CN103983230B - 一种地面叶面积指数间接测量验证方法 - Google Patents

一种地面叶面积指数间接测量验证方法 Download PDF

Info

Publication number
CN103983230B
CN103983230B CN201410231714.3A CN201410231714A CN103983230B CN 103983230 B CN103983230 B CN 103983230B CN 201410231714 A CN201410231714 A CN 201410231714A CN 103983230 B CN103983230 B CN 103983230B
Authority
CN
China
Prior art keywords
ground
leaf area
area index
vegetation
indirect measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410231714.3A
Other languages
English (en)
Other versions
CN103983230A (zh
Inventor
邹杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201410231714.3A priority Critical patent/CN103983230B/zh
Publication of CN103983230A publication Critical patent/CN103983230A/zh
Application granted granted Critical
Publication of CN103983230B publication Critical patent/CN103983230B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种地面叶面积指数间接测量的验证方法。该方法:首先,建立虚拟植物几何模型库和虚拟植被场景库;设计观测方案,在虚拟植被场景中依据各地面LAI间接测量方法原理及观测方案开展模拟实现,形成模拟数据库;统计场景内木质组分和树叶三角面片面积总和,得到场景LAI、WAI、PAI、木质总面积比参数、冠层基本组分及木质组分聚集指数真实值;计算各LAI测量方法模拟结果,并以场景真实值作为模拟计算结果验证参考值,改进现有的地面LAI间接测量方法,并将其在虚拟植被场景库中模拟实现,并多次循环,得到最终的地面LAI间接测量方法。本发明无需对植被破坏性采样、人力物力投入小,大幅度提高验证效率、精度及可扩展性。

