、a4i(k)、a5i(k),并将结果发送给UKF路面峰值附着系数估计模块;
以上,i=1、2、3、4,代表4个车轮。
7)UKF路面峰值附着系数估计模块根据接收到的实时纵向力Fxi(k)和系数结合UKF观测方法得到各轮的路面峰值附着系数
所述步骤3)中,车轮纵向力Fxi(k)、垂向力Fzi(k)的计算方法为:
①基于纵向动力学的轮胎力估计模块根据前、后两个相邻采样时刻k-1和k实时采集到的轮速信号ωi(k-1)和ωi(k),首先计算得到在采样时刻k时的车轮角加速度
ω · i ( k ) = ω i ( k ) - ω i ( k - 1 ) T - - - ( 1 )
式中,T为采样步长;
②根据进一步计算得到车轮纵向力Fxi(k):
F xi ( k ) = T i ( k ) - j ω · i ( k ) R - - - ( 2 )
式中,J为车轮转动惯量,R为车轮滚动半径;
③再根据惯性传感器在k时的车辆纵向加速度信号ax(k)和侧向加速度信号ay(k),进一步计算得到各车轮垂向力Fzi
Fz1(k)=mglr/(2l)-max(k)h/(2l)-may(k)hlr/(lB)
Fz2(k)=mglr/(2l)-max(k)h/(2l)+may(k)hlr/(lB)
Fz3(k)=mglf/(2l)+max(k)h/(2l)-may(k)hlf/(lB)           (3)
Fz4(k)=mglf/(2l)+max(k)h/(2l)+may(k)hlf/(lB)
式中,l为轴距,B为轮距,lr为质心到后轴距离,lf为质心到前轴距离,h为质心高度,m为车质量,g为重力加速度。
所述步骤4)中,各车轮的侧偏角αi(k)的计算方法为:
①首先车轮侧偏角计算模块根据采样时刻k实时采集到的实时方向盘转角信号ωsw(k),经转向传动比换算得到前面两转向轮的转角θ1(k)和θ2(k);
②再根据实时纵向车速信号vx(k)和侧向车速信号vy(k)和横摆角速度信号计算各车轮的侧偏角αi(k):
α 1 ( k ) = - θ 1 ( k ) + arctan v y ( k ) + l f ψ · ( k ) v x ( k ) - B ψ · ( k ) α 2 ( k ) = - θ 2 ( k ) + arctan v y ( k ) + l f ψ · ( k ) v x ( k ) + B ψ · ( k ) α 3 ( k ) = arctan v y ( k ) - l r ψ · ( k ) v x ( k ) - B ψ · ( k ) α 4 ( k ) = arctan v y ( k ) - l r ψ · ( k ) v x ( k ) + B ψ · ( k ) - - - ( 4 )
所述步骤5)中,计算车轮的滑移率si(k),利用如下公式计算:
s 1 ( k ) = | [ v y ( k ) + l f ψ · ( k ) ] 2 + [ v x ( k ) - B ψ · ( k ) ] 2 cos α 1 ( k ) - R ω 1 ( k ) | max | [ v y ( k ) + l f ψ · ( k ) ] 2 + [ v x ( k ) - B ψ · ( k ) ] 2 cos α 1 ( k ) , R ω 1 ( k ) | s 2 ( k ) = | [ v y ( k ) + l f ψ · ( k ) ] 2 + [ v x ( k ) + B ψ · ( k ) ] 2 cos α 2 ( k ) - R ω 2 ( k ) | max | [ v y ( k ) + l f ψ · ( k ) ] 2 + ( v x ( k ) + B ψ · ( k ) ) 2 cos α 2 ( k ) , R ω 2 ( k ) | s 3 ( k ) = | v x ( k ) - R ω 3 ( k ) | max | v x ( k ) , R ω 3 ( k ) | s 4 ( k ) = | v x ( k ) - R ω 4 ( k ) | max | v x ( k ) , R ω 4 ( k ) | - - - ( 5 )
所述步骤6)中,基于修正Dugoff模型的UKF系数计算模块,利用修正Dugoff模型算法计算UKF非线性系统的系数的方法如下:
a 1 i ( k ) = 3 C s s i 2 ( k ) F zi 2 ( k ) [ - s i ( k ) + 1 ] [ 1 + s i ( k ) ] 16 { [ C s s i ( k ) ] 2 + [ C α tan α i ( k ) ] 2 } a 2 i ( k ) = - 3 C s s i ( k ) F zi ( k ) [ - s i 2 ( k ) + s i ( k ) ] [ 1 + s i ( k ) ] 4 [ C s s i ( k ) ] 2 + [ C α tan α i ( k ) ] 2 [ 1 + s i ( k ) ] - [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] { F zi ( k ) [ 1 + s i ( k ) ] } 2 4 { [ C s s i ( k ) ] 2 + [ C α tan α i ( k ) ] 2 } a 3 i ( k ) = - C s s i ( k ) F zi ( k ) [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] [ C s s i ( k ) ] 2 + [ C α tan α i ( k ) ] 2 a 4 i ( k ) = 3 C s s i 2 ( k ) [ - s i ( k ) + 1 ] 4 [ 1 + s i ( k ) ] a 5 i ( k ) = C s s i ( k ) [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] [ 1 + s i ( k ) ] - - - ( 6 )
式中,Cs、Cα分别是轮胎的纵向滑移刚度和侧偏刚度,是轮胎的参数。
步骤7)中,UKF路面峰值附着系数估计模块利用UKF观测方法得到各轮的路面峰值附着系数具体实施过程如下:
①根据修正Dugoff轮胎模型,各轮胎的纵向力可表示为其所在路面峰值附着系数μmaxi和该车轮状态的函数,如下所示:
F xi ( &mu; max i ) = a 1 i &mu; max i 3 + a 2 i &mu; max i 2 + a 3 i &mu; max i &lambda; i < 1 a 4 i &mu; max i + a 5 i &lambda; i &GreaterEqual; 1 - - - ( 7 )
&lambda; i ( k ) = &mu; max i ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 - - - ( 8 )
②以上式为基础建立无味卡尔曼滤波器(UKF):
i)选取状态量和观测量如下:
xi=μmaxi            (9)
yi=Fxi
ii)将二者关系表述为非线性系统,如下:
