CN103981094A - 一种实现肝肠循环药物筛选的微流控芯片 - Google Patents
一种实现肝肠循环药物筛选的微流控芯片 Download PDFInfo
- Publication number
- CN103981094A CN103981094A CN201410191283.2A CN201410191283A CN103981094A CN 103981094 A CN103981094 A CN 103981094A CN 201410191283 A CN201410191283 A CN 201410191283A CN 103981094 A CN103981094 A CN 103981094A
- Authority
- CN
- China
- Prior art keywords
- micro
- cell
- fluidic chip
- chip
- basic unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0631—Purification arrangements, e.g. solid phase extraction [SPE]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0636—Focussing flows, e.g. to laminate flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/12—Specific details about manufacturing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明属于生物化学、分析化学、机械加工以及药物筛选领域,涉及了一种实现肝肠循环药物筛选的微流控芯片。该微流控芯片由四个基本单元构成,每个基本单元都有一个流体入口、一个流体出口和一个细胞培养池;其中,基本单元Ⅰ、基本单元Ⅱ和基本单元Ⅲ的细胞培养池都为直径5mm的圆形,基本单元Ⅳ的细胞培养池有柱状围栏;该微流控芯片从上到下排列顺序为:基本单元Ⅰ、结肠癌细胞的薄膜、血管内皮细胞的薄膜、基本单元Ⅱ、基本单元Ⅲ、血管内皮细胞的薄膜、基本单元Ⅳ、肝细胞的薄膜、芯片。该微流控肝肠循环芯片采用了多层基本单元集成,复杂流体控制,多种微结构设计,实现了肝肠循环药物筛选的微型化、集成化和快速高通量。
Description
技术领域
本发明属于生物化学、分析化学、机械加工以及药物筛选领域,涉及了一种实现肝肠循环药物筛选的微流控芯片。
背景技术
微流控芯片是一种以在微米尺度空间对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能微缩到一个几平方厘米芯片上的能力。因此,理论上讲,微流控芯片可以应用于任何涉及流体的学科,其中最直接的应当是化学、生物学和医学,与此同时,它的第二波影响力已经渗透到了一些传统观念中不大涉及流体的学科,譬如光学和信息学。所有这些学科正直接面向社会各个行业的实际需求,已经涉及的领域包括疾病诊断、药物筛选、环境检测、食品安全、司法鉴定、体育竞技以及反恐、航天等事关人类生存质量的方方面面。
我们提供了一种微流控芯片,可以用于肝肠循环药物的筛选。肝肠循环是药物在肝脏中经胆汁排入肠腔,在肠腔内又被重吸收,经门静脉返回肝脏的现象,是人体内药物代谢过程的一个重要环节,起到延长药物在体内作用时间的重要作用。因此,筛选肝肠循环的药物在药物使用方面显得尤其重要。
目前,常用的筛选肝肠循环的药物的方法为临床前动物实验和药物临床测试法,动物和临床实验花费巨大,试验的结果并不普适于人体,而一旦实验导致动物或人实验个体的伤害,还会遇到动物权、人权、伦理等诸多问题。
发明内容
为了克服现有筛选肝肠循环的药物的方法涉及到的耗时耗力耗财和道德伦理问题,本发明提供了一种可以用于筛选肝肠循环药物的微流控芯片。
本发明的技术方案:
将不同微结构设计的芯片单元、聚碳酸酯膜和三种细胞组合到一块芯片上,实现肝肠循环过程,用于药物筛选。一种实现肝肠循环药物筛选的微流控芯片,该微流控芯片由四个基本单元构成,每个基本单元都有一个流体入口、一个流体出口和一个细胞培养池。其中,基本单元Ⅰ、基本单元Ⅱ和基本单元Ⅲ的细胞培养池为直径5mm的圆形,基本单元Ⅳ的细胞培养池有微型柱状围栏。该微流控芯片从上到下排列顺序为:基本单元Ⅰ、结肠癌细胞的薄膜、血管内皮细胞的薄膜、基本单元Ⅱ、基本单元Ⅲ、血管内皮细胞的薄膜、基本单元Ⅳ、肝细胞的薄膜、芯片。
其中制作微流控芯片单元的方法:
(1)利用光刻技术,在微流控芯片的基片如硅片、光学玻璃等材料上图形化,基本工艺过程包括:预处理、涂SU-8光刻胶、前烘、曝光、显影及坚膜等。
(2)利用模塑法,在得到的模具上固化PDMS高聚物得到具有不同微结构的微流控芯片单元。
(3)利用空心管切割法,在得到的PDMS芯片单元上打孔,包括流体入口、出口以及细胞培养池。
(4)各芯片单元和薄膜组装好后,用两层亚克力板夹紧整个PDMS芯片,用螺丝和螺母固定。
(5)插入用于流体流动的管路,利用蠕动泵使流体循环于其中。一种可以用于筛选肝肠循环药物的微流控芯片搭建完成。
本发明的本微流控芯片构建采用了多层芯片单元集成,复杂流体控制,多种微结构设计,实现了肝肠循环药物筛选的微型化、集成化和快速高通量。
附图说明
图1是微流控肝肠循环芯片示意图。
图2是微流控芯片基本单元Ⅰ、Ⅱ、Ⅲ的微结构示意图。
图3是微流控芯片基本单元Ⅳ的微结构示意图。
图4是药物浓度随时间变化的药时曲线图。
图中:1为流体循环,利用蠕动泵将肝排泄产生的胆汁中的药物随流体循环
到最上层,以实现肠的重吸收过程,从而形成完整的药物肝肠循环过程;
为实时检测站。
具体实施方式
下面结合附图和技术方案具体说明本发明的具体实施方式。
实施例
(1)选择光学玻璃作为微流控芯片的基片,将基片置于装有H2O-NH4OH-H2O2(5:1:1)的玻璃缸中,以75℃水浴清洗基片至其表面不再有气泡产生;用去离子水清洗,50℃水浴超声三次,每次25分钟;将基片放在超净台中自然风干,使用之前需在95℃热板上前烘10分钟。
(2)利用旋涂法进行基片的涂胶:匀胶前将SU-8光刻胶置于55℃水浴中超声清洗三次,每次25分钟,目的是除去光刻胶中的气泡;设置匀胶机的涂胶过程即以500rm/min转速旋转30sec,再以1000rm/min的转速旋转30sec,得到高度范围在100—150μm的光刻胶图层。
(3)涂好胶的基片在95℃热板上前烘,使光刻胶中的溶剂挥发,烘干。基片室温放凉后,用镊子触碰,如果留下印记,则需要再烘,如果没有印记,则可以进行曝光。
(4)打开曝光机相关电源,调H2压力为0.3MPA左右,打开汞灯电源和控制电源,稳定20min,设定曝光时间为20sec,掩膜置于涂有光刻胶的基片进行曝光;曝光后,将基片放在热板上95℃,待通道完全显现后,放凉,待显影。(5)把曝光过的基片用乙酸乙酯显影液除去未曝光部分的光刻胶,1min左右,用异丙醇冲洗片子,若有白色物质,则需要继续显影;若无白色物质,则采用异丙醇全面冲洗,用吹风筒吹干。
(6)将显影后的基片置于180℃的烘箱中烘烤2小时,以彻底除去显影后残留于胶膜中的溶剂或水分,能使胶膜与基片紧密粘附,防止胶层脱落。坚膜结束后即得到带有微通道凸突的阳模。
(7)将PDMS的A液和B液以10:1比例配制成浇注液,在阳模上浇注3ml,75℃下固化后使PDMS从阳模上剥离,即可制得带有微通道的芯片基片。
(8)空心管切割法,利用技术打孔器,在制作好的PDMS芯片基片上打孔,设备简单、操作快速。
(9)用两层亚克力板夹紧多层PDMS芯片基片、薄膜和细胞,用螺丝和螺母固定;
(10)在打孔处插入聚氟乙烯管,其内径为0.03mm,利用蠕动泵以2μl/min的流速使溶有A771726的药物流体循环于其中,实时测定循环中的药物浓度。其中细胞以1×106个/ml密度接种于聚碳酸酯薄膜上,结肠癌细胞于薄膜上培养21天,血管内皮细胞于薄膜上培养5天,大鼠原代肝细胞于薄膜上培养5天。
Claims (2)
1.一种实现肝肠循环药物筛选的微流控芯片,其特征在于,该微流控芯片由四个基本单元构成,每个基本单元都有一个流体入口、一个流体出口和一个细胞培养池;其中,基本单元Ⅰ、基本单元Ⅱ和基本单元Ⅲ的细胞培养池都为直径5mm的圆形,基本单元Ⅳ的细胞培养池有柱状围栏;该微流控芯片从上到下排列顺序为:基本单元Ⅰ、结肠癌细胞的薄膜、血管内皮细胞的薄膜、基本单元Ⅱ、基本单元Ⅲ、血管内皮细胞的薄膜、基本单元Ⅳ、肝细胞的薄膜、芯片。
2.一种实现肝肠循环药物筛选的微流控芯片的方法,其特征在于,
(1)利用光刻技术,在微流控芯片的基片上图形化;
(2)利用模塑法,在得到的模具上固化PDMS高聚物得到具有不同微结构的微流控芯片单元;
(3)利用空心管切割法,在得到的PDMS芯片单元上打孔,包括流体入口、出口以及细胞培养池;
(4)各芯片单元和薄膜组装好后,用两层亚克力板夹紧整个PDMS芯片,用螺丝和螺母固定;
(5)插入用于流体流动的管路,利用蠕动泵使流体循环于其中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410191283.2A CN103981094A (zh) | 2014-05-07 | 2014-05-07 | 一种实现肝肠循环药物筛选的微流控芯片 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410191283.2A CN103981094A (zh) | 2014-05-07 | 2014-05-07 | 一种实现肝肠循环药物筛选的微流控芯片 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103981094A true CN103981094A (zh) | 2014-08-13 |
Family
ID=51273264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410191283.2A Pending CN103981094A (zh) | 2014-05-07 | 2014-05-07 | 一种实现肝肠循环药物筛选的微流控芯片 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103981094A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107955787A (zh) * | 2016-10-14 | 2018-04-24 | 中国科学院大连化学物理研究所 | 一种基于微流控技术的仿生肠模型的构建方法 |
CN107955785A (zh) * | 2016-10-14 | 2018-04-24 | 中国科学院大连化学物理研究所 | 一种基于肠芯片的体外模拟药代动力学特征的体系及应用 |
WO2019222871A1 (zh) * | 2018-05-21 | 2019-11-28 | 深圳华大生命科学研究院 | 一种仿生肠-肝器官芯片及其制备方法和应用 |
CN110669665A (zh) * | 2018-09-21 | 2020-01-10 | 浙江大学 | 一种用于培养肝癌切片的微流控芯片及其使用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1733315A (zh) * | 2005-09-05 | 2006-02-15 | 崔乃强 | 制作用于肝胆性疾病和药物研发的动物模型的方法及应用 |
US20080261288A1 (en) * | 2007-03-29 | 2008-10-23 | Gonda Steve R | Micro-Organ Device |
WO2011044116A2 (en) * | 2009-10-05 | 2011-04-14 | The Charles Stark Draper Laboratory, Inc. | Three-dimensional microfluidic platforms and methods of use and manufacture thereof |
CN103041878A (zh) * | 2012-12-31 | 2013-04-17 | 苏州汶颢芯片科技有限公司 | 一种新型药物筛选的微流控芯片及其制备方法 |
CN103571738A (zh) * | 2013-07-02 | 2014-02-12 | 中国人民解放军第三军医大学 | 一种基于趋化因子富集效应的微流控芯片装置及制备方法 |
-
2014
- 2014-05-07 CN CN201410191283.2A patent/CN103981094A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1733315A (zh) * | 2005-09-05 | 2006-02-15 | 崔乃强 | 制作用于肝胆性疾病和药物研发的动物模型的方法及应用 |
US20080261288A1 (en) * | 2007-03-29 | 2008-10-23 | Gonda Steve R | Micro-Organ Device |
WO2011044116A2 (en) * | 2009-10-05 | 2011-04-14 | The Charles Stark Draper Laboratory, Inc. | Three-dimensional microfluidic platforms and methods of use and manufacture thereof |
CN103041878A (zh) * | 2012-12-31 | 2013-04-17 | 苏州汶颢芯片科技有限公司 | 一种新型药物筛选的微流控芯片及其制备方法 |
CN103571738A (zh) * | 2013-07-02 | 2014-02-12 | 中国人民解放军第三军医大学 | 一种基于趋化因子富集效应的微流控芯片装置及制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107955787A (zh) * | 2016-10-14 | 2018-04-24 | 中国科学院大连化学物理研究所 | 一种基于微流控技术的仿生肠模型的构建方法 |
