CN103973620A - 一种全数字fm/am信号解调与分析方法 - Google Patents

一种全数字fm/am信号解调与分析方法 Download PDF

Info

Publication number
CN103973620A
CN103973620A CN201410168998.6A CN201410168998A CN103973620A CN 103973620 A CN103973620 A CN 103973620A CN 201410168998 A CN201410168998 A CN 201410168998A CN 103973620 A CN103973620 A CN 103973620A
Authority
CN
China
Prior art keywords
signal
digital
filtering
demodulation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410168998.6A
Other languages
English (en)
Other versions
CN103973620B (zh
Inventor
徐群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 41 Institute
Original Assignee
CETC 41 Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Institute filed Critical CETC 41 Institute
Priority to CN201410168998.6A priority Critical patent/CN103973620B/zh
Publication of CN103973620A publication Critical patent/CN103973620A/zh
Application granted granted Critical
Publication of CN103973620B publication Critical patent/CN103973620B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明提供一种全数字FM/AM信号解调与分析方法,步骤一:产生数字信号输入到FPGA中;步骤二:将数字下变频模块产生的I1、Q1两路基带信号进行抽取和幅度补偿滤波;步骤三:将滤波补偿后的I2、Q2两路基带信号生成每个采样点的幅度信息和相位信息;步骤四:对FM或AM解调信号进行可装载滤波和触发处理生成时域波形;步骤五:经过滤波后的解调信号同时到达傅里叶变换单元完成时域到频域的转换,生成解调信号的频谱。采用上述方案,通过中频带限滤波、音频生成、音频滤波、音频FFT等操作,利用同一处理流程实现了FM、AM这两种信号的解调与分析,解调带宽大且可调节,最高可达20MHz,通过CIC频响补偿滤波技术使带内平坦度极高。