x i ( k + 1 ) = x i ( k ) + w i ( k ) y i ( k ) = a 1 i ( k ) x i 3 ( k ) + a 2 i ( k ) x i 2 ( k ) + a 3 i ( k ) x i ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( k ) + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 &lambda; i ( k ) = x i ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 - - - ( 10 )
iii)均值和方差的初始化:
x ^ i ( 0 ) = 1 P i ( 0 ) = 0 - - - ( 11 )
iv)无迹变换:
x ^ i ( 1 ) ( k - 1 ) = x ^ i + ( k - 1 ) + P i + ( k - 1 ) x ^ i 2 ( k - 1 ) = x ^ i + ( k - 1 ) - P i + ( k - 1 ) - - - ( 12 )
是对k-1时刻的状态更新后的滤波值进行无迹变换得到的两个点,Pi +(k-1)为k-1时刻的状态更新后的后验方差矩阵,为k-1时刻的状态更新后的滤波值。
v)时间更新:
利用非线性方程进行非线性变换:
x ^ i ( 1 ) ( k ) = x ^ i ( 1 ) ( k - 1 ) x ^ i ( 2 ) ( k ) = x ^ i ( 2 ) ( k - 1 ) - - - ( 13 )
加权得到的预测的状态向量:
x ^ i - ( k ) = x ^ i ( 1 ) ( k ) + x ^ i ( 2 ) ( k ) - - - ( 14 )
加权得到的预测的协方差矩阵:
P i - ( k ) = 1 2 { [ x ^ i ( 1 ) ( k ) - x ^ i - ( k ) ] 2 + [ x ^ i ( 2 ) ( k ) - x ^ i - ( k ) ] 2 } + Q i ( k - 1 ) - - - ( 15 )
Qi(k-1)代表过程噪声矩阵。
利用非线性方程进行非线性变换:
先计算 &lambda; i ( k ) = x ^ i - ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2
根据λi(k)计算
y ^ i ( 1 ) ( k ) = a 1 i ( k ) [ x i ( 1 ) ( k ) ] 3 + a 2 i ( k ) [ x i ( 1 ) ( k ) ] 2 + a 3 i ( k ) x i ( 1 ) ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( 1 ) ( k ) 3 + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 y ^ i ( 2 ) ( k ) = a 1 i ( k ) [ x i ( 2 ) ( k ) ] 3 + a 2 i ( k ) [ x i ( 2 ) ( k ) ] 2 + a 3 i ( k ) x i ( 2 ) ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( 2 ) ( k ) 3 + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 - - - ( 16 )
加权得到系统的预测值:
y ^ i ( k ) = 1 2 [ y ^ i ( 1 ) ( k ) + y ^ i ( 2 ) ( k ) ] - - - ( 17 )
vi)量测更新:
后验估计的协方差矩阵:
P y - i ( k ) = 1 2 { [ y ^ i ( 1 ) ( k ) - y ^ i ( k ) ] 2 + [ y ^ i ( 2 ) ( k ) - y ^ i ( k ) ] 2 } + R i ( k ) - - - ( 18 )
Ri(k)代表量测噪声矩阵。
先验估计的协方差矩阵:
P xy - i ( k ) = 1 2 { [ y ^ i ( 1 ) ( k ) - y ^ i ( k ) ] [ x ^ i ( 1 ) ( k ) - x ^ i - ( k ) ] + [ y ^ i ( 2 ) ( k ) - y ^ i ( k ) ] [ x ^ i ( 2 ) ( k ) - x ^ i - ( k ) ] } - - - ( 19 )
滤波增益矩阵:
K i ( k ) = P xy - i ( k ) P y - i - 1 ( k ) - - - ( 20 )
状态更新后的滤波值:
x ^ i + ( k ) = x ^ i - ( k ) + K i ( k ) &CenterDot; ( y i ( k ) - y ^ i ( k ) ) - - - ( 21 )
状态更新后的后验方差矩阵:
P i + ( k ) = P i - ( k ) - K i 2 ( k ) &CenterDot; P y - i ( k ) - - - ( 22 )
到此为止,UKF滤波器建立完毕。滤波器输出的滤波值即为各轮处的附着系数估计值
上述估算过程可以选取车辆4个车轮中的任意一个进行。
本发明由于采取以上技术方案,其具有以下优点:本发明通过建立一组估算系统,首先采集驱动力矩信号、车辆的纵向速度信号、侧向速度信号、横摆加速度信号、方向盘转角信号和轮速信号等,采取实时估计的方法,利用车辆纵向动力学方程和车辆模型的几何坐标关系分别对各轮滑移率和侧偏角实时估计;然后将估计的滑移率值、垂向力、侧偏角等传给车辆控制器中的基于修正Dugoff模型的UKF系数计算模块,计算得到利用修正Dugoff轮胎模型推导出来的非线性系统的系数向量,将此向量与实时与实时估计的纵向力发送到预先建好的UKF路面峰值附着系数估计模块,求取峰值附着系数。本方法应用车辆状态观测系统实时采集信号,保证了计算的实时性,对于没有拟合过的路面情况估计准确度高。本方法应用修正Dugoff轮胎模型和UKF理论,使得求解过程简单,运算量小、快捷,收敛时间短;并且能在较宽滑移率范围内和纵向力侧向力耦合的情况下计算,具有较高的估计准确性,适用范围广。本方法鲁棒性(在不改变参数的情况下,能够对多种路况进行识别)良好,能够较好的识别各轮的路面情况,适用于车辆在各种行驶过程中路面的峰值附着系数的实时估计。
附图说明
图1是本发明的系统关系示意图。
图2是本发明的车辆模型示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
图1所示是本发明的路面峰值附着系数实时估计方法所应用的系统图,外部硬件包括一设置在车辆驱动系统上的驱动力矩传感器1、一设置在转向柱管处的方向盘转角传感器2、一设置在车轮处的轮速传感器3,设置在整车质心处的一车速传感器和4一惯性传感器5,设置于整车控制器中的处理模块包括一车轮滑移率计算模块6、一基于纵向动力学的轮胎力估计模块7、一轮胎侧偏角计算模块8、一基于修正Dugoff模型的UKF系数计算模块9和一UKF路面峰值附着系数估计模块10。上述驱动力矩传感器1、轮速传感器3、惯性传感器5与基于纵向动力学的轮胎力估计模块7相连;方向盘转角传感器2、车速传感器4、惯性传感器5与轮胎侧偏角计算模块8相连;车速传感器4、惯性传感器5、轮速传感器3、轮胎侧偏角计算模块8与车轮滑移率计算模块6相连;基于纵向动力学的轮胎力估计模块7、轮胎侧偏角计算模块8、车轮滑移率计算模块6、车速传感器4,与基于修正Dugoff模型的UKF系数计算模块9相连;基于纵向动力学的轮胎力估计模块7、基于修正Dugoff模型的UKF系数计算模块9与UKF路面峰值附着系数估计模块10相连。