Description

一种地面叶面积指数间接测量验证方法
技术领域
本发明涉及一种地面叶面积指数间接测量验证方法。
背景技术
叶面积指数(leaf area index,LAI)为无量纲,它控制着植被冠层的多种生物物理和生理过程,如光合、呼吸、蒸腾、碳循环、降水截获和能量交换等,因此LAI广泛应用于植被生长及生产力模型、作物生长模型、净初级生产力模型、大气模型、水文模型等模型以及林学、植物学、生态学、农学等领域,并在现实生产、科研活动中存在大量的应用需求。鉴于传统光学LAI测量方法其测量的冠层辐射截获包含冠层木质组分的贡献,因此其测量结果为PAI(plant areaindex,总面积指数)。PAI与LAI的差即为WAI(woody area index,木质面积指数)。
植被冠层地面LAI测量方法主要分为两类:直接测量方法、间接测量方法。直接测量方法具有历史悠久、技术成熟、测量精度高等特点,但需要破坏性采样,相当费时费力,因此仅适用于小范围测量。间接测量方法则通过测量其它相关参数来间接推导叶面积指数,与直接测量方法相比,间接测量方法具有经济、高效等特点,因此大部分情况下目前外业测量均采用间接测量方法。目前广泛采用的LAI间接测量方法主要包括LAI-2000、HemiView、TRAC、DHP、SunScan等方法。大量地面LAI测量研究发现,同直接测量方法相比,LAI间接测量方法通常会低估约20%-50%。影响LAI间接测量方法精度的主要因素可归纳为聚集效应、非光合作用组分影响、观测条件、地形效应等,其中聚集效应和非光合作用组分为地面LAI间接测量方法误差的主要来源。地面验证作为植被冠层LAI间接测量方法精度评估及可靠性检验的关键环节,它可为地面LAI间接测量方法的改进及发展提供指导方向。
传统的地面LAI间接测量方法验证以直接测量方法较为常见,如采用面积测量法、收割法、落叶收集法、分层裁剪法、三维数字化方法等开展验证工作,此类方法它具有破坏性采样、人力物力消耗大、执行强度高、周期长等缺点。对于大区域样地地面LAI间接测量验证,直接测量方法通常无法适用,目前尚未有文献报道采用直接测量方法开展冠层聚集效应、非光合作用组分影响、地形效应验证。
传统方法开展植被场景模拟常采用蒙特卡洛模型和随机场模型表达植被冠层场景,且其植被场景内都仅包含叶片单元,因而无法应用于冠层非光合作用组分影响模拟验证,此外其模拟的植被场景与真实植被环境的三维结构差异巨大,因此导致地面LAI间接测量方法模拟验证精度不高。虚拟植被环境是对现实植被环境在三维空间的仿真与模拟,其具有高度真实感且符合生物学基本规律。采用虚拟植被环境方法可模拟具有不同冠层聚集效应、非光合作用组分影响及地形效应的植被环境,因而可为地面LAI间接测量方法全方位验证提供理想的验证平台。基于虚拟植被环境的地面LAI间接测量验证方法具有人力物力消耗小、可重复多次验证、无需破坏性采样等优点,同时与直接测量方法和传统植被场景模拟方法相比,它还可用于非光合作用组分影响定量方法评估。因此,很有必要基于统一的高逼真度虚拟植被环境开展植被冠层非光合作用组分影响、聚集效应(冠层基本组分及木质组分聚集指数)及地形效应的定量评估方案验证,以提高地面LAI间接测量方法精度,目前国内外尚未有相关文献报道。
发明内容
本发明的目的在于提供一种地面叶面积指数间接测量验证方法,以解决传统的直接测量法验证方案破坏性采样、人力物力消耗大、执行强度高、周期长等缺点,以及传统模拟方案场景逼真度低、验证精度不高,且无法开展非光合作用组分影响定量方法及冠层木质组分聚集效应验证的不足。
为实现上述目的,本发明的技术方案是:一种地面叶面积指数间接测量验证方法,包括如下步骤,
步骤10:收集典型单株植被结构特征参数,开展样地植被调查并形成植被调查数据库;采用植物场景建模软件建立高逼真度、不同年龄、特征、物候期的单株植物几何模型库;结合植被调查数据库、植物几何模型库及植被场景建模软件创建不同林分特征及地形条件的虚拟植被场景库;
步骤20:根据需验证的地面叶面积指数间接测量方法设计其观测方案;
步骤30:结合所述步骤10得到的虚拟植被场景库、所述步骤20得到的观测方案及地面叶面积指数间接测量方法原理模拟各地面叶面积指数间接测量方法,形成模拟数据库;
