CN103964709A - Aluminum dust collection ash and aluminum metal smelting slag reuse method - Google Patents
Aluminum dust collection ash and aluminum metal smelting slag reuse method Download PDFInfo
- Publication number
- CN103964709A CN103964709A CN201310046708.6A CN201310046708A CN103964709A CN 103964709 A CN103964709 A CN 103964709A CN 201310046708 A CN201310046708 A CN 201310046708A CN 103964709 A CN103964709 A CN 103964709A
- Authority
- CN
- China
- Prior art keywords
- slag
- aluminum
- refractory
- mesh
- slag particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002893 slag Substances 0.000 title claims abstract description 79
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000003723 Smelting Methods 0.000 title abstract description 29
- 239000000428 dust Substances 0.000 title abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 59
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000011819 refractory material Substances 0.000 claims abstract description 42
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 27
- 239000007864 aqueous solution Substances 0.000 claims abstract description 14
- 238000004064 recycling Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000005245 sintering Methods 0.000 claims description 13
- 239000008187 granular material Substances 0.000 claims description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 4
- 210000001161 mammalian embryo Anatomy 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 4
- 239000003818 cinder Substances 0.000 claims 4
- 238000009866 aluminium metallurgy Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 239000011230 binding agent Substances 0.000 abstract description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 15
- 238000005336 cracking Methods 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000009172 bursting Effects 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 239000011449 brick Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种铝集尘灰及铝金属冶炼炉渣再利用方法,其将炼铝炉渣加工为炉渣颗粒,使上述炉渣颗粒的粒径大于200网目且小于400网目,让符合条件的炉渣颗粒与一黏结剂水溶液混合,形成一坯料,之后对该坯料加压塑形,形成一耐火材料粗坯,再将该耐火材料粗坯在1050℃~1450℃工作温度下进行烧结,并经降温形成一耐火材料。藉此,可控制炉渣颗粒的粒径,使炉渣颗粒的氮含量有效降低,且当该炉渣颗粒混合黏结剂水溶液后,可以有效减少因水与氮化铝反应而逸出氨气的现象,以减少耐火材料粗坯或耐火材料的龟裂或爆裂现象,而达到制作成本低廉以及耐火材料表面细致度佳的功效。
A method for recycling aluminum dust ash and aluminum metal smelting slag, wherein the aluminum smelting slag is processed into slag particles, the particle size of the slag particles is greater than 200 mesh and less than 400 mesh, the slag particles that meet the conditions are mixed with a binder aqueous solution to form a blank, and then the blank is pressurized and shaped to form a refractory rough blank, and then the refractory rough blank is sintered at a working temperature of 1050°C to 1450°C, and cooled to form a refractory material. In this way, the particle size of the slag particles can be controlled, and the nitrogen content of the slag particles can be effectively reduced. When the slag particles are mixed with the binder aqueous solution, the phenomenon of ammonia gas escaping due to the reaction of water and aluminum nitride can be effectively reduced, so as to reduce the cracking or bursting of the refractory rough blank or the refractory material, thereby achieving the effect of low production cost and good surface fineness of the refractory material.
Description
技术领域 technical field
本发明有关于一种铝集尘灰及铝金属冶炼炉渣再利用方法,特别是指一种可控制炉渣颗粒的粒径,使炉渣颗粒的氮含量有效降低,且当该炉渣颗粒混合黏结剂水溶液后,可以有效减少因水与氮化铝反应而逸出氨气的现象,以减少耐火材料粗胚或耐火材料的龟裂或爆裂现象,而达到制作成本低廉以及耐火材料表面细致度佳的功效。 The invention relates to a method for recycling aluminum dust collection ash and aluminum metal smelting slag, in particular to a method that can control the particle size of slag particles to effectively reduce the nitrogen content of slag particles, and when the slag particles are mixed with an aqueous binder solution Finally, it can effectively reduce the phenomenon of ammonia gas escaping due to the reaction between water and aluminum nitride, so as to reduce the cracking or bursting of rough refractory material or refractory material, and achieve the effect of low production cost and good surface fineness of refractory material .