基于上述系统,本发明对车辆行驶过程中的路面峰值附着系数的实时估计方法包括以下步骤:
1、在车辆运行过程中,整车控制器取某两个相邻的采样时刻k-1和k,分别从驱动力矩传感器接收车辆的驱动力矩信号Ti(k),从轮速传感器接收实时的轮速信号ωi(k-1)和ωi(k),从车速传感器接收实时的纵向车速信号vx(k)以及侧向车速信号vy(k),从惯性传感器接收实时的纵向加速度信号ax(k)和侧向加速度信号ay(k)以及横摆角速度信号发送到基于纵向动力学的轮胎力估计模块、侧偏角计算模块和车轮滑移率计算模块;
2、基于纵向动力学的轮胎力估计模块根据实时采集到的驱动力矩信号Ti(k)、轮速信号ωi(k-1)和ωi(k),纵向加速度信号ax(k)和侧向加速度信号ay(k),计算出各车轮的纵向力Fxi(k)、垂向力Fzi(k),将垂向力Fzi(k)发送到基于修正Dugoff模型的UKF系数计算模块;将纵向力Fxi(k)发送到UKF路面峰值附着系数估计模块;
3、轮胎侧偏角计算模块根据接收到的实时方向盘转角信号ωsw(k)、纵向车速信号vx(k)、侧向车速信号vy(k)和横摆角速度信号计算各车轮的侧偏角αi(k),并将结果发送给车轮滑移率计算模块和基于修正Dugoff模型的UKF系数计算模块;
4、车轮滑移率计算模块根据接收到的实时纵向车速信号vx(k)、侧向车速信号vy(k)和横摆角速度信号各车轮的侧偏角αi(k)和轮速信号ωi(k)计算车轮的滑移率si(k),并将结果发送给基于修正Dugoff模型的UKF系数计算模块;
5、基于修正Dugoff模型的UKF系数计算模块根据侧偏角计算模块、滑移率计算模块和基于纵向动力学的轮胎力估计模块发送过来的侧偏角αi(k)、滑移率si(k)、车轮的垂向力Fzi(k),利用修正Dugoff模型算法计算得到建立UKF滤波器所需的非线性系统的系数a1i(k)、a2i(k)、a3i(k)、a4i(k)、a5i(k),并将结果发送给UKF路面峰值附着系数估计模块;
以上,i=1、2、3、4,代表4个车轮。
6、UKF路面峰值附着系数估计模块根据接收到的实时纵向力Fxi(k)和系数a1i(k)、(,结合UKF观测方法得到各轮的路面峰值附着系数 &mu; ^ max i .
上述步骤2中,车轮纵向力Fxi(k)、垂向力Fzi(k)的计算方法为:
①基于纵向动力学的轮胎力估计模块根据前、后两个相邻采样时刻k-1和k实时采集到的轮速信号ωi(k-1)和ωi(k),首先计算得到在采样时刻k时的车轮角加速度 &omega; &CenterDot; i ( k ) :
&omega; &CenterDot; i ( k ) = &omega; i ( k ) - &omega; i ( k - 1 ) T - - - ( 1 )
式中,T为采样步长;
②根据进一步计算得到车轮纵向力Fxi(k):
F xi ( k ) = T i ( k ) - J &omega; &CenterDot; i ( k ) R - - - ( 2 )
式中,J为车轮转动惯量,R为车轮滚动半径;
③再根据惯性传感器在k时的车辆纵向加速度信号ax(k)和侧向加速度信号ay(k),进一步计算得到各车轮垂向力Fzi
Fz1(k)=mglr/(2l)-max(k)h/(2l)-may(k)hlr/(lB)
Fz2(k)=mglr/(2l)-max(k)h/(2l)+may(k)hlr/(lB)
Fz3(k)=mglf/(2l)+max(k)h/(2l)-may(k)hlf/(lB)  (3)
Fz4(k)=mglf/(2l)+max(k)h/(2l)+may(k)hlf/(lB)
式中,l为轴距,B为轮距,lr为质心到后轴距离,lf为质心到前轴距离,h为质心高度,m为车质量,g为重力加速度,相关参数指示见图2。
上述步骤3中,各车轮的侧偏角αi(k)的计算方法为:
①首先车轮侧偏角计算模块根据采样时刻k实时采集到的实时方向盘转角信号ωsw(k),经转向传动比换算得到前面两转向轮的转角θ1(k)和θ2(k),相关参数指示见图2;
②再根据实时纵向车速信号vx(k)和侧向车速信号vy(k)和横摆角速度信号计算各车轮的侧偏角αi(k):
&alpha; 1 ( k ) = - &theta; 1 ( k ) + arctan v y ( k ) + l f &psi; &CenterDot; ( k ) v x ( k ) - B &psi; &CenterDot; ( k ) &alpha; 2 ( k ) = - &theta; 2 ( k ) + arctan v t ( k ) + l f &psi; &CenterDot; ( k ) v x ( k ) + B &psi; &CenterDot; ( k ) &alpha; 3 ( k ) = arctan v y ( k ) - l r &psi; &CenterDot; ( k ) v x ( k ) - B &psi; &CenterDot; ( k ) &alpha; 4 ( k ) = arctan v y ( k ) - l r &psi; &CenterDot; ( k ) v x ( k ) + B &psi; &CenterDot; ( k ) - - - ( 4 )
上述步骤4中,计算车轮的滑移率si(k),利用如下公式计算:
s 1 ( k ) = | ( v y ( k ) + l f &psi; &CenterDot; ( k ) ) 2 + ( v x ( k ) - B &psi; ( k ) &CenterDot; ) 2 cos &alpha; 1 ( k ) - R &omega; 1 ( k ) | max | ( v y ( k ) + l f &psi; &CenterDot; ( k ) ) 2 + ( v x ( k ) - B &psi; ( k ) &CenterDot; ) 2 cos &alpha; 1 ( k ) , R &omega; 1 ( k ) | s 2 ( k ) = | ( v y ( k ) + l f &psi; ( k ) &CenterDot; ) 2 + ( v x ( k ) + B &psi; &CenterDot; ( k ) ) 2 cos &alpha; 2 ( k ) - R &omega; 2 ( k ) | max | ( v y ( k ) + l f &psi; &CenterDot; ( k ) ) 2 + ( v x ( k ) + B &psi; ( k ) &CenterDot; ) 2 cos &alpha; 2 ( k ) , R &omega; 2 ( k ) | s 3 ( k ) = | v x ( k ) - R &omega; 3 ( k ) | max | v x ( k ) , R &omega; 3 ( k ) | s 4 ( k ) = | v x ( k ) - R &omega; 4 ( k ) | max | v x ( k ) , R &omega; 4 ( k ) | - - - ( 5 )