步骤40:计算所述步骤10得到的各虚拟植被场景LAI、WAI、PAI、冠层基本组分及木质组分聚集指数和木质总面积比参数真实值;
步骤50:以所述步骤30得到的模拟数据库为基础,计算模拟的各地面叶面积指数间接测量方法测量结果,得到测量值;
步骤60:对比分析所述步骤50得到的测量值与所述步骤40得到的真实值之间差异,验证现有地面叶面积指数测量方法的精度,并改进现有的地面叶面积指数间接测量方法得到改进的观测方案;
步骤70:结合所述步骤10得到的虚拟植被场景库、所述步骤60得到的改进的观测方案及地面叶面积指数间接测量方法原理模拟各地面叶面积指数间接测量方法,形成模拟数据库;
步骤80:计算所述步骤70模拟的各地面叶面积指数间接测量方法测量结果,得到测量值,对比分析该测量值与所述步骤40真实值之间的差异,验证地面叶面积指数间接测量方法的精度,如果改进的地面叶面积指数间接测量方法未达到预期要求,则返回步骤20;否则认为此改进的地面叶面积指数间接测量方法即为最终的地面叶面积指数间接测量方法。
在本发明实施例中,所述步骤10所述的典型单株植被结构特征参数包括单株植物叶器官参数和植物主体形态结构参数;所述叶器官特征参数包括叶片倾角分布、方位角分布、展布面积的叶片几何建模及分枝特征参数;所述主体形态结构参数包括主干参数和枝条参数,所述主干参数包括树高、冠幅、主干分节数、分节长度、树干半径变化及初始分枝角度,所述枝条参数包括枝条层数序号、分枝长度、枝条基径、枝条直径变化、初始分枝角度、角度变化、枝条分段数、枝条分布密度、下一枝条层数序号及叶片分布范围。
在本发明实施例中,所述步骤10中的植被调查数据库,包括胸径、植被高度、枝下高、幅宽及植被主干地理坐标的虚拟植被环境构建所需的植被样地数据。
在本发明实施例中,所述步骤10中的植物场景建模软件包括xfrog、ParaTree、SpeedTree及AMAP的软件平台;所述植物场景建模软件构建的植物几何模型,采用包括mesh、三角面片、多边形及标准几何体基本图形单元,能够完整描述植物冠层各要素在冠层中的三维分布。
在本发明实施例中,所述步骤10中的不同林分特征及地形条件,其中所述林分特征包括林分密度、LAI真实值、PAI真实值、冠层聚集效应、非光合作用组分影响及树木分布模式的特征,所述地形条件指的是地形坡度不同。
在本发明实施例中,所述步骤20中的观测方案,包括观测点采样方案、测量高度、测量路线及测量分辨率。
在本发明实施例中,所述步骤30中的地面叶面积指数间接测量方法,包括光学测量方法、冠层聚集效应定量评估算法、地形效应修正模型及木质总面积比参数地面间接测量法;所述冠层聚集效应定量评估算法包括间隙大小分布算法、有限长度平均算法、偏析系数法及联合法。
在本发明实施例中,所述步骤30中的模拟各种地面叶面积指数间接测量方法,其主要指以观测方案和叶面积指数间接测量方法原理为基础开展各叶面积指数间接测量方法模拟,而各测量方法原理及观测方案间则各不相同。
在本发明实施例中,所述步骤40中的各虚拟植被场景LAI、WAI、PAI、冠层基本组分及木质组分聚集指数和木质总面积比参数真实值,其中,所述LAI和WAI分别为通过统计场景内所有叶子和木质组分三角面片面积之和除以样地总面积得到,PAI为WAI和LAI之和,WAI与PAI比值得到所述木质总面积比参数真实值,所述冠层基本组分及木质组分聚集指数真实值通过结合DHP模拟影像间隙率计算结果及虚拟植被场景LAI、WAI得到。
在本发明实施例中,所述步骤50中的各地面叶面积指数间接测量方法模拟结果的计算过程是以模拟数据和各叶面积指数间接测量方法原理为基础计算。
相较于现有技术,本发明具有以下有益效果:采用虚拟植被场景作为地面LAI间接测量方法及相关算法验证的手段,其具有无需对植被破坏性采样、人力物力投入小、可重复多次验证、可验证多种植被冠层条件(不同聚集效应、地形条件、木质总面积比参数、LAI及PAI等)等优点,并可同时开展冠层聚集效应(冠层基本组分及木质组分聚集指数)、非光合作用组分影响、地形效应定量方法评估,因此可克服传统验证方法破坏性采样、人力物力消耗大、执行强度高、周期长等缺点,大幅度提高验证效率、精度及可扩展性。
附图说明
图1为本发明基于Kdtree和启发式排序法的单树几何模型和虚拟植被场景数据结构构建流程图。
图2为本发明一种地面叶面积指数间接测量验证方法总体流程图。