CN107955785A (zh) * | 2016-10-14 | 2018-04-24 | 中国科学院大连化学物理研究所 | 一种基于肠芯片的体外模拟药代动力学特征的体系及应用 |
WO2019222871A1 (zh) * | 2018-05-21 | 2019-11-28 | 深圳华大生命科学研究院 | 一种仿生肠-肝器官芯片及其制备方法和应用 |
CN110669665A (zh) * | 2018-09-21 | 2020-01-10 | 浙江大学 | 一种用于培养肝癌切片的微流控芯片及其使用方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Novak et al. | Robotic fluidic coupling and interrogation of multiple vascularized organ chips | |
Azizipour et al. | Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip | |
Wang et al. | Organ-on-a-chip platforms for drug delivery and cell characterization: A review | |
CN105032512B (zh) | 用于药物配伍筛选的集成化微流控芯片、制备方法及应用 | |
CN103981094A (zh) | 一种实现肝肠循环药物筛选的微流控芯片 | |
Mi et al. | The crossing and integration between microfluidic technology and 3D printing for organ-on-chips | |
CN107176588B (zh) | 一种中空微通道结构的制备方法 | |
Sip et al. | Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates | |
CN105713834B (zh) | 一种微流控芯片及其制备方法和应用 | |
CN204865880U (zh) | 一种用于多物质配伍药效筛选的微流控芯片 | |
CN101629143A (zh) | 用于高通量药物筛选的微流控细胞阵列芯片、方法及应用 | |
CN102411060A (zh) | 一种具有高深宽比微流道的微流控芯片及其制作方法 | |
CN104560713B (zh) | 用于培养及检测肺癌细胞的微流控芯片制备方法 | |
He et al. | Characterization of leaf-inspired microfluidic chips for pumpless fluid transport | |
Ainla et al. | Hydrodynamic flow confinement technology in microfluidic perfusion devices | |
CN110117524A (zh) | 一种流体剪切力诱导肿瘤细胞跨膜迁移的微流控芯片装置 | |
CN105420103A (zh) | 一种简易的微流控芯片及细胞分析方法 | |
WO2019091037A1 (zh) | 一种基于结构色水凝胶的心脏芯片及其应用 | |
JP2018525003A (ja) | 流体力学シャトリングチップ機器、及び、分離した単一細胞を捕捉する方法 | |
CN205941345U (zh) | 用于生物检测的微流控芯片 | |
Chen et al. | The method to dynamically screen and print single cells using microfluidics with pneumatic microvalves | |
CN110684662A (zh) | 一种全液相器官芯片及其制备方法 | |
Kaji et al. | Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device | |
CN203320000U (zh) | 一种细胞趋化分析芯片和装置 | |
CN103361263B (zh) | 一种细胞趋化分析芯片、装置、使用方法和制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140813 |