背景技术 Background technique
铝的熔炼过程中会产生炉渣,炉渣中包含有铝的氧化物与氮化物,其中氮化物会与潮湿空气中的水分或雨水反应而形成氨气外逸,因此未经处理的炉渣对环境有一定程度的影响。 The smelting process of aluminum will produce slag, which contains aluminum oxides and nitrides, among which the nitrides will react with moisture in the humid air or rainwater to form ammonia gas, so the untreated slag is harmful to the environment. a certain degree of influence.
中国台湾发明专利第583155号,揭露一种将铝渣灰资源化利用的方法,主要是将炼铝炉渣分选回收金属铝后剩余的铝渣灰废弃物进行煅烧,制成耐火材料的原料,以达成铝渣灰资源化目的,并创造更高的经济价值;其方法是将铝渣灰利用高温窑炉煅烧成主要成分为氧化铝(矿物结晶相为刚玉)的材料,以做为耐火材料原料,不仅可有效解决铝渣灰废弃物处理的问题,且可节省生产耐火材料能源及避免资源的浪费。 China Taiwan Invention Patent No. 583155 discloses a method for resource utilization of aluminum slag ash, which is mainly to calcine the remaining aluminum slag ash waste after the aluminum smelting slag is sorted and recycled to make the raw material of refractory materials. In order to achieve the purpose of recycling aluminum slag ash and create higher economic value; the method is to use high-temperature kiln to calcinate aluminum slag ash into a material whose main component is alumina (the mineral crystal phase is corundum) as a refractory material Raw materials can not only effectively solve the problem of aluminum slag ash waste disposal, but also save energy in the production of refractory materials and avoid waste of resources.
上述中国台湾发明专利第583155号,虽然可以将铝渣灰处理成为耐火砖、耐火泥、浇注料的原料,但对于如何制作耐火砖以及如何确保制作耐火砖过程中的产品良率则完全未予揭露。 The above-mentioned Taiwan Invention Patent No. 583155, although aluminum slag ash can be processed into raw materials for refractory bricks, refractory mud, and castables, how to make refractory bricks and how to ensure the product yield in the process of making refractory bricks is completely ignored. expose.
此外,民国100年三月出版的《矿冶》期刊,其中第51页起刊载有“炼铝炉渣为原料制作耐火材料之研究”,其中揭露耐火材料的制作方式为将炼铝炉渣(粒径介于100—200 mesh) 依照配比来和黏结剂水溶液(羧甲基纤维素水溶液) 进行混拌,经由单轴加压(20 吨) 成形和高温烧结(1100-1400℃) 来制作耐火材料。 In addition, in the journal "Mine and Metallurgy" published in March 100 of the Republic of China, starting from page 51, it published "Research on the Production of Refractory Materials Using Aluminum Smelting Slag as Raw Materials", which revealed that the production method of refractory materials was to use aluminum smelting slag (particle size Between 100-200 mesh) according to the ratio to mix with binder aqueous solution (carboxymethyl cellulose aqueous solution), and make refractory materials through uniaxial pressure (20 tons) forming and high-temperature sintering (1100-1400°C) .
但依上述“炼铝炉渣为原料制作耐火材料之研究”所揭露的内容制作耐火材料(耐火砖),却发现存在有下列缺失: However, the refractory materials (refractory bricks) were produced according to the content disclosed in the above-mentioned "Research on the Production of Refractory Materials Using Aluminum Smelting Slag as Raw Materials", but the following deficiencies were found:
1. 炼铝炉渣与黏结剂水溶液混合并加压成为耐火材料粗胚后,在烧结之前,该耐火材料粗胚会因加压有龟裂或爆裂现象。 1. After the aluminum smelting slag is mixed with the binder aqueous solution and pressurized to form a rough refractory material, before sintering, the rough refractory material will crack or burst due to pressure.
2. 耐火砖中粗胚的氮含量偏高,遇湿会因下列化学反应而逸出刺鼻的氨气。 AlN+3H2O→Al(OH)3↓+NH3↑ 2. The nitrogen content of rough embryos in refractory bricks is relatively high, and when wet, pungent ammonia gas will escape due to the following chemical reactions. AlN+3H 2 O→Al(OH) 3 ↓+NH 3 ↑
3. 即使烧结前的耐火材料粗胚未发生龟裂或爆裂,但耐火材料粗胚在高温烧结过程中,耐火砖会因高温烧结产生龟裂或爆裂现象。 3. Even if the rough refractory material before sintering does not crack or burst, the refractory brick will crack or burst during high temperature sintering of the rough refractory material.