图3为MCI测量方法模拟结果示意图。
图4为DHP测量方法模拟结果示意图。
图5为LAI-2000测量方法模拟结果示意图。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
如图2所示,本发明一种地面叶面积指数间接测量验证方法,包括如下步骤,
步骤10:收集典型单株植被结构特征参数,开展样地植被调查并形成植被调查数据库;采用植物场景建模软件建立高逼真度、不同年龄、特征、物候期的单株植物几何模型库;结合植被调查数据库、植物几何模型库及植被场景建模软件创建不同林分特征及地形条件的虚拟植被场景库;
步骤20:根据需验证的地面叶面积指数间接测量方法设计其观测方案;
步骤30:结合所述步骤10得到的虚拟植被场景库、所述步骤20得到的观测方案及地面叶面积指数间接测量方法原理模拟各地面叶面积指数间接测量方法,形成模拟数据库;
步骤40:计算所述步骤10得到的各虚拟植被场景LAI、WAI、PAI、冠层基本组分及木质组分聚集指数和木质总面积比参数真实值;
步骤50:以所述步骤30得到的模拟数据库为基础,计算模拟的各地面叶面积指数间接测量方法测量结果,得到测量值;
步骤60:对比分析所述步骤50得到的测量值与所述步骤40得到的真实值之间差异,验证现有地面叶面积指数测量方法的精度,并改进现有的地面叶面积指数间接测量方法得到改进的观测方案;
步骤70:结合所述步骤10得到的虚拟植被场景库、所述步骤60得到的改进的观测方案及地面叶面积指数间接测量方法原理模拟各地面叶面积指数间接测量方法,形成模拟数据库;
步骤80:计算所述步骤70模拟的各地面叶面积指数间接测量方法测量结果,得到测量值,对比分析该测量值与所述步骤40真实值之间的差异,验证地面叶面积指数间接测量方法的精度,如果改进的地面叶面积指数间接测量方法未达到预期要求,则返回步骤20;否则认为此改进的地面叶面积指数间接测量方法即为最终的地面叶面积指数间接测量方法。
所述步骤10所述的典型单株植被结构特征参数包括单株植物叶器官参数和植物主体形态结构参数;所述叶器官特征参数包括叶片倾角分布、方位角分布、展布面积等叶片几何建模及分枝特征参数;所述主体形态结构参数包括主干参数和枝条参数,所述主干参数包括树高、冠幅、主干分节数、分节长度、树干半径变化及初始分枝角度等,所述枝条参数包括枝条层数序号、分枝长度、枝条基径、枝条直径变化、初始分枝角度、角度变化、枝条分段数、枝条分布密度、下一枝条层数序号及叶片分布范围等;所述步骤10中的植被调查数据库,包括胸径、植被高度、枝下高、幅宽及植被主干地理坐标的虚拟植被环境构建所需的植被样地数据;所述步骤10中的植物场景建模软件指的是xfrog、ParaTree、SpeedTree及AMAP等软件平台;所述植物场景建模软件构建的植物几何模型,采用mesh、三角面片、多边形及标准几何体等基本图形单元,能够完整描述植物冠层各要素在冠层中的三维分布;所述步骤10中的不同林分特征及地形条件,其中所述林分特征指的是林分密度、LAI真实值、PAI真实值、冠层聚集效应、非光合作用组分影响及树木分布模式等特征,所述地形条件指的是地形坡度不同。
所述步骤20中的观测方案,包括观测点采样方案、测量高度、测量路线及测量分辨率等。
所述步骤30中的地面叶面积指数间接测量方法,包括光学测量方法(该光学测量方法包括LAI-2000、TRAC、MCI、SunScan、Demon、DHP)、冠层聚集效应定量评估算法、地形效应修正模型及木质总面积比参数地面间接测量法;所述冠层聚集效应定量评估算法包括间隙大小分布算法、有限长度平均算法、偏析系数法及联合法。所述步骤30中的模拟各种地面叶面积指数间接测量方法,其主要指以观测方案和叶面积指数间接测量方法原理为基础开展各叶面积指数间接测量方法模拟,而各测量方法原理及观测方案间则各不相同。
所述步骤40中的各虚拟植被场景LAI、WAI、PAI、冠层基本组分及木质组分聚集指数和木质总面积比参数真实值,其中,所述LAI和WAI分别为通过统计场景内所有叶子和木质组分三角面片面积之和除以样地总面积得到,PAI为WAI和LAI之和,WAI与PAI比值得到所述木质总面积比参数真实值,所述冠层基本组分及木质组分聚集指数真实值通过结合DHP模拟影像间隙率计算结果及虚拟植被场景LAI、WAI得到。
