CN103996613A - 生长在Cu衬底的GaN薄膜及其制备方法和应用 - Google Patents
生长在Cu衬底的GaN薄膜及其制备方法和应用 Download PDFInfo
- Publication number
- CN103996613A CN103996613A CN201410240830.1A CN201410240830A CN103996613A CN 103996613 A CN103996613 A CN 103996613A CN 201410240830 A CN201410240830 A CN 201410240830A CN 103996613 A CN103996613 A CN 103996613A
- Authority
- CN
- China
- Prior art keywords
- substrate
- gan film
- gan
- growth
- grown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005516 engineering process Methods 0.000 claims abstract description 7
- 238000004549 pulsed laser deposition Methods 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 25
- 238000002360 preparation method Methods 0.000 claims description 23
- 238000005498 polishing Methods 0.000 claims description 16
- 238000000137 annealing Methods 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 14
- 239000002184 metal Substances 0.000 abstract description 14
- 238000010406 interfacial reaction Methods 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract description 2
- 239000002243 precursor Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 71
- 238000002017 high-resolution X-ray diffraction Methods 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000002800 charge carrier Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000005566 electron beam evaporation Methods 0.000 description 4
- 238000002389 environmental scanning electron microscopy Methods 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02425—Conductive materials, e.g. metallic silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1852—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1856—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明公开了一种生长在Cu衬底的GaN薄膜,其特征在于,包括Cu衬底、AlN缓冲层和GaN薄膜,所述AlN缓冲层生长在Cu衬底上,所述GaN薄膜生长在AlN缓冲层上;所述Cu衬底以(111)面偏(100)方向0.5-1°为外延面。本发明还公开了一种生长在Cu衬底的GaN薄膜及其制备方法。本发明采用脉冲激光沉积技术生长工艺生长GaN薄膜,由于脉冲激光照射能为薄膜前驱体提供了较高的动能,可以很大程度地降低GaN薄膜的生长温度;另外由于低温下,外延层与衬底之间的界面反应受到抑制,为在金属Cu衬底上外延生长GaN薄膜提供了重要的保证,从而获得晶体质量好的生长在Cu衬底的GaN薄膜。