4. 耐火砖的表面细致度不佳(较为粗糙)。 4. The surface fineness of refractory bricks is not good (rough).
探究造成上列缺失的原因,主要在于该研究所揭露的制造方法,其炼铝炉渣中的氮化物(氮化铝)含量偏高(约9506ppm),由于该研究无法有效降低炼铝炉渣中氮化物的含量,因此该耐火材料粗胚中的氮化物遇黏结剂水溶液所产生的氨气外逸现象,是造成耐火材料粗胚龟裂或爆裂的主因。 To explore the reasons for the lack of the above, it is mainly due to the manufacturing method disclosed by the research, the nitride (aluminum nitride) content in the aluminum smelting slag is high (about 9506ppm), because the research cannot effectively reduce the nitrogen in the aluminum smelting slag Therefore, the ammonia gas escape phenomenon caused by the nitrogen compound in the refractory rough embryo meeting the binder aqueous solution is the main cause of cracking or bursting of the refractory rough embryo.
因此,如何有效降低炼铝炉渣中氮化物的含量,是减少后续氨气外逸及耐火材料粗胚龟裂或爆裂现象的主要关键。 Therefore, how to effectively reduce the content of nitrides in aluminum smelting slag is the main key to reduce the subsequent leakage of ammonia gas and the cracking or bursting of rough refractory materials.
发明内容 Contents of the invention
本发明提供一种铝集尘灰及铝金属冶炼炉渣再利用方法,其主要目的在于,可控制炉渣颗粒的粒径,使炉渣颗粒的氮含量有效降低,且当该炉渣颗粒混合黏结剂水溶液后,可以有效减少因水与氮化铝反应而逸出氨气的现象,以减少耐火材料粗胚或耐火材料的龟裂或爆裂现象,而达到制作成本低廉以及耐火材料表面细致度佳的功效。 The invention provides a method for reusing aluminum dust collection ash and aluminum metal smelting slag, the main purpose of which is to control the particle size of slag particles to effectively reduce the nitrogen content of slag particles, and when the slag particles are mixed with a binder aqueous solution , can effectively reduce the phenomenon of ammonia gas escaping due to the reaction of water and aluminum nitride, so as to reduce the cracking or bursting of rough refractory material or refractory material, and achieve the effect of low production cost and good surface fineness of refractory material.
本发明一种铝集尘灰及铝金属冶炼炉渣再利用方法,包括下列步骤: A method for reusing aluminum dust collection ash and aluminum metal smelting slag of the present invention comprises the following steps:
步骤一:将炼铝炉渣加工为炉渣颗粒; Step 1: processing aluminum smelting slag into slag particles;
步骤二:使上述炉渣颗粒的粒径大于200网目且小于400网目; Step 2: Make the particle size of the above-mentioned slag particles larger than 200 mesh and smaller than 400 mesh;
步骤三:使符合步骤二条件的炉渣颗粒与一黏结剂水溶液混合,形成一胚料; Step 3: mixing the slag particles meeting the conditions of step 2 with an aqueous binder solution to form a billet;
步骤四:对该胚料加压塑形,形成一耐火材料粗胚; Step 4: pressurize and shape the blank to form a rough blank of refractory material;
步骤五:对该耐火材料粗胚在1050℃~1450℃工作温度下进行烧结,并经降温形成一耐火材料。 Step 5: Sintering the rough refractory material blank at a working temperature of 1050° C. to 1450° C., and cooling down to form a refractory material.
上述方法中,在步骤二中进一步执行一炉渣颗粒氮含量检测程序,以确认炉渣颗粒的氮含量介于4400ppm~7000ppm之间。 In the above method, a procedure for detecting the nitrogen content of the slag particles is further carried out in step 2 to confirm that the nitrogen content of the slag particles is between 4400 ppm and 7000 ppm.
上述方法中,该黏结剂水溶液为水与羧甲基纤维素的混合溶液,该黏结剂添加量介于3wt%~12 wt%。 In the above method, the binder aqueous solution is a mixed solution of water and carboxymethyl cellulose, and the binder is added in an amount ranging from 3 wt% to 12 wt%.
上述方法中,该步骤四的压力介于25吨~250吨之间。 In the above method, the pressure in step 4 is between 25 tons and 250 tons.
与现有技术相比,本发明所具有的有益效果为: Compared with prior art, the beneficial effect that the present invention has is:
1. 藉由控制炉渣颗粒的粒径,使其大于200网目(mesh)且小于400网目(mesh),可以使炉渣颗粒中的氮含量降至4705ppm-6880ppm,有效解决耐火材料的龟裂或爆裂、龟裂或爆裂等问题。 1. By controlling the particle size of the slag particles to make it larger than 200 mesh (mesh) and smaller than 400 mesh (mesh), the nitrogen content in the slag particles can be reduced to 4705ppm-6880ppm, effectively solving the cracking of refractory materials or popping, cracking or popping problems.
2. 控制炉渣颗粒的粒径符合上述网目,只需以研磨方式即可达成,成本低廉且加工迅速。 2. To control the particle size of slag particles to meet the above mesh, it can be achieved only by grinding, which is low cost and fast processing.
3. 炉渣颗粒中的氮含量降低,耐火材料粗胚的氨气外逸现象可以随之有效降低。 3. The nitrogen content in the slag particles is reduced, and the ammonia gas escape phenomenon of the rough refractory material can be effectively reduced accordingly.
4. 控制炉渣颗粒的粒径控制于200网目~400网目之间,耐火砖的表面细致度更佳。 4. Control the particle size of slag particles between 200 mesh and 400 mesh, and the surface fineness of refractory bricks is better.
附图说明 Description of drawings
图1为本发明步骤一示意图。 Fig. 1 is a schematic diagram of Step 1 of the present invention.
图2为本发明步骤二示意图。 Fig. 2 is a schematic diagram of Step 2 of the present invention.
图3为本发明步骤三示意图。 Fig. 3 is a schematic diagram of Step 3 of the present invention.
图4为本发明步骤四示意图。 Fig. 4 is a schematic diagram of Step 4 of the present invention.
图5为本发明步骤五示意图。 Fig. 5 is a schematic diagram of Step 5 of the present invention.
图6为侦测不同粒径炼铝炉渣的相对含氮量对照图。 Fig. 6 is a comparison chart of detecting relative nitrogen content of aluminum smelting slag with different particle sizes.
主要组件符号说明 Explanation of main component symbols
炼铝炉渣1; Aluminum smelting slag 1;
炉渣颗粒1a; slag particles 1a;
400网目的炉渣颗粒10a; 400 mesh slag particles 10a;
黏结剂2; binder2;
胚料3; Blank material 3;
耐火材料粗胚4; Refractory raw material 4;
耐火材料5。 Refractory material 5.
具体实施方式 Detailed ways
请参阅图1~图5,分别为本发明步骤一示意图、本发明步骤二示意图、本发明步骤三示意图、本发明步骤四示意图以及本发明步骤五示意图。如图所示,本发明为一种铝集尘灰及铝金属冶炼炉渣再利用方法,其至少包含下列步骤: Please refer to Figures 1 to 5, which are respectively a schematic diagram of step 1 of the present invention, a schematic diagram of step 2 of the present invention, a schematic diagram of step 3 of the present invention, a schematic diagram of step 4 of the present invention, and a schematic diagram of step 5 of the present invention. As shown in the figure, the present invention is a method for reusing aluminum dust collection ash and aluminum metal smelting slag, which at least includes the following steps:
步骤一:将炼铝炉渣1以研磨方式进行造粒,形成炉渣颗粒1a。 Step 1: Grinding the aluminum smelting slag 1 into granules to form slag particles 1a.
步骤二:筛选粒径介于200网目(mesh)至400网目之间的炉渣颗粒1a,本发明实施例中是以筛选400网目的炉渣颗粒10a为耐火砖原料,对该400网目的炉渣颗粒10a执行一氮含量检测程序,确认其氮含量介于4000ppm-4500ppm之间。 Step 2: Screening slag particles 1a with a particle size between 200 mesh (mesh) and 400 mesh. In the embodiment of the present invention, slag particles 10a of 400 mesh are screened as raw materials for refractory bricks. For the 400 mesh slag The particles 10a are subjected to a nitrogen content detection procedure to confirm that the nitrogen content is between 4000ppm-4500ppm.