所述步骤50中的各地面叶面积指数间接测量方法模拟结果的计算过程是以模拟数据和各叶面积指数间接测量方法原理为基础计算。
下面以一个自然分布桦树林植被场景和光学测量方法中的LAI-2000、DHP测量方法为例开展地面LAI间接测量方法验证,并对本发明作进一步的详细说明,其具体实施步骤如下:
(1)建立单株植物几何模型库和虚拟植被场景:
桦树林样地大小为100m*100m,采用激光测高仪、胸径尺、皮尺等方法对样地内所有树木开展森林参数调查,包括胸径、树高、枝下高、幅宽等参数,采用GPS RTK测量样地内各单株树木空间坐标,建立虚拟植被环境构建所需的森林调查数据库。
分别从样地内每种树木类型中选择5-10棵典型树木,每颗树均详细调查其树高、冠幅,主干分节数、分节长度、树干半径变化、初始分枝角度等主干参数,以及枝条层数序号、分枝长度、枝条基径、枝条直径变化、初始分枝角度、角度变化、枝条分段数、枝条分布密度、下一枝条层数序号、叶片分布范围等树枝参数,总结其树木几何形态结构和生理生态学一般特征,并形成量化参数,提取正常生长环境下树木发育规则;从每株典型树木中遴选5-10个典型叶片,详细测量其叶片倾角分布、方位角分布、展布面积等参数,建立叶片模型;结合提取的树木生长发育规则、叶片模型、森林调查数据库和xfrog单株植物建模软件建立不同树龄、特征的单株桦树几何模型库。以森林调查数据库、桦树几何模型库为基础,采用VisForest建立与实地对应的自然分布的桦树林虚拟植被场景。
(2)设计LAI-2000和DHP测量方法观测方案:
LAI-2000和DHP测量方法观测方案为:测量高度为1m,无掩帽,地形坡度水平,场景内每隔10m放置一个观测点,共81个观测点。
LAI-2000方法计算模型为:
式中PAIe为有效总面积指数,PAIei为第i个圆环有效总面积指数,Wi为第i个圆环权重,θi为第i个圆环中心天顶角;
PAIei=-ln[p(θi)]cos(θi) ②
式中p(θi)为为第i个圆环间隙率;
LAI-2000五个环的权重分别为:0.034、0.104、0.160、0.218、0.494,其对应的五个圆环中心角分别为:7°、23°、38°、53°、68°,天顶角区间则分别为:0°-13°、16°-28°、32°-43°、47°-58°、61°-74°。
DHP方法计算模型为:
式中PAIe为有效总面积指数,PAIei为第i个圆环有效总面积指数,Wi为第i个圆环权重,θi为第i个圆环中心天顶角;
PAIei=-ln[p(θi)]cos(θi) ④
式中p(θi)为为第i个圆环间隙率;
DHP方法九个圆环的权重分别为:0.0124、0.0367、0.0602、0.0823、0.1023、0.1198、0.1343、0.1455、0.3064,其对应的九个圆环区间分别为:(>=0°,<=9°)、(>9°,<=18°)、(>18°,<=27°)、(>27°,<=36°)、(>36°,<=45°)、(>45°,<=54°)、(>54°,<=63°)、(>63°,<=72°)、(>72°,<=81°)。
(3)建立模拟数据库:
对虚拟植被场景内单株树木模型三角面片化,采用Kdtree和启发式排序法(Surface AreaHeuristic,SAH)对场景内每种单树几何模型及地形进行数据结构构建,其单树几何模型基本节点数阈值为15,场景节点基本对象数阈值为1,虚拟森林环境场景及单树几何模型数据结构子节点数为2,其具体构建步骤是:首先,将单树几何模型或整个虚拟植被场景作为Kdtree根节点,采用启发式排序法确定初始分割平面,基于分割平面把根节点细分为左子节点、右子节点,然后判断两子节点是否满足构建终止条件,即节点深度是否大于设定阈值、节点的基本对象数是否小于设定阈值及节点光线遍历总代价是否大于其作为叶节点的光线遍历总代价,若满足,则生成Kdtree叶节点,否则,采用启发式排序法确定子节点初始分割平面并继续对Kdtree内部子节点进行细分,直到所有节点不需再细分为止,最终生成一个完整的Kdtree。基于启发式排序法构建单树几何模型及虚拟植被场景两级Kdtree数据结构时,采用了一种以每个基本对象包围盒的表面作为候选分割平面、复杂度为O(NlogN)的构建算法。基于Kdtree和启发式排序法的单树几何模型和虚拟植被场景数据结构构建流程如图1所示,其中P为Kdtree内部节点的局部最优分割平面、C0、C1分别为Kdtree节点作为叶节点及内部节点的光线遍历总代价。
采用光线跟踪算法和极化投影算法模拟LAI-2000和DHP测量方法,其模拟步骤为:在100m*100m大小自然分布的虚拟桦树林场景四个方位角方向分别对自然分布场景复制、平移、旋转等操作,以形成一个500m*500m大小的桦树林样地,场景复制时,其方位角旋转参数可从90°、180°及270°三个参数中随机选择。首先根据LAI-2000和DHP测量方法观测方案推算仪器观测位置三维坐标,模拟分辨率设为2000*2000像素分辨率,确定模拟成像平面及其像素集合,同时利用极化投影算法计算像素集合中各像素相应的光线矢量集合,依次对光线矢量集合循环,采用自顶向下的迭代算法和光线跟踪算法遍历单株树木几何模型及虚拟植被场景两级Kdtree数据结构,判断光线矢量与场景是否有交,如有交则将与光线矢量相交的面片颜色值赋予光线矢量在成像平面上对应的像素点,依次完成场景内所有观测点模拟循环,形成模拟数据库。
(4)虚拟植被场景结构参数真实值计算:
依次对虚拟植被场景内木质组分三角面片循环,统计其三角面片面积之和,其统计值与样地面积(10000平方米)比值即为样地真实WAI;
依次对虚拟植被场景内叶片组分三角面片循环,统计其三角面片面积之和,其统计值与样地面积(10000平方米)比值即为样地真实LAI;
依次对虚拟植被场景内所有三角面片循环,统计其三角面片面积之和,其统计值与样地面积(10000平方米)比值即为样地真实PAI;
桦树林场景LAI、WAI和PAI真实值计算结果如下表1所示。
表1.桦树林场景结构参数真实值计算结果
样地类型 LAI PAI WAI
桦树林 3.4874 6.7876 3.3002
(5)基于模拟数据库的虚拟植被场景LAI测量:
LAI-2000方法:分别统计各观测点模拟数据中五个子圆环区间间隙率(各圆环中天空组分像素个数与圆环总像素个数的比值),分别采用公式②计算观测点各圆环总面积指数,并将五个圆环计算结果代入公式①得到观测点有效总面积指数,样地81个观测点有效总面积指数的平均值即为样地有效总面积指数,计算结果如表2所示,其81个观测点有效总面积指数平均值为1.7526。
表2.桦树林81个观测点LAI-2000方法模拟数据计算结果
DHP方法:分别统计各观测点模拟数据中九个子圆环区间间隙率(各圆环中天空组分像素个数与圆环总像素个数的比值),分别采用公式④计算观测点各圆环总面积指数,并将五个圆环计算结果代入公式③得到观测点有效总面积指数,样地81个观测点有效总面积指数的平均值即为样地有效总面积指数,计算结果如表3所示,其81个观测点有效总面积指数平均值为2.478。
表3.桦树林81个观测点DHP方法模拟数据计算结果
(6)验证分析:
LAI-2000和DHP测量方法仅可测量植被冠层有效总面积指数,其无法测量样地总面积指数、叶面积指数、木质面积指数、木质总面积比参数、冠层基本组分及木质组分聚集指数。对比表1中的PAI和表2、3中的PAIe计算结果可知,LAI-2000和DHP测量方法在桦树林样地存在较为显著的低估现象,因此针对此种类型植被样地,当采用LAI-2000和DHP方法开展植被冠层PAI参数测量时需同步收集植被冠层基本组分聚集指数,以将LAI-2000和DHP方法有效总面积指数测量结果修正为总面积指数,同时进一步通过木质总面积比参数消除冠层非光合作用组分影响,并最终得到样地叶面积指数。
上述实例以一个自然分布桦树林植被场景为例开展LAI-2000和DHP测量方法地面验证,但本发明可开展的地面LAI间接测量方法不受上述实例的限制,如MCI、TRAC、SunScan等测量方法也均可采用本发明提供的方案开展验证工作(如图3~图5分别为MCI、DHP及LAI-2000测量方法模拟结果示意图),同时本发明所采用的虚拟植被场景不仅仅局限于自然分布桦树林植被场景,其还可采用随机分布、聚集分布和均匀分布的虚拟植被场景,同时虚拟植被场景中植被类型也可根据验证需要选用验证的植物树种,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (10)