上述步骤5中,基于修正Dugoff模型的UKF系数计算模块,利用修正Dugoff模型算法计算UKF非线性系统的系数的方法如下:
a 1 i ( k ) = 3 C s s i 2 ( k ) F zi 2 ( k ) [ - s i ( k ) + 1 ] [ 1 + s i ( k ) ] 16 { [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 } a 2 i ( k ) = - 3 C s s i ( k ) F zi ( k ) [ - s i 2 ( k ) + s i ( k ) ] [ 1 + s i ( k ) ] 4 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 [ 1 + s i ( k ) ] - [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] { F zi ( k ) [ 1 + s i ( k ) ] } 2 4 { [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 } a 3 i ( k ) = - C s s i ( k ) F zi ( k ) [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 a 4 i ( k ) = 3 C s s i 2 ( k ) [ - s i ( k ) + 1 ] 4 [ 1 + s i ( k ) ] a 5 i ( k ) = C s s i ( k ) [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 [ 1 + s i ( k ) ] - - - ( 6 )
式中,Cs、Cα分别是轮胎的纵向滑移刚度和侧偏刚度,是轮胎的参数。
上述步骤6中,UKF路面峰值附着系数估计模块利用UKF观测方法得到各轮的路面峰值附着系数具体实施过程如下:
①根据修正Dugoff轮胎模型,各轮胎的纵向力可表示为其所在路面峰值附着系数μmaxi和该车轮状态的函数,如下所示:
F xi ( &mu; max i ) = a 1 i &mu; max i 3 + a 2 i &mu; max i 2 + a 3 i &mu; max i &lambda; i < 1 a 4 i &mu; max i + a 5 i &lambda; i &GreaterEqual; 1 - - - ( 7 )
&lambda; i ( k ) = &mu; max i ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 - - - ( 8 )
②以上式为基础建立无味卡尔曼滤波器(UKF):
i)选取状态量和观测量如下:
x i = &mu; max i y i = F xi - - - ( 9 )
ii)将二者关系表述为非线性系统,如下:
x i ( k + 1 ) = x i ( k ) + w i ( k ) y i ( k ) = a 1 i ( k ) x i 3 ( k ) + a 2 i ( k ) x i 2 ( k ) + a 3 i ( k ) x i ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( k ) + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 &lambda; i ( k ) = x i ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 - - - ( 10 )
iii)均值和方差的初始化:
x ^ i ( 0 ) = 1 P i ( 0 ) = 0 - - - ( 11 )
iv)无迹变换:
x ^ i ( 1 ) ( k - 1 ) = x ^ i + ( k - 1 ) + P i + ( k - 1 ) x ^ i 2 ( k - 1 ) = x ^ i + ( k - 1 ) - P i + ( k - 1 ) - - - ( 12 )
v)时间更新:
利用非线性方程进行非线性变换:
x ^ i ( 1 ) ( k ) = x ^ i ( 1 ) ( k - 1 ) x ^ i ( 2 ) ( k ) = x ^ i ( 2 ) ( k - 1 ) - - - ( 13 )
加权得到的预测的状态向量:
x ^ i - ( k ) = x ^ i ( 1 ) ( k ) + x ^ i ( 2 ) ( k ) - - - ( 14 )
加权得到的预测的协方差矩阵:
P i - ( k ) = 1 2 { [ x ^ i ( 1 ) ( k ) - x ^ i - ( k ) ] 2 + [ x ^ i ( 2 ) ( k ) - x ^ i - ( k ) ] 2 } + Q i ( k - 1 ) - - - ( 15 )
利用非线性方程进行非线性变换:
先计算 &lambda; i ( k ) = x ^ i - ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2
根据λi(k)计算
y ^ i ( 1 ) ( k ) = a 1 i ( k ) [ x i ( 1 ) ( k ) ] 3 + a 2 i ( k ) [ x i ( 1 ) ( k ) ] 2 + a 3 i ( k ) x i ( 1 ) ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( 1 ) ( k ) 3 + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 y ^ i ( 2 ) ( k ) = a 1 i ( k ) [ x i ( 2 ) ( k ) ] 3 + a 2 i ( k ) [ x i ( 2 ) ( k ) ] 2 + a 3 i ( k ) x i ( 2 ) ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( 2 ) ( k ) 3 + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 - - - ( 16 )
加权得到系统的预测值:
y ^ i ( k ) = 1 2 [ y ^ i ( 1 ) ( k ) + y ^ i ( 2 ) ( k ) ] - - - ( 17 )
vi)量测更新:
后验估计的协方差矩阵:
P y - i ( k ) = 1 2 { [ y ^ i ( 1 ) ( k ) - y ^ i ( k ) ] 2 + [ y ^ i ( 2 ) ( k ) - y ^ i ( k ) ] 2 } + R i ( k ) - - - ( 18 )
先验估计的协方差矩阵:
P xy - i ( k ) = 1 2 { [ y ^ i ( 1 ) ( k ) - y ^ i ( k ) ] [ x ^ i ( 1 ) ( k ) - x ^ i - ( k ) ] + [ y ^ i ( 2 ) ( k ) - y ^ i ( k ) ] [ x ^ i ( 2 ) ( k ) - x ^ i - ( k ) ] } - - - ( 19 )
滤波增益矩阵:
K i ( k ) = P xy - i ( k ) P y - i - 1 ( k ) - - - ( 20 )
状态更新后的滤波值:
x ^ i + ( k ) = x ^ i - ( k ) + K i ( k ) &CenterDot; ( y i ( k ) - y ^ i ( k ) ) - - - ( 21 )
状态更新后的后验方差矩阵:
P i + ( k ) = P i - ( k ) - K i 2 ( k ) &CenterDot; P y - i ( k ) - - - ( 22 )
到此为止,UKF滤波器建立完毕。滤波器输出的滤波值即为各轮处的附着系数估计值

Claims (7)

1.一种基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法,其特征在于,包括以下步骤:
1)建立一种车辆路面峰值附着系数估算系统,包括用以获得参数的:驱动力矩传感器、方向盘转角传感器、轮速传感器、车速传感器和惯性传感器,以及用以计算处理的:车轮滑移率计算模块、基于纵向动力学的轮胎力估计模块、侧偏角计算模块、基于修正Dugoff模型的UKF系数计算模块和UKF路面峰值附着系数估计模块;
2)估算过程为:整车控制器取某两个相邻采样时刻k-1和k,获得驱动力矩信号Ti(k),轮速信号ωi(k-1)和ωi(k),纵向车速信号vx(k),侧向车速信号vy(k),纵向加速度信号ax(k),侧向加速度信号ay(k)以及横摆角速度信号
3)基于纵向动力学的轮胎力估计模块根据实时采集到的驱动力矩信号Ti(k)、轮速信号ωi(k-1)和ωi(k),纵向加速度信号ax(k)和侧向加速度信号ay(k),计算出各车轮的纵向力Fxi(k)、垂向力Fzi(k),将垂向力Fzi(k)发送到基于修正Dugoff模型的UKF系数计算模块,将纵向力Fxi(k)发送到UKF路面峰值附着系数估计模块;
4)车轮侧偏角计算模块根据接收到的实时方向盘转角信号ωsw(k)、纵向车速信号vx(k)、侧向车速信号vy(k)和横摆角速度信号计算各车轮的侧偏角αi(k),并将结果发送给车轮滑移率计算模块和基于修正Dugoff模型的UKF系数计算模块;
5)车轮滑移率计算模块根据接收到的实时纵向车速信号vx(k)、侧向车速信号vy(k)、横摆角速度信号各车轮的侧偏角αi(k)、轮速信号ωi(k),计算车轮的滑移率si(k),并将结果发送给基于修正Dugoff模型的UKF系数计算模块;
6)基于修正Dugoff模型的UKF系数计算模块根据侧偏角计算模块、滑移率计算模块和基于纵向动力学的轮胎力估计模块发送过来的侧偏角αi(k)、滑移率si(k)、车轮的垂向力Fzi(k),利用修正Dugoff模型算法计算得到建立UKF滤波器所需的非线性系统的系数a1i(k)、a2i(k)、a3i(k)、a4i(k)、a5i(k),并将结果发送给UKF路面峰值附着系数估计模块;
7)UKF路面峰值附着系数估计模块根据接收到的实时纵向力Fxi(k)和系数a1i(k)、(i,结合UKF观测方法得到各轮的路面峰值附着系数
以上,i=1、2、3、4,代表4个车轮。
2.根据权利要求1所述的路面峰值附着系数估算方法,其特征在于,所述步骤3)中,计算车轮纵向力Fxi(k)、垂向力Fzi(k)的方法为:
①基于纵向动力学的轮胎力估计模块根据前、后两个相邻采样时刻k-1和k实时采集到的轮速信号ωi(k-1)和ωi(k),首先计算得到在采样时刻k时的车轮角加速度
&omega; &CenterDot; i ( k ) = &omega; i ( k ) - &omega; i ( k - 1 ) T - - - ( 1 )
式中,T为采样步长;
②根据进一步计算得到车轮纵向力Fxi(k):
F xi ( k ) = T i ( k ) - J &omega; &CenterDot; i ( k ) R - - - ( 2 )
式中,J为车轮转动惯量,R为车轮滚动半径;
③再根据惯性传感器在k时刻的车辆纵向加速度信号ax(k)和侧向加速度信号ay(k),进一步计算得到各车轮垂向力Fzi
Fz1(k)=mglr/(2l)-max(k)h/(2l)-may(k)hlr/(lB)
Fz2(k)=mglr/(2l)-max(k)h/(2l)+may(k)hlr/(lB)
Fz3(k)=mglf/(2l)+max(k)h/(2l)-may(k)hlf/(lB)                   (3)
Fz4(k)=mglf/(2l)+max(k)h/(2l)+may(k)hlf/(lB)
式中,l为轴距,B为轮距,lr为质心到后轴距离,lf为质心到前轴距离,h为质心高度,m为车质量,g为重力加速度。
3.根据权利要求1所述的路面峰值附着系数估算方法,其特征在于,所述步骤4)中,计算各车轮的侧偏角αi(k)的方法为:
①首先车轮侧偏角计算模块根据采样时刻k实时采集到的实时方向盘转角信号ωsw(k),经转向传动比换算得到前面两转向轮的转角θ1(k)和θ2(k);
②再根据实时纵向车速信号vx(k)、侧向车速信号vy(k)、横摆角速度信号计算各车轮的侧偏角αi(k):
&alpha; 1 ( k ) = - &theta; 1 ( k ) + arctan v y ( k ) + l f &psi; &CenterDot; ( k ) v x ( k ) - B &psi; &CenterDot; ( k )
&alpha; 2 ( k ) = - &theta; 2 ( k ) + arctan v y ( k ) + l f &psi; &CenterDot; ( k ) v x ( k ) + B &psi; &CenterDot; ( k )
&alpha; 3 ( k ) = arctan v y ( k ) - l r &psi; &CenterDot; ( k ) v x ( k ) - B &psi; &CenterDot; ( k ) - - - ( 4 )
&alpha; 4 ( k ) = arctan v y ( k ) - l r &psi; &CenterDot; ( k ) v x ( k ) + B &psi; &CenterDot; ( k )
4.根据权利要求1所述的路面峰值附着系数估算方法,其特征在于,所述步骤5)中,计算车轮的滑移率si(k)的方法为:
s 1 ( k ) = | ( v y ( k ) + l f &psi; &CenterDot; ( k ) ) 2 + ( v x ( k ) - B &psi; &CenterDot; ( k ) ) 2 cos &alpha; 1 ( k ) - R &omega; 1 ( k ) | max | ( v y ( k ) + l f &psi; &CenterDot; ( k ) ) 2 + ( v x ( k ) - B &psi; &CenterDot; ( k ) ) 2 cos &alpha; 1 ( k ) , R &omega; 1 ( k ) |
