CN103966436A - Method for recleaning vanadium titanium magnetite concentrate by using alkaline leaching and desliming - Google Patents

Method for recleaning vanadium titanium magnetite concentrate by using alkaline leaching and desliming Download PDF

Info

Publication number
CN103966436A
CN103966436A CN201410166087.XA CN201410166087A CN103966436A CN 103966436 A CN103966436 A CN 103966436A CN 201410166087 A CN201410166087 A CN 201410166087A CN 103966436 A CN103966436 A CN 103966436A
Authority
CN
China
Prior art keywords
content
desliming
concentrate
alkali
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410166087.XA
Other languages
Chinese (zh)
Other versions
CN103966436B (en
Inventor
余自甦
刘晓明
郭客
刘政东
陈巍
全名威
王忠红
宋仁峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Group Mining Co Ltd
Original Assignee
Angang Group Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Group Mining Co Ltd filed Critical Angang Group Mining Co Ltd
Priority to CN201410166087.XA priority Critical patent/CN103966436B/en
Publication of CN103966436A publication Critical patent/CN103966436A/en
Application granted granted Critical
Publication of CN103966436B publication Critical patent/CN103966436B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention discloses a method for recleaning vanadium titanium magnetite concentrate by using alkaline leaching and desliming. The method comprises the following steps: placing vanadium titanium magnetite concentrate into an alkaline solution with the mass concentration of 5-52%, performing alkaline leaching reaction for 0.5-5 hours at the temperature of 260-370 DEG C, and filtering to obtain a filtrate and an alkaline-leached filter cake A; adding water to the A to prepare A to ore slurry with the mass concentration of 21-15 % for performing desliming operation so as to obtain a sand setting B and an overflow C, wherein the sand setting B is a final iron concentrate with the TFe content of 60-68%, and the overflow C is a final titanium concentrate with the TiO2 content of 40-50%. The method has the advantages that the efficient separating of the vanadium titanium magnetite concentrate is realized; the alkali consumption is low; the contents of impurities such as Al and entering a blast furnace can be reduced, in particular the contents of harmful impurities such as TiO2 and S; the blast furnace utilization coefficient is increased; the blast furnace slag discharge capacity is reduced; the ironmaking cost is reduced; the problems of high S content and serious pollution in the smelting process can be solved; meanwhile, the comprehensive utilization of a titanium resource is improved.

Description

Utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again
Technical field
The present invention relates to a kind of ore-dressing technique of v-ti magnetite concentrate, relate in particular to a kind of method that alkali soaks, v-ti magnetite concentrate is selected in desliming again of utilizing.
Background technology
Vanadium titano-magnetite is a kind of complex ore of multiple metallic element, is the magnetite taking iron content, vanadium, titanium as main symbiosis.And v-ti magnetite concentrate is one of product of vanadium titano-magnetite process ore dressing acquisition, wherein vanadium is composed and is stored in titanomagnetite with isomorph, displacement high price iron ion.Titanomagnetite is oikocryst mineral (Fe 3o 4) and chadacryst ore deposit [ulvite 2FeOTiO 2, ilmenite FeOTiO 2, aluminum-spinel (Mg, Fe) (Al, Fe) 2o 4] form complex body.For example, Chinese Panzhihua Region Midi Concentrator v-ti magnetite green ore and select v-ti magnetite concentrate after iron chemistry multielement analysis to the results are shown in Table 1, v-ti magnetite green ore and vanadium titano-magnetite concentrate material phase analysis result are respectively in table 2 and table 3.
The Chinese Panzhihua Region of table 1 Midi Concentrator raw ore and v-ti magnetite concentrate chemistry multielement analysis result
Element TFe FeO mFe S Fe 2O 3 TiO 2 V 2O 5
Raw ore 29.53 21.36 20.20 0.631 17.70 10.54 0.278
Concentrate 54.01 32.42 51.16 0.574 40.97 12.67 0.61
Element SiO 2 Al 2O 3 CaO MgO Co P As
Raw ore 22.80 7.65 6.36 7.23 0.02 0.015 <0.01
Concentrate 3.21 3.30 0.98 2.90 0.02 0.008 <0.010
The Chinese Panzhihua Region of table 2 Midi Concentrator v-ti magnetite green ore titanium, iron chemical phase analysis result
The Chinese Panzhihua Region of table 3 Midi Concentrator vanadium titano-magnetite concentrate titanium, iron chemical phase analysis result
Vanadium titano-magnetite aboundresources in the world, whole world reserves reach more than 40,000,000,000 tons, and reserves in China reaches 98.3 hundred million tons.In v-ti magnetite ore, iron is mainly composed and is stored in titanomagnetite, the TiO in ore 2main tax is stored in granular ilmenite and titanomagnetite.Generally, approximately 57% titanium is composed and is stored in titanomagnetite (mFeTiO 3nFe 3o 4) in, approximately 40% titanium is composed and is stored in ilmenite (FeTiO 3) in, because vanadium titano-magnetite ore composition is complicated, character is special, thereby the comprehensive utilization of this class ore is the international a great problem always thoroughly not solving.This occurrence characteristics of vanadium titano-magnetite mineral has determined to adopt physical concentration method cannot realize from the source of ore effective separation of titanium, iron, cause v-ti magnetite ore after physical concentration, iron concentrate grade low (TFe<55%), the titanium in iron ore concentrate enters blast furnace slag (TiO completely at iron manufacturing process 2content reaches more than 22%) formation vitreum, TiO 2lost actively and cannot economic recovery, meanwhile, titanium recovery rate is low only has 18%.Therefore sort titanium iron ore by the beneficiation method of physics and greatly reduce titanium and the iron value of utilization separately.
China is that first comprehensively extracts the country of iron, vanadium, titanium from complicated vanadium titano-magnetite with technical scale in the world, but characteristic is deposited in the tax that can not fundamentally change iron, the fine and close symbiosis of titanium due to general physical method, therefore, adopt the physical concentration methods such as common gravity separation method, magnetic method, flotation process to carry out titanium, iron separation, efficiency is low, is difficult to select ilmenite concentrate of high grade and that impurity is few or iron ore concentrate; Meanwhile, TiO 2organic efficiency is not high, v-ti magnetite green ore after Mineral separation, approximately 54% TiO 2enter iron ore concentrate, these TiO 2after blast-furnace smelting, almost all enter slag phase, form TiO 2the blast furnace slag of content 20~24%; In addition, because the foreign matter contents such as the S in iron ore concentrate, Si, Al are also too high, above-mentioned reason not only causes that steelmaking furnace utilization coefficient is low, energy consumption is large, titanium resource waste, and amount of slag is large, environmental pollution is serious.
CN2011100879566 discloses " a kind of beneficiation method of ilmenite ", be by v-ti magnetite green ore through ore grinding, alkali soak pre-treatment, filtration, magnetic separation obtains the method for ilmenite concentrate and iron ore concentrate after ore grinding again.The method is by iron content 32.16% with containing TiO 212.11% v-ti magnetite green ore soaks pre-treatment, filtration, magnetic separation processing after ore grinding again by ore grinding, alkali, has formed iron content 59.30% iron ore concentrate and containing TiO 220.15% ilmenite concentrate.Because the method is for ilmenite raw ore, raw ore SiO 2, Al 2o 3, the gangue mineral content such as CaO, MgO is high, the process that alkali soaks will preferentially occur in SiO 2, Al 2o 3with it mineral, alkali soaks and in process, has formed the alkali similar to titanium and soak rear compound, and the NaOH alkali number that alkali soaks the consumption of ferrotianium raw ore is 469Kg/t raw ore, and cost is high; And ferrotianium raw ore alkali soaks the titanium compound of rear formation, soak the compound of the silicon of rear formation with gangue mineral alkali such as quartz, want in follow-up magnetic separation to realize that effectively to separate be very difficult, this has also restricted ferrotianium raw ore alkali and has soaked the raising of rear iron concentrate grade and ilmenite concentrate grade.Meanwhile, the method adopts twice grinding process to change mineral surface physicochemical property, has increased complexity and the process cost of the method.In a word, by this kind of procedure complexity, and in treating processes, quantity of alkali consumption is large, cost is high; Meanwhile, cannot obtain more high-grade iron ore concentrate and ilmenite concentrate.