Description

一种全数字FM/AM信号解调与分析方法
技术领域
本发明属于电子测量技术领域,尤其涉及的是一种全数字FM/AM信号解调与分析方法。
背景技术
调频(FM)、调幅(AM)这两种调制方式自20世纪60年代出现以来,迅速成为无线通信中最常用的两种方法,广泛应用于电台、广播、对讲机等无线通信设备中。当前,国际无线电管理委员会规定调频频偏最大值为6.5MHz,调频和调幅信号的发射带宽一般在400kHz以下,最高可达12MHz左右。由于调频和调幅方式通信设备的广泛应用,需要相关的电子测量仪器来对这些设备进行测试验证和日常维护,而信号的解调、调制参数分析是相关测量仪器所必备的功能,由于现代调频和调幅通信的调制质量越来越高,对测量仪器的测量精度也有着极高的要求。
现有的FM、AM信号的解调分析方法主要有三种方法,第一种方法是通过专用解调IC器件直接解调出调制音频,例如专用FM信号解调器CA3089,专用的AM信号解调器MC1350等,专用解调IC不易于对解调后的音频实现滤波,也无法直接对解调出的音频信号进行存储和调制参数的分析;第二种方法是通过专用数字下变频器IC器件来解调出音频,例如可编程数字下变频器HSP50214,其内置数字下变频、抽取滤波、音频生成等单元,可以对FM、AM信号进行解调并生成音频数字信号,但其最大解调带宽只有1.25MHz,而且专用数字下变频器一般还需要搭配FPGA来进行接口的处理和解调音频的进一步分析处理,扩展性差,设计电路复杂;第三种方法是通过FPGA或DSP来进行解调,FPGA因其设计灵活、容量大,适合于一些复杂的数字信号处理算法设计,因此在信号解调中也有着广泛的应用。中国发明专利《一种基于FPGA实现FM调频和解调数字逻辑电路的方法》(申请号:CN201210515556)所公开的是:一种通过FPGA实现FM信号的调制与解调方法。该专利的解调方法存在中频带宽不可控、不支持AM解调、不支持解调信号滤波、不支持FFT频谱输出和调制参数计算等缺点。
现有的通过专用解调IC器件的解调方法存在解调格式单一、不易实现音频滤波、无法直接进行调制参数分析等缺点;现有的通过专用数字下变频器IC器件的解调方法存在带宽窄、不支持音频频谱、扩展性差等缺点。现有的通过FPGA的解调方法存在中频带宽不可控、不支持FFT频谱输出和调制参数计算等缺点。
因此,现有技术存在缺陷,需要改进。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种全数字FM/AM信号解调与分析方法。
本发明的技术方案如下:
一种全数字FM/AM信号解调与分析方法,其中,包括以下步骤:
步骤一:将输入的FM/AM信号经过射频变换模块后,将预定范围内的输入射频信号变换到固定的中频信号,经过模数转换器采样产生数字信号输入到FPGA中;
步骤二:将输入到FPGA中的数字信号经数字下变频模块处理后,产生I1、Q1两路基带信号送入抽取补偿滤波模块,经过HB抽取滤波和CIC抽取滤波,再用FIR滤波器完成幅度补偿滤波,确保带内平坦度和带外抑制特性;
步骤三:将滤波补偿后的I2、Q2两路基带信号经坐标转换模块完成直角坐标到极坐标的转换,生成每个采样点的幅度信息和相位信息,再输出到可装载数字滤波单元;
步骤四:可装载数字滤波单元完成解调信号的滤波,通过可装载滤波因子的FIR滤波器,将外部任意的滤波因子装载进来,实现低通、高通、带通滤波,同时根据时域波形完成触发处理,支持上升沿、下降沿触发,经过滤波后的解调信号时域波形由PC机从FPGA中读取分析和显示,时域波形同时到达傅里叶变换(FFT)单元;
步骤五:FFT单元通过对解调后的时域信号进行加窗和傅里叶变换处理,生成频谱波形,由PC机从FPGA中读取显示并根据频谱完成调制参数的计算。
所述的全数字FM/AM信号解调与分析方法,其中,所述步骤一中所述输入射频信号变换到固定的中频信号的具体步骤为:将中频信号设定为140MHz,再采用200MHz采样率的模数转换器对140MHz中频信号进行采样,将采样位数设为16位,再将产生的数字信号输出。
所述的全数字FM/AM信号解调与分析方法,其中,所述步骤二中所述数字信号经数字下变频处理的具体步骤为:在FPGA中将数字信号分别乘以一个正交的数字载波信号cos和sin,将数字载波信号的频率设定为140MHz,与所述数字信号相乘后产生I1、Q1两路基带信号。