s 2 ( k ) = | ( v y ( k ) + l f &psi; &CenterDot; ( k ) ) 2 + ( v x ( k ) + B &psi; &CenterDot; ( k ) ) 2 cos &alpha; 2 ( k ) - R &omega; 2 ( k ) | max | ( v y ( k ) + l f &psi; &CenterDot; ( k ) ) 2 + ( v x ( k ) + B &psi; &CenterDot; ( k ) ) 2 cos &alpha; 2 ( k ) , R &omega; 2 ( k ) | - - - ( 5 )
s 3 ( k ) = | v x ( k ) - R &omega; 3 ( k ) | max | v x ( k ) , R &omega; 3 ( k ) |
s 4 ( k ) = | v x ( k ) - R &omega; 4 ( k ) | max | v x ( k ) , R &omega; 4 ( k ) |
5.根据权利要求1所述的路面峰值附着系数估算方法,其特征在于,所述步骤6)中,基于修正Dugoff模型的UKF系数计算模块,利用修正Dugoff模型算法计算UKF非线性系统系数的方法如下:
a 1 i ( k ) = 3 C s s i 2 ( k ) F zi 2 ( k ) [ - s i ( k ) + 1 ] [ 1 + s i ( k ) ] 16 { [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 }
a 2 i ( k ) = - 3 C s s i ( k ) F zi ( k ) [ - s i 2 ( k ) + s i ( k ) ] [ 1 + s i ( k ) ] 4 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 [ 1 + s i ( k ) ] - [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] { F zi ( k ) [ 1 + s i ( k ) ] } 2 4 { [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 } - - - ( 6 )
a 3 i ( k ) = - C s s i ( k ) F zi ( k ) [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2
a 4 i ( k ) = 3 C s s i 2 ( k ) [ - s i ( k ) + 1 ] 4 [ 1 + s i ( k ) ]
a 5 i ( k ) = C s s i ( k ) [ 1.15 s i 2 ( k ) + 1.63 s i ( k ) + 1.27 ] [ 1 + s i ( k ) ]
式中,Cs、Cα分别是轮胎的纵向滑移刚度和侧偏刚度,是轮胎的参数。
6.根据权利要求1所述的路面峰值附着系数估算方法,其特征在于,所述步骤7)中,UKF路面峰值附着系数估计模块利用UKF观测方法得到各轮的路面峰值附着系数的步骤如下:
①根据修正Dugoff轮胎模型,各轮胎的纵向力可表示为其所在路面峰值附着系数μmaxi和该车轮状态的函数,如下所示:
F xi ( &mu; max i ) = a 1 i &mu; max i 3 + a 2 i &mu; max i 2 + a 3 i &mu; max i &lambda; i < 1 a 4 i &mu; max i + a 5 i &lambda; i &GreaterEqual; 1 - - - ( 7 )
&lambda; i ( k ) = &mu; max i ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 - - - ( 8 )
②以上式为基础建立无味卡尔曼滤波器(UKF):
i)选取状态量和观测量如下:
xi=μmaxi
yi=Fxi          (9)
ii)将二者关系表述为非线性系统,如下:
x i ( k + 1 ) = x i ( k ) + w i ( k ) y i ( k ) = a 1 i ( k ) x i 3 ( k ) + a 2 i ( k ) x i 2 ( k ) + a 3 i ( k ) x i ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( k ) + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 &lambda; i ( k ) = x i ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2 - - - ( 10 )
iii)均值和方差的初始化:
x ^ i ( 0 ) = 1 P i ( 0 ) = 0 - - - ( 11 )
iv)无迹变换:
x ^ i ( 1 ) ( k - 1 ) = x ^ i + ( k - 1 ) + P i + ( k - 1 ) x ^ i ( 2 ) ( k - 1 ) = x ^ i + ( k - 1 ) - P i + ( k - 1 ) - - - ( 12 )
是对k-1时刻的状态更新后的滤波值进行无迹变换得到的两个点,Pi +(k-1)为k-1时刻的状态更新后的后验方差矩阵,为k-1时刻的状态更新后的滤波值;
v)时间更新:
利用非线性方程进行非线性变换:
x ^ i ( 1 ) ( k ) = x ^ i ( 1 ) ( k - 1 ) x ^ i ( 2 ) ( k ) = x ^ i ( 2 ) ( k - 1 ) - - - ( 13 )
加权得到的预测的状态向量:
x ^ i - ( k ) = x ^ i ( 1 ) ( k ) + x ^ i ( 2 ) ( k ) - - - ( 14 )
加权得到的预测的协方差矩阵:
P i - ( k ) = 1 2 { [ x ^ i ( 1 ) ( k ) - x ^ i - ( k ) ] 2 + [ x ^ i ( 2 ) ( k ) - x ^ i - ( k ) ] 2 } + Q i ( k - 1 ) - - - ( 15 )
Qi(k-1)代表过程噪声矩阵;
利用非线性方程进行非线性变换:
先计算 &lambda; i ( k ) = x ^ i - ( k ) &CenterDot; F zi ( k ) &CenterDot; [ 1 + s i ( k ) ] 2 [ C s s i ( k ) ] 2 + [ C &alpha; tan &alpha; i ( k ) ] 2
根据λi(k)计算