1.一种地面叶面积指数间接测量验证方法,其特征在于:包括如下步骤,
步骤10:收集典型单株植被结构特征参数,开展样地植被调查并形成植被调查数据库;采用植物场景建模软件建立高逼真度、不同年龄、特征、物候期的单株植物几何模型库;结合植被调查数据库、植物几何模型库及植被场景建模软件创建不同林分特征及地形条件的虚拟植被场景库;
步骤20:根据需验证的地面叶面积指数间接测量方法设计其观测方案;
步骤30:结合所述步骤10得到的虚拟植被场景库、所述步骤20得到的观测方案及地面叶面积指数间接测量方法原理模拟各地面叶面积指数间接测量方法,形成模拟数据库;
步骤40:计算所述步骤10得到的各虚拟植被场景LAI、WAI、PAI、冠层基本组分及木质组分聚集指数和木质总面积比参数真实值;
步骤50:以所述步骤30得到的模拟数据库为基础,计算模拟的各地面叶面积指数间接测量方法测量结果,得到测量值;
步骤60:对比分析所述步骤50得到的测量值与所述步骤40得到的真实值之间差异,验证现有地面叶面积指数测量方法的精度,并改进现有的地面叶面积指数间接测量方法得到改进的观测方案;
步骤70:结合所述步骤10得到的虚拟植被场景库、所述步骤60及地面叶面积指数间接测量方法原理得到的改进的观测方案模拟各地面叶面积指数间接测量方法,形成模拟数据库;
步骤80:计算所述步骤70模拟的各地面叶面积指数间接测量方法测量结果,得到测量值,对比分析该测量值与所述步骤40真实值之间的差异,验证地面叶面积指数间接测量方法的精度,如果改进的地面叶面积指数间接测量方法未达到预期要求,则返回步骤20;否则认为此改进的地面叶面积指数间接测量方法即为最终的地面叶面积指数间接测量方法。
2.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤10所述的典型单株植被结构特征参数包括单株植物叶器官参数和植物主体形态结构参数;所述叶器官特征参数包括叶片倾角分布、方位角分布、展布面积的叶片几何建模及分枝特征参数;所述主体形态结构参数包括主干参数和枝条参数,所述主干参数包括树高、冠幅、主干分节数、分节长度、树干半径变化及初始分枝角度,所述枝条参数包括枝条层数序号、分枝长度、枝条基径、枝条直径变化、初始分枝角度、角度变化、枝条分段数、枝条分布密度、下一枝条层数序号及叶片分布范围。
3.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤10中的植被调查数据库,包括胸径、植被高度、枝下高、幅宽及植被主干地理坐标的虚拟植被环境构建所需的植被样地数据。
4.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤10中的植物场景建模软件包括xfrog、ParaTree、SpeedTree及AMAP的软件平台;所述植物场景建模软件构建的植物几何模型,采用包括mesh、三角面片、多边形及标准几何体基本图形单元,能够完整描述植物冠层各要素在冠层中的三维分布。
5.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤10中的不同林分特征及地形条件,其中所述林分特征包括林分密度、LAI真实值、PAI真实值、冠层聚集效应、非光合作用组分影响及树木分布模式的特征,所述地形条件指的是地形坡度不同。
6.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤20中的观测方案,包括观测点采样方案、测量高度、测量路线及测量分辨率。
7.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤30中的地面叶面积指数间接测量方法,包括光学测量方法、冠层聚集效应定量评估算法、地形效应修正模型及木质总面积比参数地面间接测量法;所述冠层聚集效应定量评估算法包括间隙大小分布算法、有限长度平均算法、偏析系数法及联合法。
8.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤30中的模拟各种地面叶面积指数间接测量方法,其主要指以观测方案和叶面积指数间接测量方法原理为基础开展各叶面积指数间接测量方法模拟,而各测量方法原理及观测方案间则各不相同。
9.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤40中的各虚拟植被场景LAI、WAI、PAI、冠层基本组分及木质组分聚集指数和木质总面积比参数真实值,其中,所述LAI和WAI分别为通过统计场景内所有叶子和木质组分三角面片面积之和除以样地总面积得到,PAI为WAI和LAI之和,WAI与PAI比值得到所述木质总面积比参数真实值,所述冠层基本组分及木质组分聚集指数真实值通过结合DHP模拟影像间隙率计算结果及虚拟植被场景LAI、WAI得到。
10.根据权利要求1所述的一种地面叶面积指数间接测量验证方法,其特征在于:所述步骤50中的各地面叶面积指数间接测量方法模拟结果的计算过程是以模拟数据和各叶面积指数间接测量方法原理为基础计算。
CN201410231714.3A 2014-05-29 2014-05-29 一种地面叶面积指数间接测量验证方法 Expired - Fee Related CN103983230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410231714.3A CN103983230B (zh) 2014-05-29 2014-05-29 一种地面叶面积指数间接测量验证方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410231714.3A CN103983230B (zh) 2014-05-29 2014-05-29 一种地面叶面积指数间接测量验证方法