所述的全数字FM/AM信号解调与分析方法,其中,所述步骤二中所述HB抽取滤波为5级级联半带滤波器;所述CIC抽取滤波为梳状抽取滤波器。
所述的全数字FM/AM信号解调与分析方法,其中,所述步骤三中的所述幅度信息为AM解调出的信号,直接输出到可装载数字滤波单元;所述相位信息经过鉴频器后生成FM解调出的信号,再输出到可装载数字滤波单元。
所述的全数字FM/AM信号解调与分析方法,其中,所述步骤三中所述直角坐标到极坐标的转换的具体步骤为:将直角坐标[AI,AQ]转化为极坐标后生成基带信号的相位θ和幅度A,连续不断的对输入的直角坐标进行转换,直到其极坐标的Y轴成分为0时完成旋转,运算公式如下:
Xi=Xi-1±(Yi-1/2i-3);
Yi=Yi-1±(Xi-1/2i-3);
θi=θi-1±αi-1
其中,当Yi-1>=0时,αi取值为-1,当Yi-1<0时,αi取值为+1;当Xi-1>=0且Yi-1>=0时,Xi式取“+”运算,Yi式“-”运算,否则Xi式取“-”运算,Yi式“+”运算,旋转运算后生成的Xi即为信号的幅度A,θi即为信号的相位θ,2i-3在FPGA中通过移位实现。
所述的全数字FM/AM信号解调与分析方法,其中,所述步骤五中所述FFT点数为4096点,在FFT内核提供一个提前3个时钟周期的xn_index信号来表征当前的输入索引号,利用所述索引号作为汉宁窗查找表的地址,查找出对应位置的窗函数值后,再通过乘法器与时域波形相乘后作为FFT的实部输入,虚部输入固定为0,查表到乘法器的输出正好延时3个时钟周期,以保证到达FFT内核的实部与窗函数对应正确,对FFT内核输出的实部和虚部信号进行求模操作后即生成了解调信号的频谱,该频谱进行存储后,由PC机读取进行显示,并进行调制参数的计算,计算公式如下:
信噪比(SNR)=10*log10(Ps/Pn)
信纳比(SINAD)=10*log10(Ps/(Pn+Pd))
失真度=Pd/Ph[0]
其中,Ps为信号的总功率,Pn为噪声功率,Pd为谐波功率,Ph[0]为基波功率。
采用上述方案:1、解调带宽大,并在20MHz到6.25kHz的范围内任意可调,通过CIC频响反补技术可保证极高的带内幅度平坦度;2、利用同一处理流程实现了FM、AM两种信号的解调与分析,并且直接生成了解调信号的时域波形和频谱,支持任意的音频滤波,解调功能全面;3、利用加窗和4096点FFT生成的频谱计算调制参数精度高,流水线式操作可连续进行运算,且运行速度快。
附图说明
图1为本发明方法的流程框图。
图2为本发明中I、Q直角坐标的结构示意图。
图3为本发明中I、Q直角坐标转换为I、Q极坐标后的结构示意图。
具体实施方式
以下结合附图和具体实施例,对本发明进行详细说明。
实施例1
本发明一种全数字FM/AM信号解调与分析方法,如图1所示,具体如下:
1.输入的FM/AM信号经过射频变换模块101后,将一段范围内的输入射频信号变换到固定的中频信号,本发明中所述的中频为140MHz,再采用200MHz采样率的模数转换器对中频信号进行采样,采样位数为16位,产生的数字信号输出到数字信号处理FPGA10,FPGA10采用Xilinx公司的Virtex-5芯片;
2.中频采样输入首先经过数字下变频模块102的处理,即在FPGA10中将输入的采样信号分别乘以一个正交的数字载波信号cos和sin,数字载波信号的频率为140MHz,相乘后产生I1、Q1两路基带信号,基带信号再经过抽取补偿滤波模块103中的HB抽取滤波和CIC抽取滤波,可以变换解调分析带宽,再用FIR滤波器完成CIC频响补偿滤波,同时确保带外抑制特性;
3.抽取补偿滤波模块103产生的I2、Q2两路信号再进入坐标转换模块104完成直角坐标到极坐标的转换,生成每个采样点的幅度和相位信息,其中幅度信息为AM解调出的信号,直接输出到可装载数字滤波单元105,相位信息要经过鉴频器后生成FM解调出的信号,再输出到可装载数字滤波单元105;
4.可装载数字滤波单元105完成解调信号的滤波,通过可装载滤波因子的FIR滤波器,可以将外部任意的滤波因子装载进来,实现低通、高通、带通滤波,同时可根据时域波形完成触发处理,支持上升沿、下降沿触发,经过滤波后的解调信号时域波形由PC机从FPGA10中读取分析和显示,时域波形同时到达傅里叶变换(FFT)单元106;
5.FFT单元106通过对时域信号进行加窗和傅里叶变换处理,生成频谱波形,可由PC机从FPGA10中读取显示并根据频谱完成调制参数的计算,如失真度、SNR和SINAD等参数。
在上述技术方案中,FM、AM信号解调与分析的数字信号处理都在FPGA10中实现。本发明的关键技术点的原理说明如下:
1.可变解调带宽技术
由于FM、AM信号的解调可以采用非相干解调的方式,因此本发明采用通用的正交解调数字下变频的方式对输入的采样信号进行基带生成操作。I、Q基带生成后,为了实现解调带宽从20MHz到6.25kHz连续可变,采用5级级联半带(HB)滤波器和CIC抽取滤波器来进行采样率的降低和调节,并采用FIR滤波器对前级CIC抽取滤波引起的幅度不平衡进行补偿,并对带外杂散信号进行抑制。
HB滤波器特别适合实现2的幂次方倍的抽取,计算效率高,实时性强。信号经过每一级半带滤波器抽取后,带宽变为原来的一半。通过5级级联方式,每级可单独旁通,最多可降低采样率32倍。CIC梳状抽取滤波器占用FPGA资源少,仅通过加法器即可实现,尤其适合采样率连续可变的应用领域,本发明中CIC的抽取率为4~8192,总的采样率变换范围为50MHz~762Hz,可以满足解调带宽范围的设计要求。但由于CIC滤波器的带内频响不呈直线特性,而是随着频率的增大呈梳状下降,如果不经过补偿,会恶化解调信号的失真度特性,本项目采用FIR滤波器来实现CIC频响补偿滤波,其频响特性与传统的FIR滤波器所不同的是,其带内频响随着频率的增大呈梳状上升,上升趋势正好与CIC滤波器频响的下降趋势相抵消,从而保证了抽取滤波后的带内幅度平坦度,经过补偿后,整个抽取滤波单元的平坦度优于0.001dB。
2.直角坐标到极坐标转换技术
本发明根据基带信号的幅度来生成AM解调信号时域波形,根据相位来生成FM解调信号时域波形,基带信号本身是直角坐标,而相位和幅度则正好是极坐标,因此只要将直角坐标[AI,AQ]转化为极坐标就可以生成基带信号的相位θ和幅度A,如图2所示,图2中t1为在某一时刻的采样,1为I路,2为Q路。本发明采用管道式cordic转换算法来完成直角坐标到极坐标的转换,管道式cordic转换算法的每级运算都采用流水线式运算结构,可连续不断的对输入的直角坐标进行转换,其原理为不断旋转直角坐标,直到其极坐标的Y轴成分为0时完成旋转,实际进行30次左右的旋转运算后,Y轴成分就已经逼近于0,其运算原理如下:
Xi=Xi-1±(Yi-1/2i-3)
Yi=Yi-1±(Xi-1/2i-3)
θi=θi-1±αi-1
其中当Yi-1>=0时,αi取值为-1,当Yi-1<0时,αi取值为+1;当Xi-1>=0且Yi-1>=0时,Xi式取“+”运算,Yi式“-”运算,否则Xi式取“-”运算,Yi式“+”运算。旋转运算后生成的Xi即为信号的幅度A,θi即为信号的相位θ,如图3所示,图3中t1为在某一时刻的采样,1为相位θ,2为幅度A,2i-3在FPGA中通过移位即可实现。因此,本发明通过简单的加法和移位即可实现直角坐标到极坐标的转换,运算效率高,占用资源少。
3.解调信号频谱生成与调制参数计算技术
本发明根据解调信号的频谱来计算调制参数,FFT点数为4096点,采用xilinx提供的开放式内核软件,采用流水线形式,可连续进行频谱的生成。在FFT前,为了抑制频谱泄漏和FFT的栅栏效应,本发明采用加窗的形式来进行抑制,抑制度良好。由于流水线式FFT内核的输入索引号并不是连续的,但FFT内核提供一个提前3个时钟周期的xn_index信号来表征当前的输入索引号,因此,本发明利用此索引号作为汉宁窗查找表的地址,查找出对应位置的窗函数值后,再通过乘法器与时域波形相乘后作为FFT的实部输入,虚部输入固定为0,查表到乘法器的输出正好延时3个时钟周期,可保证到达FFT内核的实部与窗函数对应正确,对FFT内核输出的实部和虚部信号进行求模操作后即生成了解调信号的频谱,该频谱进行存储后,可由PC机读取进行显示,并进行调制参数的计算,计算公式如下:
信噪比(SNR)=10*log10(Ps/Pn)
信纳比(SINAD)=10*log10(Ps/(Pn+Pd))
失真度=Pd/Ph[0]
其中Ps为信号的总功率,Pn为噪声功率,Pd为谐波功率,Ph[0]为基波功率。在计算基波和谐波信号功率时,根据汉宁窗的带宽特性,本发明对峰值点本身和相邻的6个幅度值求和后作为该频点的功率值,计算精度高,失真度分析精度可达±0.5%,SNR和SINAD分析精度可达±1.0dB。