y ^ i ( 1 ) ( k ) = a 1 i ( k ) [ x i ( 1 ) ( k ) ] 3 + a 2 i ( k ) [ x i ( 1 ) ( k ) ] 2 + a 3 i ( k ) x i ( 1 ) ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( 1 ) ( k ) 3 + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 y ^ i ( 2 ) ( k ) = a 1 i ( k ) [ x i ( 2 ) ( k ) ] 3 + a 2 i ( k ) [ x i ( 2 ) ( k ) ] 2 + a 3 i ( k ) x i ( 2 ) ( k ) + v i ( k ) &lambda; i ( k ) < 1 a 4 i ( k ) x i ( 2 ) ( k ) 3 + a 5 i ( k ) + v i ( k ) &lambda; i ( k ) &GreaterEqual; 1 - - - ( 16 )
加权得到系统的预测值:
y ^ i ( k ) = 1 2 [ y ^ i ( 1 ) ( k ) + y ^ i ( 2 ) ( k ) ] - - - ( 17 )
vi)量测更新:
后验估计的协方差矩阵:
P y - i ( k ) = 1 2 { [ y ^ i ( 1 ) ( k ) - y ^ i ( k ) ] 2 + [ y ^ i ( 2 ) ( k ) - y ^ i ( k ) ] 2 } + R i ( k ) - - - ( 18 )
Ri(k)代表量测噪声矩阵;
先验估计的协方差矩阵:
P xy - i ( k ) = 1 2 { [ y ^ i ( 1 ) ( k ) - y ^ i ( k ) ] [ x ^ i ( 1 ) ( k ) - x ^ i - ( k ) ] + [ y ^ i ( 2 ) ( k ) - y ^ i ( k ) ] [ x ^ i ( 2 ) ( k ) - x ^ i - ( k ) ] } - - - ( 19 )
滤波增益矩阵:
K i ( k ) = P xy - i ( k ) P y - i - 1 ( k ) - - - ( 20 )
状态更新后的滤波值:
x ^ i + ( k ) = x ^ i - ( k ) + K i ( k ) &CenterDot; ( y i ( k ) - y ^ i ( k ) ) - - - ( 21 )
状态更新后的后验方差矩阵:
P i + ( k ) = P i - ( k ) - K i 2 ( k ) &CenterDot; P y - i ( k ) - - - ( 22 )
到此为止,UKF滤波器建立完毕,滤波器输出的滤波值即为各车轮处的附着系数估计值
7.根据权利要求1~6之一所述的路面峰值附着系数估算方法,其特征在于,所述估算过程可以选取车辆4个车轮中的任意一个进行。
CN201410282738.1A 2014-06-23 2014-06-23 基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法 Active CN104021310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410282738.1A CN104021310B (zh) 2014-06-23 2014-06-23 基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410282738.1A CN104021310B (zh) 2014-06-23 2014-06-23 基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法

Publications (2)

Publication Number Publication Date
CN104021310A true CN104021310A (zh) 2014-09-03
CN104021310B CN104021310B (zh) 2016-09-28

Family

ID=51438062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410282738.1A Active CN104021310B (zh) 2014-06-23 2014-06-23 基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法

Country Status (1)

Country Link
CN (1) CN104021310B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104354700A (zh) * 2014-11-03 2015-02-18 武汉理工大学 一种基于无迹卡尔曼滤波的车辆参数在线估计方法
CN105279309A (zh) * 2015-09-16 2016-01-27 南京航空航天大学 基于回正力矩估计的主动转向理想方向盘转矩设计方法
CN108482379A (zh) * 2018-03-16 2018-09-04 武汉理工大学 轮毂电机驱动车辆路面附着系数及路面坡度同步实时估算系统及方法
CN109131336A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 获取路面附着系数的方法和系统
CN109466558A (zh) * 2018-10-26 2019-03-15 重庆邮电大学 一种基于ekf和bp神经网络的路面附着系数估计方法
CN109591821A (zh) * 2018-12-07 2019-04-09 清华大学 轮胎受力计算方法、装置和车载计算机设备
CN109910617A (zh) * 2019-03-27 2019-06-21 武汉理工大学 一种分布式轮毂电机驱动车辆失效故障的诊断方法
CN109910897A (zh) * 2019-01-30 2019-06-21 江苏大学 一种基于前方路面峰值附着系数的安全距离估算方法
CN110395259A (zh) * 2019-07-16 2019-11-01 启迪云控(北京)科技有限公司 一种路面情况的估计方法、装置、设备以及介质
CN111086520A (zh) * 2020-01-17 2020-05-01 北京理工大学 一种适用于四轮驱动车辆多轮高滑移率时的速度估计算法
CN111623767A (zh) * 2020-04-10 2020-09-04 北京百度网讯科技有限公司 Imu伪数据的生成方法、装置、电子设备及存储介质
CN111845710A (zh) * 2020-08-03 2020-10-30 北京理工大学 基于路面附着系数识别的整车动态性能控制方法及系统
CN113238564A (zh) * 2021-06-07 2021-08-10 江苏理工学院 一种纯电动无人矿用自卸车轨迹规划方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581659A (zh) * 2009-06-05 2009-11-18 清华大学 一种轮胎-路面最大附着系数测试方法
CN103245610A (zh) * 2013-05-17 2013-08-14 清华大学 一种分布式驱动电动汽车的路面峰值附着系数估算方法
CN103407451A (zh) * 2013-09-03 2013-11-27 东南大学 一种道路纵向附着系数估计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581659A (zh) * 2009-06-05 2009-11-18 清华大学 一种轮胎-路面最大附着系数测试方法