Summary of the invention
In order to overcome the deficiency of above-mentioned beneficiation method, technical problem to be solved by this invention is on the basis of the effective combination of physics and chemistry beneficiation method, provide a kind of cost low, reclaim quality and efficiency is high, technique is simple, and good operability utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again, realize titanium, iron in v-ti magnetite concentrate have been carried out to high efficiency separation, improve and entered stokehold iron grade, reduced and enter blast furnace TiO 2, the impurity such as S, Si, Al content, improve the capacity factor of a blast furnace, reduce the quantity discharged of blast furnace slag, reduced ironmaking cost, improve TiO simultaneously 2comprehensive utilization of resources rate, reduces environmental pollution.
In order to realize object of the present invention, technical scheme of the present invention is achieved in that
A kind of method that alkali soaks, v-ti magnetite concentrate is selected in desliming again of utilizing of the present invention, is characterized in that comprising the steps:
1) alkali soaks
Be 50%~55%, TiO by TFe content range 2content range is 10%~15%, SiO 2content is 3%~6%, Al 2o 3content is 3%~6%, the v-ti magnetite concentrate of S content >0.5%, be placed in mass concentration and be 5%~52% alkaline solution, at the temperature of 260 DEG C~370 DEG C, alkali soaks reaction 0.5~5 hour, reactant is filtered, obtain filtrate and alkali leaching cake A, described filtrate feeds recovery and processing system;
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that 21%~25% ore pulp carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content range is 60%~68% final iron ore concentrate, and described overflow C is TiO 2content range is 40%~50% final ilmenite concentrate.
Described alkaline solution is any one in NaOH or the KOH aqueous solution, NaOH and KOH mixed aqueous solution.
Described desliming operation adopts the desliming bucket of 3~5 meters of ∮ to carry out desliming operation.
Advantage of the present invention is:
Method synthesis utilization alkali of the present invention soaks, the method for desliming is processed v-ti magnetite concentrate, has realized titanium in v-ti magnetite concentrate, iron high efficiency separation; In isolated iron ore concentrate, S content significantly reduces simultaneously, by more than 0.50% being down to and being less than 0.10%, SiO 2content is down to below 3% by 3%~6%, Al 2o 3content is down to below 3% by 3%~6%, for subsequent smelting has been created better condition.
The process that alkali soaks has been carried out chemical reaction to elements such as Ti, S, Si, Al in v-ti magnetite concentrate, has formed corresponding salt.Different from v-ti magnetite concentrate, SiO in ilmenite raw ore 2content (>20%) and Al 2o 3content (>7%) is far away higher than SiO in v-ti magnetite concentrate 2content (<6%) and Al 2o 3content (<6%), soaks in ilmenite raw ore process at alkali, and the process of soaking due to alkali will preferentially occur in SiO 2, Al 2o 3on mineral, make alkali soak v-ti magnetite concentrate and soak ferrotianium raw ore alkali consumption still less than alkali, better effects if.For example, while soaking with NaOH alkali, the alkali number that the present invention consumes is less than 100kg/t concentrate, and the alkali number 469kg/t raw ore that soaks raw ore consumption than alkali has reduced more than 4.6 times.
Desliming process is pressed granularity and the gravity grading of mineral, and alkali soaks the titanium compound of rear generation than the fine size of magnet mineral, and proportion is little, and the difference of specific gravity of ferrotianium is larger, has realized effective separation of ferrotianium.Iron concentrate grade brings up to 60%~68% by 50%~55%, is less than 0.1%, SiO in iron ore concentrate containing S amount simultaneously 2and Al 2o 3content is all less than 3%, TiO 2content is down to below 6% by 12.91%.Meanwhile, can also obtain TiO 2content is 40%~50% ilmenite concentrate.Adopt the method to realize titanium, iron are effectively separated, reduce and enter blast furnace TiO 2, the impurity such as S, Si, Al content, improve the capacity factor of a blast furnace, reduce the quantity discharged of blast furnace slag, reduced ironmaking cost, improve titanium resource comprehensive utilization ratio simultaneously.
Brief description of the drawings
Fig. 1 is process flow sheet of the present invention.
Embodiment
Below in conjunction with accompanying drawing, the specific embodiment of the present invention is described further:
As shown in Figure 1.
Embodiment 1:
1) alkali soaks
Be 53.1%, TiO by TFe content 2content is 11.2%, SiO 2content is 3.45%, Al 2o 3content is 4.13%, the v-ti magnetite concentrate of S content 0.65%, be placed in mass concentration and be 20% NaOH alkaline solution, at the temperature of 280 DEG C, alkali soaks reaction 4 hours, reactant is filtered, obtain filtrate and alkali leaching cake A, NaOH consumption 81kg/t is to ore deposit, and described filtrate feeds recovery and processing system, and its chemical equation is:
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that the desliming bucket that 24% ore pulp feeds 3.0 meters of ∮ carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content is 61.7% final iron ore concentrate (SiO 2content is 1.50%, Al 2o 3content is 1.65%, S content is 0.02%), described overflow C is TiO 2content is 42% final ilmenite concentrate.
Embodiment 2:
1) alkali soaks
Be 52.6%, TiO by TFe content 2content is 12.4%, SiO 2content is 3.62%, Al 2o 3content is 5.55%, the v-ti magnetite concentrate of S content 0.78%, be placed in mass concentration and be 10% NaOH alkaline solution, at the temperature of 370 DEG C, alkali soaks reaction 5 hours, reactant is filtered, obtain filtrate and alkali leaching cake A, NaOH consumption 95kg/t is to ore deposit, and described filtrate feeds recovery and processing system, and its chemical equation is with embodiment 1.
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that the desliming bucket that 23% ore pulp feeds 5.0 meters of ∮ carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content is 67.7% final iron ore concentrate (SiO 2content is 0.53%, Al 2o 3content is 1.24%, S content is 0.02%), described overflow C is TiO 2content is 46.3% final ilmenite concentrate.
Embodiment 3:
1) alkali soaks
Be 53.2%, TiO by TFe content 2content is 12.7%, SiO 2content is 4.18%, Al 2o 3content is 5.52%, the v-ti magnetite concentrate of S content 0.72%, be placed in mass concentration and be 35% NaOH alkaline solution, at the temperature of 280 DEG C, alkali soaks reaction 3 hours, reactant is filtered, obtain filtrate and alkali leaching cake A, NaOH consumption 86kg/t is to ore deposit, and described filtrate feeds recovery and processing system, and its chemical equation is with embodiment 1.
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that the desliming bucket that 25% ore pulp feeds 5.0 meters of ∮ carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content is 62.5% final iron ore concentrate (SiO 2content is 0.66%, Al 2o 3content is 1.49%, S content is 0.02%), described overflow C is TiO 2content is 41.3% final ilmenite concentrate.
Embodiment 4:
1) alkali soaks
Be 52.5%, TiO by TFe content 2content is 13.8%, SiO 2content is 3.99%, Al 2o 3content is 4.60%, the v-ti magnetite concentrate of S content 0.59%, be placed in mass concentration and be 40% NaOH alkaline solution, at the temperature of 340 DEG C, alkali soaks reaction 2 hours, reactant is filtered, obtain filtrate and alkali leaching cake A, NaOH consumption 90kg/t is to ore deposit, and described filtrate feeds recovery and processing system, and its chemical equation is with embodiment 1.
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that the desliming bucket that 21% ore pulp feeds 3.0 meters of ∮ carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content is 66.9% final iron ore concentrate (SiO 2content is 0.46%, Al 2o 3content is 1.55%, S content is 0.01%), described overflow C is TiO 2content is 45.1% final ilmenite concentrate.
Embodiment 5:
1) alkali soaks
Be 55.1%, TiO by TFe content 2content is 10.1%, SiO 2content is 3.92%, Al 2o 3content is 4.75%, the v-ti magnetite concentrate of S content 0.62%, be placed in mass concentration and be 25% KOH alkaline solution, at the temperature of 360 DEG C, alkali soaks reaction 0.5 hour, reactant is filtered, obtain filtrate and alkali leaching cake A, KOH consumption 77kg/t is to ore deposit, and described filtrate feeds recovery and processing system, and its chemical equation is:
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that the desliming bucket that 21% ore pulp feeds 3.0 meters of ∮ carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content is 65.4% final iron ore concentrate (SiO 2content is 0.55%, Al 2o 3content is 1.76%, S content is 0.01%), described overflow C is TiO 2content is 49.1% final ilmenite concentrate.
Embodiment 6:
1) alkali soaks
Be 53.2%, TiO by TFe content 2content is 12.3%, SiO 2content is 3.78%, Al 2o 3content is 4.66%, the v-ti magnetite concentrate of S content 0.61%, be placed in mass concentration and be 7% KOH alkaline solution, at the temperature of 300 DEG C, alkali soaks reaction 2 hours, reactant is filtered, obtain filtrate and alkali leaching cake A, KOH consumption 75kg/t is to ore deposit, and described filtrate feeds recovery and processing system, and its chemical equation is with embodiment 5.
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that the desliming bucket that 22% ore pulp feeds 5.0 meters of ∮ carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content is 64.6% final iron ore concentrate (SiO 2content is 0.48%, Al 2o 3content is 1.13%, S content is 0.01%), described overflow C is TiO 2content is 43.7% final ilmenite concentrate.
Embodiment 7:
1) alkali soaks
Be 53.2%, TiO by TFe content 2content is 12.3%, SiO 2content is 3.78%, Al 2o 3content is 4.66%, the v-ti magnetite concentrate of S content 0.61%, the alkaline solution that be placed in NaOH mass concentration and be 15%, KOH mass concentration is 5%, at the temperature of 295 DEG C, alkali soaks reaction 3 hours, reactant is filtered, obtain filtrate and alkali leaching cake A, NaOH consumption 30kg/t is to ore deposit, and KOH consumption 45kg/t is to ore deposit, described filtrate feeds recovery and processing system, and its chemical equation is with embodiment 1 and embodiment 5.
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that the desliming bucket that 21% ore pulp feeds 5.0 meters of ∮ carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content is 64.9% final iron ore concentrate (SiO 2content is 0.42%, Al 2o 3content is 1.14%, S content is 0.01%), described overflow C is TiO 2content is 43.2% final ilmenite concentrate.

Claims (3)

1. utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again, it is characterized in that comprising the steps:
1) alkali soaks
Be 50%~55%, TiO by TFe content range 2content range is 10%~15%, SiO 2content is 3%~6%, Al 2o 3content is 3%~6%, the v-ti magnetite concentrate of S content >0.5%, be placed in mass concentration and be 5%~52% alkaline solution, at the temperature of 260 DEG C~370 DEG C, alkali soaks reaction 0.5~5 hour, reactant is filtered, obtain filtrate and alkali leaching cake A, described filtrate feeds recovery and processing system;
2) desliming
By step 1) in alkali leaching cake A add water that to be mixed with mass concentration be that 21%~25% ore pulp carries out desliming operation, obtain sand setting B and overflow C; Described sand setting B is that TFe content range is 60%~68% final iron ore concentrate, and described overflow C is TiO 2content range is 40%~50% final ilmenite concentrate.
2. the method for utilizing alkali to soak desliming to select again v-ti magnetite concentrate according to claim 1, is characterized in that described alkaline solution is any one in NaOH or the KOH aqueous solution, NaOH and KOH mixed aqueous solution.
3. the method for utilizing alkali to soak desliming to select again v-ti magnetite concentrate according to claim 1, is characterized in that described desliming operation adopts the desliming bucket of 3~5 meters of ∮ to carry out desliming operation.
CN201410166087.XA 2014-04-23 2014-04-23 Utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again Active CN103966436B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410166087.XA CN103966436B (en) 2014-04-23 2014-04-23 Utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410166087.XA CN103966436B (en) 2014-04-23 2014-04-23 Utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again

Publications (2)

Publication Number Publication Date
CN103966436A true CN103966436A (en) 2014-08-06
CN103966436B CN103966436B (en) 2015-08-26

Family

ID=51236436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410166087.XA Active CN103966436B (en) 2014-04-23 2014-04-23 Utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again

Country Status (1)

Country Link
CN (1) CN103966436B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878221A (en) * 2015-06-12 2015-09-02 鞍钢集团矿业公司 Method for utilizing oxidation alkaline leaching and desliming to re-concentrate vanadium-titanium magnetite concentrates
CN104962737A (en) * 2015-06-12 2015-10-07 鞍钢集团矿业公司 Method for recleaning vanadium-titanium magnetite concentrate through oxidative alkaline leaching and de-sliming
CN107354292A (en) * 2017-07-04 2017-11-17 鞍钢集团矿业有限公司 A kind of method that iron is carried in the laterite iron ore from high-ferrum low-silicon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179292A (en) * 2011-04-15 2011-09-14 中国地质科学院矿产综合利用研究所 Method for separating and extracting iron, vanadium and titanium from vanadium-titanium magnetite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179292A (en) * 2011-04-15 2011-09-14 中国地质科学院矿产综合利用研究所 Method for separating and extracting iron, vanadium and titanium from vanadium-titanium magnetite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878221A (en) * 2015-06-12 2015-09-02 鞍钢集团矿业公司 Method for utilizing oxidation alkaline leaching and desliming to re-concentrate vanadium-titanium magnetite concentrates
CN104962737A (en) * 2015-06-12 2015-10-07 鞍钢集团矿业公司 Method for recleaning vanadium-titanium magnetite concentrate through oxidative alkaline leaching and de-sliming
CN107354292A (en) * 2017-07-04 2017-11-17 鞍钢集团矿业有限公司 A kind of method that iron is carried in the laterite iron ore from high-ferrum low-silicon
CN107354292B (en) * 2017-07-04 2018-11-09 鞍钢集团矿业有限公司 A method of carrying iron from high-ferrum low-silicon laterite iron ore

Also Published As

Publication number Publication date
CN103966436B (en) 2015-08-26

Similar Documents

Publication Publication Date Title
CN103966435B (en) Alkali leaching, pickling and magnetic separation is utilized to select the method for v-ti magnetite concentrate again
CN103962221B (en) Alkali leaching, classification and reverse flotation is utilized to select the method for v-ti magnetite concentrate again
CN103952533B (en) Calcining, alkali leaching and desliming is utilized to select the method for v-ti magnetite concentrate again
CN103962219B (en) Utilize that alkali soaks, classification and magnetic reconnection close the method for selecting again v-ti magnetite concentrate
CN103977880B (en) Method for recleaning of vanadium-titanium magnetite concentrates by utilizing alkaline leaching, desliming and magnetic-gravity combined separation
CN103966436B (en) Utilize the method that alkali soaks, v-ti magnetite concentrate is selected in desliming again
CN103952532B (en) Utilize the method that alkali soaks, v-ti magnetite concentrate is selected in classification again
CN103966423B (en) Alkali leaching, pickling and gravity treatment is utilized to select the method for v-ti magnetite concentrate again
CN103962222B (en) Utilize the method that v-ti magnetite concentrate is selected in calcining, alkali leaching, desliming and magnetic separation again
CN103949335B (en) Utilize the method that v-ti magnetite concentrate is selected in alkali leaching, classification and magnetic separation again
CN103962226B (en) Calcining, alkali leaching, pickling and magnetic reconnection is utilized to close and select v-ti magnetite concentrate method again
CN103966422B (en) Calcining, alkali leaching, pickling and gravity treatment is utilized to select the method for v-ti magnetite concentrate again
CN103962227B (en) Utilize the method that v-ti magnetite concentrate is selected in alkali leaching, desliming and gravity treatment again
CN103962218B (en) Utilize calcining, alkali leaching, desliming and heavily select the method selecting v-ti magnetite concentrate again
CN104689902A (en) Method for recleaning vanadium-titanium magnetite concentrates by utilizing alkaline leaching, acid pickling, desliming and reverse flotation
CN103962225B (en) The method of utilize that alkali soaks, v-ti magnetite concentrate being selected in classification and gravity treatment again
CN103962228B (en) Utilize calcining, alkali leaching, classification and heavily select the method selecting v-ti magnetite concentrate again
CN103962229A (en) Method for recleaning of vanadium-titanium magnetite concentrates through calcination, alkaline leaching, classification and combination of magnetic separation and gravity concentration
CN103962220B (en) Alkali leaching, pickling, desliming and heavy magnetic associating is utilized to select v-ti magnetite concentrate method again
CN103962223B (en) Utilize the method that v-ti magnetite concentrate is selected in calcining, alkali leaching, classification again
CN103962224B (en) Alkali leaching, pickling and magnetic reconnection is utilized to close the method selecting v-ti magnetite concentrate again
CN103952549B (en) Alkali leaching, pickling and reverse flotation is utilized to select the method for v-ti magnetite concentrate again
CN105296752A (en) Method for recleaning vanadium-titanium magnetite concentrates by using oxidation and alkaline leaching, desliming and combined magneto-gravity separation
CN104878221A (en) Method for utilizing oxidation alkaline leaching and desliming to re-concentrate vanadium-titanium magnetite concentrates
CN104962730A (en) Method for magnetic separation of vanadium-titanium magnetite concentrate through forging, oxidative alkaline leaching and de-sliming

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 114001 Anshan District, Liaoning, No. 219 Road, No. 39, Tiedong

Patentee after: Anshan Iron and Steel Group Mining Co., Ltd.

Address before: 114001 Anshan District, Liaoning, No. 219 Road, No. 39, Tiedong

Patentee before: Anshan Iron & Steel Group Mining Co., Ltd.