本发明是采用基于FPGA的全数字解调与滤波技术,通过中频带限滤波、音频生成、音频滤波、音频FFT等操作,利用同一处理流程实现了FM、AM这两种信号的解调与分析;解调带宽大且可调节,最高可达20MHz,通过CIC频响补偿滤波技术使带内平坦度极高;支持解调参数计算,且精度高;电路简单,扩展性好。
实施例2
在上述实施例的基础上,一种全数字FM/AM信号解调与分析方法,其中,包括以下步骤:
步骤一:将输入的FM/AM信号经过射频变换模块101后,将预定范围内的输入射频信号变换到固定的中频信号,经过模数转换器采样产生数字信号输入到FPGA10中;
步骤二:将输入到FPGA10中的数字信号经数字下变频模块102处理后,产生I1、Q1两路基带信号送入抽取补偿滤波模块103,经过HB抽取滤波和CIC抽取滤波,再用FIR滤波器完成幅度补偿滤波,确保带内平坦度和带外抑制特性;
步骤三:将滤波补偿后的I2、Q2两路基带信号经坐标转换模块104完成直角坐标到极坐标的转换,生成每个采样点的幅度信息和相位信息,再输出到可装载数字滤波单元105;
步骤四:可装载数字滤波单元完成解调信号的滤波,通过可装载滤波因子的FIR滤波器,将外部任意的滤波因子装载进来,实现低通、高通、带通滤波,同时根据时域波形完成触发处理,支持上升沿、下降沿触发,经过滤波后的解调信号时域波形由PC机从FPGA10中读取分析和显示,时域波形同时到达傅里叶变换(FFT)单元106;
步骤五:FFT单元106通过对解调后的时域信号进行加窗和傅里叶变换处理,生成频谱波形,由PC机从FPGA中读取显示并根据频谱完成调制参数的计算。
上述中,所述步骤一中所述输入射频信号变换到固定的中频信号的具体步骤为:将中频信号设定为140MHz,再采用200MHz采样率的模数转换器对140MHz中频信号进行采样,将采样位数设为16位,再将产生的数字信号输出。
上述中,所述步骤二中所述数字信号经数字下变频处理的具体步骤为:在FPGA中将数字信号分别乘以一个正交的数字载波信号cos和sin,将数字载波信号的频率设定为140MHz,与所述数字信号相乘后产生I1、Q1两路基带信号。
上述中,所述步骤二中所述HB抽取滤波为5级级联半带滤波器;所述CIC抽取滤波为梳状抽取滤波器。
上述中,所述步骤三中的所述幅度信息为AM解调出的信号,直接输出到可装载数字滤波单元;所述相位信息经过鉴频器后生成FM解调出的信号,再输出到可装载数字滤波单元。
上述中,所述步骤三中所述直角坐标到极坐标的转换的具体步骤为:将直角坐标[AI,AQ]转化为极坐标后生成基带信号的相位θ和幅度A,连续不断的对输入的直角坐标进行转换,直到其极坐标的Y轴成分为0时完成旋转,运算公式如下:
Xi=Xi-1±(Yi-1/2i-3);
Yi=Yi-1±(Xi-1/2i-3);
θi=θi-1±αi-1
其中,当Yi-1>=0时,αi取值为-1,当Yi-1<0时,αi取值为+1;当Xi-1>=0且Yi-1>=0时,Xi式取“+”运算,Yi式“-”运算,否则Xi式取“-”运算,Yi式“+”运算,旋转运算后生成的Xi即为信号的幅度A,θi即为信号的相位θ,2i-3在FPGA中通过移位实现。
上述中,所述步骤五中所述FFT点数为4096点,在FFT内核提供一个提前3个时钟周期的xn_index信号来表征当前的输入索引号,利用所述索引号作为汉宁窗查找表的地址,查找出对应位置的窗函数值后,再通过乘法器与时域波形相乘后作为FFT的实部输入,虚部输入固定为0,查表到乘法器的输出正好延时3个时钟周期,以保证到达FFT内核的实部与窗函数对应正确,对FFT内核输出的实部和虚部信号进行求模操作后即生成了解调信号的频谱,该频谱进行存储后,由PC机读取进行显示,并进行调制参数的计算,计算公式如下:
信噪比(SNR)=10*log10(Ps/Pn)
信纳比(SINAD)=10*log10(Ps/(Pn+Pd))
失真度=Pd/Ph[0]
其中,Ps为信号的总功率,Pn为噪声功率,Pd为谐波功率,Ph[0]为基波功率。
采用上述方案:1、解调带宽大,并在20MHz到6.25kHz的范围内任意可调,通过CIC频响反补技术可保证极高的带内幅度平坦度;2、利用同一处理流程实现了FM、AM两种信号的解调与分析,并且直接生成了解调信号的时域波形和频谱,支持任意的音频滤波,解调功能全面;3、利用加窗和4096点FFT生成的频谱计算调制参数精度高,流水线式操作可连续进行运算,且运行速度快。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (7)

1.一种全数字FM/AM信号解调与分析方法,其特征在于,包括以下步骤:
步骤一:将输入的FM/AM信号经过射频变换模块后,将预定范围内的输入射频信号变换到固定的中频信号,经过模数转换器采样产生数字信号输入到FPGA中;
步骤二:将输入到FPGA中的数字信号经数字下变频模块处理后,产生I1、Q1两路基带信号送入抽取补偿滤波模块,经过HB抽取滤波和CIC抽取滤波,再用FIR滤波器完成CIC频响补偿滤波,确保带内平坦度和带外抑制特性;
步骤三:将滤波补偿后的I2、Q2两路基带信号经坐标转换模块完成直角坐标到极坐标的转换,生成每个采样点的幅度信息和相位信息,再输出到可装载数字滤波单元;
步骤四:可装载数字滤波单元完成解调信号的滤波,通过可装载滤波因子的FIR滤波器,将外部任意的滤波因子装载进来,实现低通、高通、带通滤波,同时根据时域波形完成触发处理,支持上升沿、下降沿触发,经过滤波后的解调信号时域波形由PC机从FPGA中读取分析和显示,时域波形同时到达傅里叶变换(FFT)单元;
步骤五:FFT单元通过对解调后的时域信号进行加窗和傅里叶变换处理,生成频谱波形,由PC机从FPGA中读取显示并根据频谱完成调制参数的计算。
2.如权利要求1所述的全数字FM/AM信号解调与分析方法,其特征在于,所述步骤一中所述输入射频信号变换到固定的中频信号的具体步骤为:将中频信号设定为140MHz,再采用200MHz采样率的模数转换器对140MHz中频信号进行采样,将采样位数设为16位,再将产生的数字信号输出。
3.如权利要求2所述的全数字FM/AM信号解调与分析方法,其特征在于,所述步骤二中所述数字信号经数字下变频处理的具体步骤为:在FPGA中将数字信号分别乘以一个正交的数字载波信号cos和sin,将数字载波信号的频率设定为140MHz,与所述数字信号相乘后产生I1、Q1两路基带信号。
4.如权利要求3所述的全数字FM/AM信号解调与分析方法,其特征在于,所述步骤二中所述HB抽取滤波为5级级联半带滤波器;所述CIC抽取滤波为梳状抽取滤波器。
5.如权利要求3所述的全数字FM/AM信号解调与分析方法,其特征在于,所述步骤三中的所述幅度信息为AM解调出的信号,直接输出到可装载数字滤波单元;所述相位信息经过鉴频器后生成FM解调出的信号,再输出到可装载数字滤波单元。
6.如权利要求5所述的全数字FM/AM信号解调与分析方法,其特征在于,所述步骤三中所述直角坐标到极坐标的转换的具体步骤为:将直角坐标[AI,AQ]转化为极坐标后生成基带信号的相位θ和幅度A,连续不断的对输入的直角坐标进行转换,直到其极坐标的Y轴成分为0时完成旋转,运算公式如下:
Xi=Xi-1±(Yi-1/2i-3);
Yi=Yi-1±(Xi-1/2i-3);
θi=θi-1±αi-1
其中当Yi-1>=0时,αi取值为-1,当Yi-1<0时,αi取值为+1;当Xi-1>=0且Yi-1>=0时,Xi式取“+”运算,Yi式“-”运算,否则Xi式取“-”运算,Yi式“+”运算,旋转运算后生成的Xi即为信号的幅度A,θi即为信号的相位θ,2i-3在FPGA中通过移位实现。
7.如权利要求6所述的全数字FM/AM信号解调与分析方法,其特征在于,所述步骤五中所述FFT点数为4096点,在FFT内核提供一个提前3个时钟周期的xn_index信号来表征当前的输入索引号,利用所述索引号作为汉宁窗查找表的地址,查找出对应位置的窗函数值后,再通过乘法器与时域波形相乘后作为FFT的实部输入,虚部输入固定为0,查表到乘法器的输出正好延时3个时钟周期,以保证到达FFT内核的实部与窗函数对应正确,对FFT内核输出的实部和虚部信号进行求模操作后即生成了解调信号的频谱,该频谱进行存储后,由PC机读取进行显示,并进行调制参数的计算,计算公式如下:
信噪比(SNR)=10*log10(Ps/Pn)
信纳比(SINAD)=10*log10(Ps/(Pn+Pd))
失真度=Pd/Ph[0]
其中,Ps为信号的总功率,Pn为噪声功率,Pd为谐波功率,Ph[0]为基波功率。
CN201410168998.6A 2014-04-24 2014-04-24 一种全数字fm/am信号解调与分析方法 Expired - Fee Related CN103973620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410168998.6A CN103973620B (zh) 2014-04-24 2014-04-24 一种全数字fm/am信号解调与分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410168998.6A CN103973620B (zh) 2014-04-24 2014-04-24 一种全数字fm/am信号解调与分析方法

Publications (2)

Publication Number Publication Date
CN103973620A true CN103973620A (zh) 2014-08-06
CN103973620B CN103973620B (zh) 2018-01-02

Family

ID=51242673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410168998.6A Expired - Fee Related CN103973620B (zh) 2014-04-24 2014-04-24 一种全数字fm/am信号解调与分析方法

Country Status (1)

Country Link
CN (1) CN103973620B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106375040A (zh) * 2015-07-23 2017-02-01 中国电子科技集团公司第四十研究所 一种基于fpga频谱监测带宽内任意频率点实时解调实现方法
CN107528543A (zh) * 2017-10-16 2017-12-29 中国电子科技集团公司第五十四研究所 一种匹配fft处理的高效扫频信号产生方法
CN107888206A (zh) * 2017-11-09 2018-04-06 中国电子科技集团公司第二十九研究所 一种am语音信号解调数据音频恢复方法及记录方法
CN109167587A (zh) * 2018-10-19 2019-01-08 海鹰企业集团有限责任公司 基于fpga的信号带通滤波处理方法及系统
CN109194667A (zh) * 2018-09-18 2019-01-11 上海创远仪器技术股份有限公司 基于频域检测的实现iq数据信号数据压缩与传输功能的装置
CN109327413A (zh) * 2018-09-13 2019-02-12 阳光电源股份有限公司 一种模拟与数字结合的解调系统以及解调方法
CN111800358A (zh) * 2020-07-06 2020-10-20 杭州画印科技有限公司 一种自适应模拟信号解调方法
CN111935047A (zh) * 2020-06-30 2020-11-13 西安空间无线电技术研究所 一种低信噪比损失的fm信号解调方法及系统
CN111966322A (zh) * 2020-08-31 2020-11-20 广州视源电子科技股份有限公司 音频信号处理方法、装置、设备及存储介质
CN112910475A (zh) * 2021-05-10 2021-06-04 成都瀚德科技有限公司 应对复杂信号监测的数字接收机
CN113765545A (zh) * 2021-09-02 2021-12-07 上海微波技术研究所(中国电子科技集团公司第五十研究所) 蓝牙接收机解调系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132382A (zh) * 2006-08-22 2008-02-27 捷顶微电子(上海)有限公司 调频发射器
US20110235688A1 (en) * 2010-03-26 2011-09-29 Fujitsu Limited Receiving device
CN102752248A (zh) * 2012-07-18 2012-10-24 北京昆腾微电子有限公司 集成调幅广播接收机及其接收方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132382A (zh) * 2006-08-22 2008-02-27 捷顶微电子(上海)有限公司 调频发射器
US20110235688A1 (en) * 2010-03-26 2011-09-29 Fujitsu Limited Receiving device
CN102752248A (zh) * 2012-07-18 2012-10-24 北京昆腾微电子有限公司 集成调幅广播接收机及其接收方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张鹏: "软件无线电技术在移动通信测试领域的应用", 《电子测量技术》 *
郑超: "通用数字下变频器的研究及应用", 《中国优秀硕士学位论文全文数据库》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106375040A (zh) * 2015-07-23 2017-02-01 中国电子科技集团公司第四十研究所 一种基于fpga频谱监测带宽内任意频率点实时解调实现方法
CN107528543A (zh) * 2017-10-16 2017-12-29 中国电子科技集团公司第五十四研究所 一种匹配fft处理的高效扫频信号产生方法
CN107528543B (zh) * 2017-10-16 2020-06-30 中国电子科技集团公司第五十四研究所 一种匹配fft处理的高效扫频信号产生方法
CN107888206A (zh) * 2017-11-09 2018-04-06 中国电子科技集团公司第二十九研究所 一种am语音信号解调数据音频恢复方法及记录方法
CN107888206B (zh) * 2017-11-09 2019-11-19 中国电子科技集团公司第二十九研究所 一种am语音信号解调数据音频恢复方法及记录方法
CN109327413B (zh) * 2018-09-13 2021-06-11 阳光电源股份有限公司 一种模拟与数字结合的解调系统以及解调方法
CN109327413A (zh) * 2018-09-13 2019-02-12 阳光电源股份有限公司 一种模拟与数字结合的解调系统以及解调方法
CN109194667A (zh) * 2018-09-18 2019-01-11 上海创远仪器技术股份有限公司 基于频域检测的实现iq数据信号数据压缩与传输功能的装置
CN109167587A (zh) * 2018-10-19 2019-01-08 海鹰企业集团有限责任公司 基于fpga的信号带通滤波处理方法及系统
CN111935047A (zh) * 2020-06-30 2020-11-13 西安空间无线电技术研究所 一种低信噪比损失的fm信号解调方法及系统
CN111800358A (zh) * 2020-07-06 2020-10-20 杭州画印科技有限公司 一种自适应模拟信号解调方法
CN111966322A (zh) * 2020-08-31 2020-11-20 广州视源电子科技股份有限公司 音频信号处理方法、装置、设备及存储介质
CN112910475A (zh) * 2021-05-10 2021-06-04 成都瀚德科技有限公司 应对复杂信号监测的数字接收机
CN113765545A (zh) * 2021-09-02 2021-12-07 上海微波技术研究所(中国电子科技集团公司第五十研究所) 蓝牙接收机解调系统及方法
CN113765545B (zh) * 2021-09-02 2022-10-28 上海微波技术研究所(中国电子科技集团公司第五十研究所) 蓝牙接收机解调系统及方法

Also Published As

Publication number Publication date
CN103973620B (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
CN103973620A (zh) 一种全数字fm/am信号解调与分析方法
CN107239611B (zh) 一种矢量信号分析装置及方法
CN101938445A (zh) Iq不平衡估计及补偿方法
CN108241143B (zh) 基于Costas环的快速测频和跟踪输出装置的实现方法
CN105306405B (zh) 一种无源互调信号时延、频率和相位估计装置与方法
US9912357B1 (en) Digital polar transmitter having a digital front end
CN102396200A (zh) 接收机设备、通信系统、接收方法和通信方法
CN101188430B (zh) 一种宽带码分多址用户设备频偏预补偿的装置和方法
LU101400B1 (en) High-precision estimation method and apparatus for carrier frequency of amplitude modulation signal
CN111585928B (zh) 一种语音信号单边带调制和解调方法及装置
CN111371722B (zh) 针对5g nr带内调制信号实现预失真补偿处理的方法
CN104320207A (zh) 一种矢量信号分析装置及方法
CN103902133A (zh) 电磁触控接收装置和方法
CN110703207A (zh) 无源定位的低频多普勒频率差测量方法及装置
CN101795252A (zh) 直接变频调制方法及其调制装置
CN111683028B (zh) 一种数字等报幅cw信号解调方法
CN102510264A (zh) 数字下变频器及其实现方法
CN107454026A (zh) 三阶交调抑制及消除直流偏置分量的接收方法及接收机
CN107942321B (zh) 一种基于fpga的侧音测距中的测距音处理方法
CN203747808U (zh) 一种dvb-t频段的认知无线电接收机系统
CN112653526A (zh) 一种跳频发射机非线性失真测试装置及测试方法
CN106375040A (zh) 一种基于fpga频谱监测带宽内任意频率点实时解调实现方法
CN108199996A (zh) 基于fpga的独立边带调制信号解调方法
Yan et al. Research on a Low-Complexity Multi-channel High-Precision Amplitude and Phase Calibration Algorithm
Liu et al. Wideband radar frequency measurement receiver based on FPGA without mixer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180102

Termination date: 20200424

CF01 Termination of patent right due to non-payment of annual fee