Publications (2)

Publication Number Publication Date
CN103983230A CN103983230A (zh) 2014-08-13
CN103983230B true CN103983230B (zh) 2016-09-07

Family

ID=51275296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410231714.3A Expired - Fee Related CN103983230B (zh) 2014-05-29 2014-05-29 一种地面叶面积指数间接测量验证方法

Country Status (1)

Country Link
CN (1) CN103983230B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492332B (zh) * 2018-04-03 2021-05-18 中国林业科学研究院资源信息研究所 一种森林三维场景中叶面积指数实时计算方法
CN109190278B (zh) * 2018-09-17 2020-11-10 西安交通大学 一种基于蒙特卡洛树搜索的透平转子动叶片的排序方法
CN109856139B (zh) * 2019-01-07 2021-08-06 北京林业大学 树木叶片数量估测方法及系统
CN109631821A (zh) * 2019-01-14 2019-04-16 江西农业大学 一种快速无损测量竹子叶片面积的方法
CN110084305A (zh) * 2019-04-30 2019-08-02 云南财经大学 一种基于极化sar的自适应的农作物全生育期参数反演方法
CN111062628B (zh) * 2019-12-20 2023-04-18 上海市园林科学规划研究院 一种森林资产质量分级评价方法
CN111860328B (zh) * 2020-07-21 2021-04-06 杭州时光坐标影视传媒股份有限公司 一种基于双向反射函数和森林场景光照效果建模的生物量估算方法
CN112068153B (zh) * 2020-08-24 2022-07-29 电子科技大学 一种基于地基激光雷达点云的冠层间隙率估算方法
CN112768085B (zh) * 2021-01-11 2024-04-26 中国人民解放军军事科学院军事医学研究院 一种现场流行病学调查与综合态势可视化分析方法及系统
CN117607063B (zh) * 2024-01-24 2024-04-19 中国科学院地理科学与资源研究所 一种基于无人机的森林垂直结构参数测量系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101685009A (zh) * 2008-09-26 2010-03-31 中国林业科学研究院森林生态环境与保护研究所 落叶林叶面积指数快速测定法
CN101788283A (zh) * 2010-03-31 2010-07-28 东北林业大学 叶面积指数的测定方法
CN103674852A (zh) * 2013-08-22 2014-03-26 南京大学 一种多角度观测植被冠层阴阳叶光化学反射指数的方法
CN103745239A (zh) * 2013-12-18 2014-04-23 广西生态工程职业技术学院 一种基于卫星遥感技术的森林资源测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073507A1 (ja) * 2010-12-02 2012-06-07 日本電気株式会社 葉面積指数計測システム、装置、方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101685009A (zh) * 2008-09-26 2010-03-31 中国林业科学研究院森林生态环境与保护研究所 落叶林叶面积指数快速测定法
CN101788283A (zh) * 2010-03-31 2010-07-28 东北林业大学 叶面积指数的测定方法
CN103674852A (zh) * 2013-08-22 2014-03-26 南京大学 一种多角度观测植被冠层阴阳叶光化学反射指数的方法
CN103745239A (zh) * 2013-12-18 2014-04-23 广西生态工程职业技术学院 一种基于卫星遥感技术的森林资源测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《全球LAI地面验证方法及验证数据综述》;曾也鲁 等;《地球科学进展》;20120229;第27卷(第2期);第165-171页 *

Also Published As

Publication number Publication date
CN103983230A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN103983230B (zh) 一种地面叶面积指数间接测量验证方法
CN102314546B (zh) 基于虚拟植物的植物生长生物量变化估算方法
KR101165534B1 (ko) 수관 식물점 그룹에 대해 시뮬레이트된 나무 줄기 및 나무 가지를 제공하는 지리공간 모델링 시스템
CN103942838A (zh) 基于点云数据的单树三维建模与形态参数提取的方法
Tang et al. Optimal design of plant canopy based on light interception: a case study with loquat
CN102903145B (zh) 植物群体形态结构三维重建方法
CN105701313B (zh) 多层数据结构的虚植物冠层光合有效辐射分布模拟方法
CN103196368A (zh) 基于车载激光扫描数据的单株树三维绿量自动估算方法
CN103824324B (zh) 一种果树冠层叶子和果实三维重建方法及系统
CN110990511B (zh) 一种顾及城市二维和三维形态的局部气候区分类方法
CN106845428A (zh) 一种作物产量遥感估算方法及系统
CN110070038A (zh) 一种基于城市绿化覆盖面积测算城市绿地率的方法
CN109325433A (zh) 引入地形因子的黑土区大豆生物量多时相遥感反演方法
CN105806266B (zh) 基于激光扫描数据的树木冠层叶面积计算方法
CN102930596B (zh) 一种藤蔓类植物的三维模型建立方法
Liu et al. Estimation model of canopy stratification porosity based on morphological characteristics: A case study of cotton
CN108009384A (zh) 一种城市森林碳储量景观尺度推演方法
Shi et al. A method for spatial heterogeneity evaluation on landscape pattern of farmland shelterbelt networks: A case study in midwest of Jilin Province, China
CN110188419A (zh) 一种景观生态现状条件分析与定量规划设计的方法
Zeyu et al. 3D Forest-tree Modeling Approach Based on Loading Segment Models
Yu Research on urban landscape planning method based on GIS
CN115063707A (zh) 一种基于倾斜摄影测量技术的拆迁区损失补偿评估方法
Yang et al. Research on extraction and evaluation of ecological corridor based on remote sensing and GIS
Xiao et al. The Importance of Using Realistic 3D Canopy Models to Calculate Light Interception in the Field
Nader et al. Evaluation of grapevine trunk size by use of a handheld camera and three-dimensional modelling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160907

Termination date: 20190529

CF01 Termination of patent right due to non-payment of annual fee