Description
技术领域
本发明涉及GaN薄膜,特别是涉及一种生长在Cu衬底的GaN薄膜及其制备方法和应用。
背景技术
发光二极管(LED)作为一种新型固体照明光源和绿色光源,具有体积小、耗电量低、环保、使用寿命长、高亮度、低热量以及多彩等突出特点,在室外照明、商业照明以及装饰工程等领域都具有广泛的应用。当前,在全球气候变暖问题日趋严峻的背景下,节约能源、减少温室气体排放成为全球共同面对的重要问题。以低能耗、低污染、低排放为基础的低碳经济,将成为经济发展的重要方向。在照明领域,LED发光产品的应用正吸引着世人的目光,LED作为一种新型的绿色光源产品,必然是未来发展的趋势,二十一世纪将是以LED为代表的新型照明光源的时代。但是现阶段LED的应用成本较高,发光效率较低,这些因素都会大大限制LED向高效节能环保的方向发展。
III-族氮化物GaN在电学、光学以及声学上具有极其优异的性质,近几年受到广泛关注。GaN是直接带隙材料,且声波传输速度快,化学和热稳定性好,热导率高,热膨胀系数低,击穿介电强度高,是制造高效的LED器件的理想材料。目前,GaN基LED的发光效率现在已经达到28%并且还在进一步的增长,该数值远远高于目前通常使用的白炽灯(约为2%)或荧光灯(约为10%)等照明方式的发光效率。数据统计表明,我国目前的照明用电每年在4100亿度以上,超过英国全国一年的用电量。如果用LED取代全部白炽灯或部分取代荧光灯,可节省接近一半的照明用电,超过三峡工程全年的发电量。因照明而产生的温室气体排放也会因此而大大降低。另外,与荧光灯相比,GaN基LED不含有毒的汞元素,且使用寿命约为此类照明工具的100倍。
LED要真正实现大规模广泛应用,需要进一步提高LED芯片的发光效率。虽然LED的发光效率已经超过日光灯和白炽灯,但是商业化LED发光效率还是低于钠灯(150lm/W),单位流明/瓦的价格偏高。目前,LED芯片的发光效率不够高,一个主要原因是由于其蓝宝石衬底造成的。由于蓝宝石与GaN的晶格失配高达17%,导致外延GaN薄膜过程中形成很高的位错密度,从而降低了材料的载流子迁移率,缩短了载流子寿命,进而影响了GaN基器件的性能。其次,由于室温下蓝宝石热膨胀系数(6.63×10-6K-1)较GaN的热膨胀系数(5.6×10-6K-1)大,两者间的热失配度约为-18.4%,当外延层生长结束后,器件从外延生长的高温冷却至室温过程会产生很大的压应力,容易导致薄膜和衬底的龟裂。再次,由于蓝宝石的热导率低(100℃时为25W/m.K),很难将芯片内产生的热量及时排出,导致热量积累,使器件的内量子效率降低,最终影响器件的性能。因此迫切需要寻找一种晶格匹配和热膨胀系数匹配的衬底材料应用于外延生长GaN薄膜。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种生长在Cu衬底的GaN薄膜及其制备方法和应用,本发明以金属Cu为衬底生长GaN薄膜,采用的脉冲激光沉积技术生长GaN薄膜,由于脉冲激光照射能为薄膜前驱体提供了较高的动能,可以很大程度地降低GaN薄膜的生长温度;另外由于低温下,外延层与衬底之间的界面反应受到抑制,为在金属Cu衬底上外延生长GaN薄膜提供了重要的保证,从而获得晶体质量好的生长在Cu衬底的GaN薄膜。
为解决上述问题,本发明所采用的技术方案如下:
生长在Cu衬底的GaN薄膜,包括Cu衬底、AlN缓冲层和GaN薄膜,所述AlN缓冲层生长在Cu衬底上,所述GaN薄膜生长在AlN缓冲层上;所述Cu衬底以(111)面偏(100)方向0.5-1°为外延面。
优选的,所述AlN缓冲层的厚度为30-50nm,所述GaN薄膜的厚度为100-300nm。
生长在Cu衬底的GaN薄膜的制备方法,包括:
1)衬底以及其晶向的选取:采用Cu衬底,以(111)面偏(100)方向0.5-1°为外延面,晶体外延取向关系为:GaN的(0001)面平行于Cu的(111)面;
2)衬底表面处理:对Cu衬底表面进行抛光、清洗以及退火处理;
3)在步骤2)处理后的Cu衬底上依次进行AlN缓冲层、GaN薄膜的外延生长,即得所述生长在Cu衬底的GaN薄膜。
优选的,所述AlN缓冲层的外延生长工艺条件为:Cu衬底温度为400-500℃,反应室压力为6.0-7.2×10-5Pa,生长速度为0.4-0.6ML/s。
优选的,所述GaN薄膜的外延生长工艺条件为:采用脉冲激光沉积技术生长工艺,Cu衬底温度为400-500℃,反应室压力为4.0-5.0×10-5Pa,生长速度为0.5-0.7ML/s。