CN103245610A (zh) * 2013-05-17 2013-08-14 清华大学 一种分布式驱动电动汽车的路面峰值附着系数估算方法
CN103407451A (zh) * 2013-09-03 2013-11-27 东南大学 一种道路纵向附着系数估计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MINGYUAN BIAN等: ""A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation"", 《SAE TECHNICAL PAPERS》 *
RAJESH RAJAMANI等: ""Algorithms for Real-Time Estimation of Individual Wheel Tire-Road Friction Coefficients"", 《PROCEEDINGS OF THE 2006 AMERICAN CONTROL CONFERENCE》 *
时艳茹: ""基于UKF滤波的汽车纵向和侧向速度估计算法研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104354700A (zh) * 2014-11-03 2015-02-18 武汉理工大学 一种基于无迹卡尔曼滤波的车辆参数在线估计方法
CN105279309A (zh) * 2015-09-16 2016-01-27 南京航空航天大学 基于回正力矩估计的主动转向理想方向盘转矩设计方法
CN105279309B (zh) * 2015-09-16 2018-11-09 南京航空航天大学 基于回正力矩估计的主动转向理想方向盘转矩设计方法
CN109131336A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 获取路面附着系数的方法和系统
CN108482379A (zh) * 2018-03-16 2018-09-04 武汉理工大学 轮毂电机驱动车辆路面附着系数及路面坡度同步实时估算系统及方法
CN108482379B (zh) * 2018-03-16 2019-11-26 武汉理工大学 轮毂电机驱动车辆路面附着系数及路面坡度同步实时估算系统及方法
CN109466558A (zh) * 2018-10-26 2019-03-15 重庆邮电大学 一种基于ekf和bp神经网络的路面附着系数估计方法
CN109591821A (zh) * 2018-12-07 2019-04-09 清华大学 轮胎受力计算方法、装置和车载计算机设备
CN109910897A (zh) * 2019-01-30 2019-06-21 江苏大学 一种基于前方路面峰值附着系数的安全距离估算方法
CN109910897B (zh) * 2019-01-30 2020-09-25 江苏大学 一种基于前方路面峰值附着系数的安全距离估算方法
CN109910617A (zh) * 2019-03-27 2019-06-21 武汉理工大学 一种分布式轮毂电机驱动车辆失效故障的诊断方法
CN110395259A (zh) * 2019-07-16 2019-11-01 启迪云控(北京)科技有限公司 一种路面情况的估计方法、装置、设备以及介质
CN111086520A (zh) * 2020-01-17 2020-05-01 北京理工大学 一种适用于四轮驱动车辆多轮高滑移率时的速度估计算法
CN111623767A (zh) * 2020-04-10 2020-09-04 北京百度网讯科技有限公司 Imu伪数据的生成方法、装置、电子设备及存储介质
CN111623767B (zh) * 2020-04-10 2022-08-23 北京百度网讯科技有限公司 用于定位的imu伪数据的生成方法、装置、电子设备及介质
CN111845710A (zh) * 2020-08-03 2020-10-30 北京理工大学 基于路面附着系数识别的整车动态性能控制方法及系统
CN111845710B (zh) * 2020-08-03 2023-10-03 北京理工大学 基于路面附着系数识别的整车动态性能控制方法及系统
CN113238564A (zh) * 2021-06-07 2021-08-10 江苏理工学院 一种纯电动无人矿用自卸车轨迹规划方法及设备

Also Published As

Publication number Publication date
CN104021310B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN104021310A (zh) 基于UKF与修正Dugoff轮胎模型路面峰值附着系数估算方法
CN103245610B (zh) 一种分布式驱动电动汽车的路面峰值附着系数估算方法
CN103909933B (zh) 一种分布式电驱动车辆的前轮侧向力估算方法
CN102009653B (zh) 融合卡尔曼滤波和加速度积分的车轮质心侧偏角观测方法
CN101581659B (zh) 一种轮胎-路面最大附着系数测试方法
CN105667520B (zh) 一种分布式驱动电动车的前轮侧向力估计方法
CN102009654B (zh) 一种全轮电驱动车辆的纵向车速估计方法
CN103612634B (zh) 分散式轮毂电机驱动电动汽车路面附着系数的估算方法
CN100480664C (zh) 一种全轮驱动的电驱动车辆运动参数的测试方法
CN103278339B (zh) 一种轮胎侧向力估算方法
CN106515740A (zh) 基于icdkf的分布式电驱动汽车行驶状态参数估计算法
CN103754218B (zh) 一种汽车轮胎侧偏工况下的路面附着系数估计方法
CN106184225A (zh) 分布式四驱电动车动力学控制的纵向车速估算方法
CN104354697A (zh) 一种利用在线修正的汽车状态参数估计路面附着系数的方法
CN104773173A (zh) 一种自主驾驶车辆行驶状态信息估计方法
CN105539449B (zh) 一种制动工况下的路面附着系数实时估算方法
CN105606530A (zh) 一种路面峰值附着系数测试装置及方法
CN104691551B (zh) 一种基于电机与车轮耦合特性的路面附着系数估计方法
CN104976337B (zh) 基于离合器传递力矩估计的车辆起步过程优化控制方法
CN107901914B (zh) 一种车辆质心侧偏角及路面附着系数联合估计系统
CN110341714B (zh) 一种同时估计车辆质心侧偏角和扰动的方法
CN102975720B (zh) 车辆纵向车速测算装置、方法及使用该装置的车辆
CN105835889A (zh) 一种基于二阶滑模观测器的车辆质心侧偏角的估计方法
CN114572224B (zh) 一种路面最大附着系数的估算方法及终端
CN107600073A (zh) 一种基于多源信息融合的车辆质心侧偏角估计系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant