CN103980600A - 一种超净纳米改性聚烯烃高压直流电缆料的制备方法 - Google Patents

一种超净纳米改性聚烯烃高压直流电缆料的制备方法 Download PDF

Info

Publication number
CN103980600A
CN103980600A CN201410251465.4A CN201410251465A CN103980600A CN 103980600 A CN103980600 A CN 103980600A CN 201410251465 A CN201410251465 A CN 201410251465A CN 103980600 A CN103980600 A CN 103980600A
Authority
CN
China
Prior art keywords
nanoparticle
polyolefin particles
cable material
ultra
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410251465.4A
Other languages
English (en)
Inventor
党智敏
巫运辉
张翀
查俊伟
王思蛟
林祥
于凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Smart Grid Research Institute of SGCC
Original Assignee
University of Science and Technology Beijing USTB
Smart Grid Research Institute of SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, Smart Grid Research Institute of SGCC filed Critical University of Science and Technology Beijing USTB
Priority to CN201410251465.4A priority Critical patent/CN103980600A/zh
Publication of CN103980600A publication Critical patent/CN103980600A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/013Additives applied to the surface of polymers or polymer particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种超净纳米改性聚烯烃高压直流电缆料的制备方法,属于电缆绝缘材料加工技术领域。其特征在于使用一种低沸点、易挥发的液体作为纳米粒子载体,将纳米粒子均匀粘附在聚烯烃颗粒表面,同时载体在纳米粒子均匀粘附于聚烯烃颗粒表面的过程中挥发,最后将表面均匀粘附纳米粒子的聚烯烃颗粒通过双螺杆挤出、造粒。通过该方法制备的超净纳米改性聚烯烃高压直流电缆料的绝缘性能优异。添加1wt%MgO纳米粒子的LDPE的直流击穿场强比纯LDPE提高接近一倍,纯LDPE的直流击穿场强为275.3kV/mm,添加1wt%MgO的LDPE的击穿场强为455.6kV/mm。添加1wt%MgO的LDPE抑制空间电荷能力得到明显提高。

Description

一种超净纳米改性聚烯烃高压直流电缆料的制备方法
技术领域
本发明涉及一种超净纳米改性聚烯烃高压直流电缆料的制备方法。属于电缆绝缘材料加工技术领域。
背景技术
近十年来,纳米改性聚烯烃用于制备高压绝缘材料被世界各大电气公司及研究机构所重视。2000年至今,J.K.Nelson等人的研究表明,纳米改性聚烯烃复合材料在树枝老化、空间电荷、局部放电、介电强度、介质损耗、电导等多方面都具有优异的性能,已成为高性能绝缘材料的发展方向。目前,塑料绝缘高压和超高压直流电缆的应用越来越受到国家相关部门的重视,市场需求几乎是指数式增长。国际上有瑞典ABB和日本J-PowerSystems Corporation等公司能够提供超高压塑料绝缘直流电缆;日本采用纳米MgO复合XLPE的技术成功研制出500kV高压直流塑料电缆,还在试验中,尚未推向市场。
制备超净纳米改性聚烯烃高压直流电缆料已经成为世界各国争相突破的技术难题。其中的难题之一:如何使纳米粒子均匀分散在聚烯烃中,而不引入任何杂质,从而制备性能优良的超净纳米改性聚烯烃高压直流电缆料。
纳米粒子由于具有表面效应,量子尺寸效应,小尺寸效应,宏观量子效应等特性,极易发生团聚,以致纳米粒子很难均匀分散在聚烯烃中。此外,如果采用加工助剂使纳米粒子均匀分散在聚烯烃中又会引入杂质。最终,导致制备的纳米改性聚烯烃高压直流电缆料性能远不及预期理论值。
发明内容
本发明的目的在于解决现有技术的难题,提供一种制备超净纳米改性聚烯烃高压直流电缆料的方法。该方法具有如下特点:设备要求低,工艺简单,易推广,实用性强,不引入杂质的情况下使纳米粒子较均匀地分散在聚烯烃基体中。
本发明的发明人在生产中发现,直接将纳米粒子与聚烯烃颗粒共混,因纳米粒子粒径小,在混料/加料的过程中直接从聚烯烃颗粒之间的缝隙沉入底部,导致纳米粒子在聚烯烃中局部积聚。其次,业界普遍采用加工助剂(如液体石蜡等),通过高速搅拌使纳米粒子粘附在聚烯烃颗粒表面,挤出、造粒,制备纳米改性聚烯烃电缆料,但引入了杂质液体石蜡,这样会大大降低电缆料的电气性能。基于上述遇到的难题,本发明的构思方案是通过一种易挥发性的载体,将纳米粒子通过本身具有较高表面能粘附在聚烯烃颗粒表面,将载体通过升温挥发而不引入杂质,再通过熔融挤出造粒,最后得到超净纳米改性聚烯烃高压直流电缆料。
超净纳米改性聚烯烃高压直流电缆料的制备方法,是通过以下技术方案实现的:
1)将一定质量的纳米粒子与低沸点载体混合,形成悬浮液。纳米粒子所用载体为低沸点无水乙醇、无水甲醇、无水丙酮等具有较好挥发性液体,与聚烯烃无副作用,且不能溶解纳米粒子;纳米粒子为三氧化二铝Al2O3、氧化镁MgO、碳化硅SiC、二氧化硅SiO2等。
2)将1)得到的悬浮液超声分散一定时间,使纳米粒子解团聚,均匀分散在载体中。
3)将2)制备的纳米粒子悬浮液与聚烯烃颗粒在低于载体沸点下复合,搅拌,混合均匀。然后烘干,除去载体。
4)将3)中制备的纳米粒子/聚烯烃混合物,采用双螺杆挤出、造粒,最后制备出超净纳米改性聚烯烃高压直流电缆料。
本发明的关键在于选择一种不改变纳米粒子化学成份及结构的液态载体,载体必须是易挥发,不含水分。通过载体挥发使纳米粒子通过本身具有较高的表面能均匀粘附在聚烯烃颗粒表面,最后挤出造粒,制备出超净纳米改性聚烯烃高压直流电缆料。
本发明具有以下效果:
1)本发明所制备的超净纳米改性聚烯烃高压直流电缆料具有优良的电气性能,包括:优异的抑制空间电荷特性,较大地提高电缆料的直流击穿性能。
2)本发明所提供的制备超净纳米改性聚烯烃高压直流电缆料的方法具有设备成本低,工艺简单,适合工业化生产,不引入杂质,纳米改性后的电气性能提高显著。
附图说明
图1、纯净的聚乙烯颗粒形貌。
图2、用低沸点挥发性液体作为载体将4.5wt%无机纳米粒子粘附在聚乙烯颗粒表面。
图3、使用本发明方法制备的4.5wt%无机纳米粒子均匀分散在聚乙烯基体中的断面电镜图。
图4、直接将1wt%无机纳米粒子与聚烯烃共混制备的无机纳米粒子/LDPE绝缘电缆料在30kV/mm下的空间电荷分布。
图5、使用本法明方法制备的1%wt无机纳米粒子与聚烯烃制备的超净无机纳米粒子/LDPE绝缘电缆料在30kV/mm下的空间电荷分布。
图6、使用本发明方法制备的不同质量百分数的超净无机纳米粒子/LDPE的直流击穿场强。
具体实施方式
实施例1
1)选用低沸点挥发性液体为载体,纳米粒子为粒径50~80nm氧化镁,聚烯烃为低密度聚乙烯LDPE。
2)载体:纳米氧化镁:LDPE的质量之比为12:1:100。向1g纳米氧化镁中加入12g无水乙醇,用玻璃棒搅拌均匀,然后超声1.5h,制备出纳米氧化镁粒子分散液。
3)将制得的纳米氧化镁分散液与LDPE颗粒混合,搅拌均匀,制备出表面均匀粘附纳米氧化镁粒子的低密度LDPE颗粒,烘干,再通过双螺杆挤出、造粒,最后挤出得到混合均匀的超净纳米氧化镁改性低密度LDPE高压直流电缆料。
实施例2
1)选用低沸点挥发性液体为载体,纳米粒子为粒径100nm氧化铝,聚烯烃为低密度聚乙烯LDPE。
2)载体:纳米氧化铝:LDPE的质量之比为20:1:100。向1g纳米氧化铝中加入20g无水乙醇,用玻璃棒搅拌均匀,然后超声2h~3h,制备出纳米氧化铝颗粒分散液。
3)将制得纳米氧化铝分散液与LDPE颗粒粉料共混,搅拌均匀,烘干,制备出表面均匀粘附纳米氧化铝粒子的低密度LDPE颗粒。在60~70℃下干燥30~40min,再通过哈克MINILAB共混,最后挤出得到混合均匀的超净纳米氧化铝改性低密度LDPE高压直流电缆料。
实施例3
1)选用低沸点挥发性液体为载体,纳米粒子为粒径80nm二氧化硅,聚烯烃为聚丙烯PP。
2)载体:SiO2:PP的质量之比为15:1:100。向1g纳米SiO2加入15g丙酮,搅拌均匀,超声1~2h,制备得到纳米SiO2分散液。
3)将制得纳米SiO2分散液与PP颗粒混合均匀,50~60℃干燥40~60min,再最后通过哈克MINILAB,最后挤出得到混合均匀的超净纳米二氧化硅改性低密度LDPE高压直流电缆料。

Claims (2)

1.一种超净纳米改性聚烯烃高压直流电缆料的制备方法,其特征在于,使用一种低沸点、易挥发的液体作为纳米粒子载体,将纳米粒子均匀粘附在聚烯烃颗粒表面,同时载体在纳米粒子均匀粘附聚烯烃颗粒表面过程中挥发,最后将表面均匀粘附纳米粒子的聚烯烃颗粒通过双螺杆挤出造粒;
所述的低沸点、易挥发的载体为无水乙醇、无水甲醇、无水丙酮;其中载体必须是不改变纳米粒子的化学成份及结构,沸点低于80℃,不含有水分;纳米粒子为三氧化二铝Al2O3、氧化镁MgO、碳化硅SiC、二氧化硅SiO2
2.根据权利要求1所述的一种超净纳米改性聚烯烃高压直流电缆料的制备方法,其特征在于,包括以下步骤:
1)将载体与纳米粒子按质量比为10~20:1混合后超声振荡分散大于1h,纳米粒子在超声过程中解团聚,分散均匀,得到分散性较好的悬浮液;
2)将1)得到的悬浮液与聚烯烃颗粒混合,搅拌均匀,烘干,制得表面均匀粘附纳米粒子的聚烯烃颗粒;
3)将粘附纳米粒子的聚烯烃颗粒挤出、造粒,制备出超净纳米改性聚烯烃高压直流电缆料。
CN201410251465.4A 2014-06-09 2014-06-09 一种超净纳米改性聚烯烃高压直流电缆料的制备方法 Pending CN103980600A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410251465.4A CN103980600A (zh) 2014-06-09 2014-06-09 一种超净纳米改性聚烯烃高压直流电缆料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410251465.4A CN103980600A (zh) 2014-06-09 2014-06-09 一种超净纳米改性聚烯烃高压直流电缆料的制备方法

Publications (1)

Publication Number Publication Date
CN103980600A true CN103980600A (zh) 2014-08-13

Family

ID=51272783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410251465.4A Pending CN103980600A (zh) 2014-06-09 2014-06-09 一种超净纳米改性聚烯烃高压直流电缆料的制备方法

Country Status (1)

Country Link
CN (1) CN103980600A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867078A (zh) * 2017-03-06 2017-06-20 哈尔滨理工大学 一种纳米二氧化硅/低密度聚乙烯复合材料及其制备方法
CN107383538A (zh) * 2017-08-10 2017-11-24 全球能源互联网研究院 高压直流电缆用高分散纳米复合超净绝缘料及其制备方法
CN108485027A (zh) * 2018-03-16 2018-09-04 安徽滁州德威新材料有限公司 一种高压电缆绝缘超洁净直流母料及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445627A (zh) * 2008-12-11 2009-06-03 上海交通大学 高压直流电缆绝缘材料及其制备方法
CN103554531A (zh) * 2013-10-31 2014-02-05 昆明理工大学 一种改性高分子材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445627A (zh) * 2008-12-11 2009-06-03 上海交通大学 高压直流电缆绝缘材料及其制备方法
CN103554531A (zh) * 2013-10-31 2014-02-05 昆明理工大学 一种改性高分子材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867078A (zh) * 2017-03-06 2017-06-20 哈尔滨理工大学 一种纳米二氧化硅/低密度聚乙烯复合材料及其制备方法
CN107383538A (zh) * 2017-08-10 2017-11-24 全球能源互联网研究院 高压直流电缆用高分散纳米复合超净绝缘料及其制备方法
CN108485027A (zh) * 2018-03-16 2018-09-04 安徽滁州德威新材料有限公司 一种高压电缆绝缘超洁净直流母料及制备方法

Similar Documents

Publication Publication Date Title
CN104910495B (zh) 一种高压直流电缆料及其制备方法
Luo et al. Construction of a 3D-BaTiO 3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites
Dang et al. Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites
CN111205558B (zh) 石墨烯增强导热聚合物复合材料及其制备方法、导热产品
Wu et al. Spatial Confining Forced Network Assembly for preparation of high-performance conductive polymeric composites
Hong et al. Rescaled electrical properties of ZnO/low density polyethylene nanocomposites
EA029994B1 (ru) Углеродный материал на основе графита, подходящий в качестве предшественника графена, а также способ его получения
US9076566B2 (en) DC power cable with space charge reducing effect
CN106009190A (zh) 工作温度90℃的500kV及以下柔性直流电缆绝缘料与制备方法
CN106520079A (zh) 石墨烯导热膜及其制备方法
Xu et al. The role of the surface microstructure of the microfibrils in an electrically conductive microfibrillar carbon black/poly (ethylene terephthalate)/polyethylene composite
Badot et al. A multiscale description of the electronic transport within the hierarchical architecture of a composite electrode for lithium batteries
CN109096572A (zh) 一种高直流击穿强度的聚烯烃纳米复合绝缘材料及其制备方法
CN103980600A (zh) 一种超净纳米改性聚烯烃高压直流电缆料的制备方法
CN106519390B (zh) 聚烯烃石墨烯纳米复合材料及其制备方法
CN106711380A (zh) 一种锂离子电池用复合陶瓷隔膜
CN106336630B (zh) 一种导电材料及其制备方法和用途
Prashantha et al. Electrical and dielectric properties of multi-walled carbon nanotube filled polypropylene nanocomposites
Guan et al. Enhancement in energy storage density of polyvinylidene fluoride composites by introduced rod-like core-shell Ag@ Al2O3 nanorods
Lewis Nano-composite dielectrics: the dielectric nature of the nano-particle environment
CN109721897A (zh) 一种高介电常数三相纳米复合电介质以及制备方法
CN102690528B (zh) 一种熔融共混制备聚合物基导电复合材料的方法
CN105385033B (zh) 可回收聚丙烯/sebs/氧化石墨烯电缆料的制备方法
Zhang et al. Carbon nanotubes and hexagonal boron nitride nanosheets co‐filled ethylene propylene diene monomer composites: Improved electrical property for cable accessory applications
CN107815009A (zh) 一种导电塑料及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140813

RJ01 Rejection of invention patent application after publication