优选的,所述步骤2)中抛光处理是将Cu衬底表面用金刚石泥浆进行抛光至没有划痕后,再采用化学机械抛光的方法进行抛光处理;所述清洗处理是将Cu衬底放入去离子水中室温下超声清洗3-5min后,再依次经过丙酮、乙醇洗涤,最后用干燥氮气吹干;所述退火处理是将Cu衬底放入反应室内,在500-600℃空气中退火处理3-5h,然后冷却至室温,退火处理可使衬底获得原子级平整的表面。
优选的,所述AlN缓冲层的厚度为30-50nm,30-50nm厚的AlN缓冲层可以提供模板,为接下来外延生长高质量GaN薄膜奠定基础;所述GaN薄膜的厚度为100-300nm。
生长在Cu衬底的GaN薄膜在制备LED、光电探测器中的应用。
相比现有技术,本发明的有益效果在于:
1、本发明使用Cu作为衬底,Cu衬底容易获得,价格便宜,有利于降低生产成本;
2、本发明采用的脉冲激光沉积技术生长GaN薄膜,由于脉冲激光照射能为薄膜前驱体提供了较高的动能,可以很大程度地降低GaN薄膜的生长温度;另外由于低温下,外延层与衬底之间的界面反应受到抑制,为在金属Cu衬底上外延生长GaN薄膜提供了重要的保证;
3、本发明制备得到的GaN薄膜,半峰宽数值小,位错密度低;AlN缓冲层的加入,能够为后期生长高质量GaN薄膜铺垫,制备得到的GaN基光电材料器件的载流子辐射复合效率高,可大幅度提高氮化物器件如半导体激光器、发光二极管及太阳能电池的发光效率;
4、本发明的生长工艺独特而简单易行,便于大规模生产。
附图说明
图1为本发明中生长在Cu衬底的GaN薄膜的结构示意图;
图2为本发明实施例1制备的生长在Cu衬底的GaN薄膜(GaN(0002))的高分辨X射线衍射(HRXRD)图谱;
图3为本发明实施例1制备的生长在Cu衬底的GaN薄膜(GaN(10-12))的高分辨X射线衍射(HRXRD)图谱;
图4为本发明实施例1制备的生长在Cu衬底的GaN薄膜的扫描电镜(SEM)图谱;
图5为本发明实施例2制备的生长在Cu衬底的GaN薄膜(GaN(0002))的高分辨X射线衍射(HRXRD)图谱;
图6为本发明实施例2制备的生长在Cu衬底的GaN薄膜(GaN(10-12))的高分辨X射线衍射(HRXRD)图谱;
图7为本发明实施例2制备的生长在Cu衬底的GaN薄膜的扫描电镜(SEM)图谱;
其中,1为Cu衬底,2为AlN缓冲层,3为GaN薄膜。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
如图1所示,为本发明中生长在Cu衬底的GaN薄膜,包括Cu衬底1、AlN缓冲层2和GaN薄膜3,所述AlN缓冲层2生长在Cu衬底1上,所述GaN薄膜3生长在AlN缓冲层2上;所述Cu衬底1以(111)面偏(100)方向0.5-1°为外延面。
优选方案中,所述AlN缓冲层2的厚度为30-50nm,所述GaN薄膜3的厚度为100-300nm。
实施例1
生长在Cu衬底的GaN薄膜的制备方法,包括以下步骤:
(1)衬底以及其晶向的选取:采用Cu衬底,以(111)面偏(100)方向0.5°为外延面,晶体外延取向关系为:GaN的(0001)面平行于Cu的(111)面。
(2)衬底表面抛光、清洗以及退火处理:首先,将Cu衬底表面用金刚石泥浆进行抛光,配合光学显微镜观察衬底表面,直到没有划痕后,再采用化学机械抛光的方法进行抛光处理;其次,将Cu衬底放入去离子水中室温下超声清洗3min,去除Cu衬底表面粘污颗粒,再依次经过丙酮、乙醇洗涤,去除表面有机物,用高纯干燥氮气吹干;最后,将Cu衬底放入反应室内,在500℃下空气氛围中对Cu衬底进行退火处理3h,然后空冷至室温。
(3)AlN缓冲层外延生长:Cu衬底温度调为400℃,在反应室的压力为6.0×10-5Pa、生长速度为0.5ML/s的条件下生长厚度为30nm的AlN缓冲层。
(4)GaN薄膜的外延生长:采用脉冲激光沉积技术生长工艺,将Cu衬底保持在550℃,在反应室的压力为7.0×10-5Pa、生长速度为0.6ML/s条件下,在步骤(3)得到的AlN缓冲层上生长厚度为100nm的GaN薄膜,即得所述生长在Cu衬底的GaN薄膜。
图2-3是本实施例制备的GaN薄膜的HRXRD图谱,从X射线回摆曲线中可以看到,GaN(0002)的X射线回摆曲线的半峰宽(FWHM)值低于2.0度,GaN(10-12)的半峰宽值为2.5度;表明在Cu(111)衬底上外延生长出了单晶的GaN薄膜。
图4是本实施例制备的GaN薄膜的扫描电镜(SEM)图谱,可以看到GaN薄膜表面光滑且平整,表明外延生长得到的GaN已经进入二维横向生长。
将本实施例制备的生长在金属Cu衬底上的GaN薄膜用于制备LED:在本实施例制备的生长在金属Cu衬底上的GaN薄膜上依次外延生长非掺杂的GaN薄膜,Si掺杂的n型掺硅GaN、InxGa1-xN多量子阱层、Mg掺杂的p型掺镁的GaN层,最后电子束蒸发形成欧姆接触。在金属Cu衬底上制备得到的GaN基LED器件,其非掺杂的GaN薄膜约为2μm,n型GaN的厚度约为3μm,其载流子的浓度为1×1019cm-3;InxGa1-xN/GaN多量子阱层的厚度约为105nm,周期数为7,其中InxGa1-xN阱层为3nm,GaN垒层为12nm,p型掺镁的GaN层厚度约为300nm,其载流子的浓度为3×1017cm-3。在20mA的工作电流下,LED器件的光输出功率为4.3mW,开启电压值为2.70V。
将本实施例制备的生长在金属Cu衬底上的GaN薄膜用于制备光电探测器:在本实施例制备的生长在金属Cu衬底上的GaN薄膜上依次外延生长非掺杂GaN、n型掺硅GaN、p型掺镁的GaN,最后电子束蒸发形成欧姆接触和肖特基结。其中n型掺硅GaN厚度约为3μm,其载流子的浓度为1×1019cm-3;非掺杂GaN厚度约为200nm,其载流子浓度为2.2×1016cm-3;p型掺镁的GaN度约为1.5μm。本实施例所制备的光电探测器在1V偏压下,暗电流仅为65pA,并且器件在1V偏压下,在361nm处响应度的最大值达到了0.92A/W。
检测结果显示,无论是结构性质还是在应用上,均优于目前已经报道的应用Cu衬底获得的GaN薄膜的相关结果,具有良好的应用前景。
实施例2
生长在Cu衬底的GaN薄膜的制备方法,包括以下步骤:
(1)衬底以及其晶向的选取:采用Cu衬底,以(111)面偏(100)方向1°为外延面,晶体外延取向关系为:GaN的(0001)面平行于Cu的(111)面。
(2)衬底表面抛光、清洗以及退火处理:首先,将Cu衬底表面用金刚石泥浆进行抛光,配合光学显微镜观察衬底表面,直到没有划痕后,再采用化学机械抛光的方法进行抛光处理;其次,将Cu衬底放入去离子水中室温下超声清洗5min,去除Cu衬底表面粘污颗粒,再依次经过丙酮、乙醇洗涤,去除表面有机物,用高纯干燥氮气吹干;最后,将Cu衬底放入反应室内,在600℃下空气氛围中对Cu衬底进行退火处理5h,然后空冷至室温。
(3)AlN缓冲层外延生长:Cu衬底温度调为500℃,在反应室的压力为7.2×10-5Pa、生长速度0.6ML/s的条件下生长厚度为50nm的AlN缓冲层。
(4)GaN薄膜的外延生长:采用脉冲激光沉积技术生长工艺,将衬底保持在550℃,在反应室的压力为5.0×10-5Pa、生长速度为0.8ML/s条件下,在步骤(3)得到的AlN缓冲层上生长300nm GaN薄膜,即得所述生长在Cu衬底的GaN薄膜。
图5-6是本实施例制备的GaN薄膜的HRXRD图谱,从X射线回摆曲线中可以看到,GaN(0002)的X射线回摆曲线的半峰宽(FWHM)值低于2.0度,GaN(10-12)的半峰宽值为2.5度;表明在Cu(111)衬底上外延生长出了单晶的GaN薄膜。
图7是本实施例制备的GaN薄膜的扫描电镜(SEM)图谱,可以看到GaN薄膜表面光滑且平整,表明外延生长得到的GaN已经进入二维横向生长。
将本实施例制备的生长在金属Cu衬底上的GaN薄膜用于制备LED:在本实施例制备的生长在金属Cu衬底上的GaN薄膜上依次外延生长非掺杂的GaN薄膜,Si掺杂的n型掺硅GaN、InxGa1-xN多量子阱层、Mg掺杂的p型掺镁的GaN层,最后电子束蒸发形成欧姆接触。在金属Cu衬底上制备得到的GaN基LED器件,其非掺杂的GaN薄膜约为2μm,n型GaN的厚度约为3μm,其载流子的浓度为1×1019cm-3;InxGa1-xN/GaN多量子阱层的厚度约为105nm,周期数为7,其中InxGa1-xN阱层为3nm,GaN垒层为12nm,p型掺镁的GaN层厚度约为300nm,其载流子的浓度为3×1017cm-3。在20mA的工作电流下,LED器件的光输出功率为4.25mW,开启电压值为2.75V。
将本实施例制备的生长在金属Cu衬底上的GaN薄膜用于制备光电探测器:在本实施例制备的生长在金属Cu衬底上的GaN薄膜上依次外延生长非掺杂GaN、n型掺硅GaN、p型掺镁的GaN,最后电子束蒸发形成欧姆接触和肖特基结。其中n型掺硅GaN厚度约为3μm,其载流子的浓度为1×1019cm-3;非掺杂GaN厚度约为200nm,其载流子浓度为2.2×1016cm-3;p型掺镁的GaN度约为1.5μm。本实施例所制备的光电探测器在1V偏压下,暗电流仅为66pA,并且器件在1V偏压下,在361nm处响应度的最大值达到了0.91A/W。
检测结果显示,无论是结构性质还是在应用上,均优于目前已经报道的应用Cu衬底获得的GaN薄膜的相关结果,具有良好的应用前景。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。
Claims (8)
1.生长在Cu衬底的GaN薄膜,其特征在于,包括Cu衬底、AlN缓冲层和GaN薄膜,所述AlN缓冲层生长在Cu衬底上,所述GaN薄膜生长在AlN缓冲层上;所述Cu衬底以(111)面偏(100)方向0.5-1°为外延面。
2.如权利要求1所述生长在Cu衬底的GaN薄膜,其特征在于,所述AlN缓冲层的厚度为30-50nm,所述GaN薄膜的厚度为100-300nm。
3.权利要求1所述生长在Cu衬底的GaN薄膜的制备方法,其特征在于,包括:
1)衬底以及其晶向的选取:采用Cu衬底,以(111)面偏(100)方向0.5-1°为外延面,晶体外延取向关系为:GaN的(0001)面平行于Cu的(111)面;
2)衬底表面处理:对Cu衬底表面进行抛光、清洗以及退火处理;
3)在步骤2)处理后的Cu衬底上依次进行AlN缓冲层、GaN薄膜的外延生长,即得所述生长在Cu衬底的GaN薄膜。
4.如权利要求3所述的制备方法,其特征在于,所述AlN缓冲层的外延生长工艺条件为:Cu衬底温度为400-500℃,反应室压力为6.0-7.2×10-5Pa,生长速度为0.4-0.6ML/s。
5.如权利要求3所述的制备方法,其特征在于,所述GaN薄膜的外延生长工艺条件为:采用脉冲激光沉积技术生长工艺,Cu衬底温度为400-500℃,反应室压力为4.0-5.0×10-5Pa,生长速度为0.5-0.7ML/s。
6.如权利要求3所述的制备方法,其特征在于,所述步骤2)中抛光处理是将Cu衬底表面用金刚石泥浆进行抛光至没有划痕后,再采用化学机械抛光的方法进行抛光处理;所述清洗处理是将Cu衬底放入去离子水中室温下超声清洗3-5min后,再依次经过丙酮、乙醇洗涤,最后用干燥氮气吹干;所述退火处理是将Cu衬底放入反应室内,在500-600℃空气中退火处理3-5h,然后冷却至室温。
7.如权利要求3所述的制备方法,其特征在于,所述AlN缓冲层的厚度为30-50nm,所述GaN薄膜的厚度为100-300nm。
8.权利要求1-7任一项所述生长在Cu衬底的GaN薄膜在制备LED、光电探测器中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410240830.1A CN103996613A (zh) | 2014-05-30 | 2014-05-30 | 生长在Cu衬底的GaN薄膜及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410240830.1A CN103996613A (zh) | 2014-05-30 | 2014-05-30 | 生长在Cu衬底的GaN薄膜及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103996613A true CN103996613A (zh) | 2014-08-20 |
Family
ID=51310733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410240830.1A Pending CN103996613A (zh) | 2014-05-30 | 2014-05-30 | 生长在Cu衬底的GaN薄膜及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103996613A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114438595A (zh) * | 2022-01-27 | 2022-05-06 | 西湖大学 | 一种利于提高散热性的氮化镓外延生长方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945898A (zh) * | 2012-11-23 | 2013-02-27 | 广州市众拓光电科技有限公司 | 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用 |
CN102945899A (zh) * | 2012-11-23 | 2013-02-27 | 广州市众拓光电科技有限公司 | 生长在金属Ag衬底上的GaN单晶薄膜及其制备方法、应用 |
-
2014
- 2014-05-30 CN CN201410240830.1A patent/CN103996613A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945898A (zh) * | 2012-11-23 | 2013-02-27 | 广州市众拓光电科技有限公司 | 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用 |
CN102945899A (zh) * | 2012-11-23 | 2013-02-27 | 广州市众拓光电科技有限公司 | 生长在金属Ag衬底上的GaN单晶薄膜及其制备方法、应用 |
Non-Patent Citations (1)
Title |
---|
INOUE S ET AL: "Epitaxial growth of GaN on copper substrates", 《APPL PHYS LETT》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114438595A (zh) * | 2022-01-27 | 2022-05-06 | 西湖大学 | 一种利于提高散热性的氮化镓外延生长方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102945898B (zh) | 生长在金属Ag衬底上的AlN薄膜及其制备方法、应用 | |
CN103296066B (zh) | 生长在铝酸锶钽镧衬底上的GaN薄膜及其制备方法、应用 | |
CN102945899B (zh) | 生长在金属Ag衬底上的GaN单晶薄膜及其制备方法、应用 | |
CN104037284A (zh) | 一种生长在Si衬底上的GaN薄膜及其制备方法和应用 | |
CN103996764B (zh) | 生长在Ag衬底的LED外延片及其制备方法和应用 | |
CN203950831U (zh) | 生长在Cu衬底的LED外延片 | |
CN103996611A (zh) | 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用 | |
CN102544276A (zh) | 生长在LiGaO2衬底上的非极性GaN薄膜及其制备方法、应用 | |
CN103296158B (zh) | 生长在铝酸锶钽镧衬底上的掺杂GaN薄膜及其制备方法 | |
CN103296157B (zh) | 生长在铝酸锶钽镧衬底上的led外延片及制备方法 | |
CN203910838U (zh) | 一种生长在Si衬底上的GaN薄膜 | |
CN203339207U (zh) | 生长在铝酸锶钽镧衬底上的led外延片 | |
CN204204895U (zh) | 生长在Cu衬底的GaN薄膜 | |
CN103296159B (zh) | 生长在铝酸锶钽镧衬底上的InGaN/GaN多量子阱及制备方法 | |
CN103996613A (zh) | 生长在Cu衬底的GaN薄膜及其制备方法和应用 | |
CN203339168U (zh) | 生长在铝酸锶钽镧衬底上的GaN薄膜 | |
CN103996758A (zh) | 生长在Cu衬底的LED外延片及其制备方法和应用 | |
CN202454605U (zh) | 生长在LiGaO2衬底上的非极性GaN薄膜 | |
CN203895486U (zh) | 生长在Ag衬底上的LED外延片 | |
CN206422089U (zh) | 生长在玻璃衬底上的GaN薄膜 | |
CN203339209U (zh) | 生长在铝酸锶钽镧衬底上的掺杂GaN薄膜 | |
CN203983319U (zh) | 生长在w衬底上的led外延片 | |
CN204067412U (zh) | 生长在W衬底上的AlN薄膜 | |
CN204130574U (zh) | 一种生长在金属Al衬底上的GaN薄膜 | |
CN204067413U (zh) | 生长在W衬底上的InGaN/GaN多量子阱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140820 |