步骤三:将该400网目的炉渣颗粒10a与黏结剂2混合,形成一胚料3,该黏结剂2水溶液为含羧甲基纤维素的混合溶液,本实施例黏结剂2水溶液添加量为8 wt%。 Step 3: Mix the 400-mesh slag particles 10a with the binder 2 to form a blank 3. The aqueous solution of the binder 2 is a mixed solution containing carboxymethyl cellulose. The amount of the aqueous solution of the binder 2 in this embodiment is 8 wt%.
步骤四:对上述胚料3施以25吨~250吨的加压力量,并塑形为一耐火材料粗胚4,该过程可以在一砖型模具中执行加压操作而完成。 Step 4: Apply a pressure of 25 tons to 250 tons to the above-mentioned blank 3, and shape it into a rough refractory blank 4. This process can be completed by performing a pressurization operation in a brick mold.
步骤五:对该耐火材料粗胚4在1050℃至1450℃的工作温度下进行烧结,并经降温形成一耐火材料5,而烧结过程中以1400℃为较佳温度。 Step 5: Sintering the rough refractory material blank 4 at a working temperature of 1050°C to 1450°C, and cooling down to form a refractory material 5, and a preferred temperature of 1400°C is used in the sintering process.
图6以两台GC和3组侦测器(气相层析+热导侦测器) + (气相层析+火焰离子化侦测器+氮化学发光侦测器)的串联所组成(GC-TCD/FID/NCD)以侦测不同粒径炼铝炉渣的相对含氮量对照图,实验中取炼铝炉渣10公斤置于密闭式搅拌装置,仿真工厂运作操作参数,依比例加入羧甲基纤维素CMC黏结剂水溶液,控制搅拌单元转速进行搅拌,密闭式搅拌装置出气口设置一抽气泵,将反应器内气体抽至所建置一系列分析设备(之前已叙述),进行连续在线分析。由图6可知,当炼铝炉渣粒径为已知技术所揭露的100~200 网目时,其氮含量为9506ppm,但炼铝炉渣粒径介于200~325网目时,其氮含量则明显降低6880ppm,如果炼铝炉渣粒径介于325~400网目时,其氮含量则更明显降低至4705ppm,而炼铝炉渣粒径大于400网目时,氮含量只有4405ppm。因此,本发明控制炼铝炉渣的粒径大于200网目(mesh)且小于400网目(mesh),其与已知技术相较,氮含量可以有效被控制为只有已知技术的49.49%至72.37%,效果极为显著。 Figure 6 consists of two GCs and three sets of detectors (gas chromatography + thermal conductivity detector) + (gas chromatography + flame ionization detector + nitrogen chemiluminescence detector) in series (GC- TCD/FID/NCD) is used to detect the relative nitrogen content of aluminum smelting slag with different particle sizes. In the experiment, 10 kg of aluminum smelting slag was placed in a closed stirring device to simulate the operating parameters of the factory, and carboxymethyl was added in proportion The cellulose CMC binder aqueous solution is stirred by controlling the speed of the stirring unit. An air pump is installed at the gas outlet of the closed stirring device to pump the gas in the reactor to a series of analysis equipment (described before) for continuous on-line analysis. It can be seen from Figure 6 that when the particle size of the aluminum smelting slag is 100-200 mesh disclosed by the known technology, its nitrogen content is 9506 ppm, but when the particle size of the aluminum smelting slag is between 200-325 mesh, its nitrogen content is The nitrogen content is significantly reduced to 4705ppm if the particle size of the aluminum smelting slag is between 325 and 400 mesh, and the nitrogen content is only 4405ppm when the particle size of the aluminum smelting slag is larger than 400 mesh. Therefore, the present invention controls the particle size of the aluminum smelting slag to be greater than 200 mesh (mesh) and less than 400 mesh (mesh). Compared with the known technology, the nitrogen content can be effectively controlled to be only 49.49% to 49.49% of the known technology. 72.37%, the effect is extremely significant.
由于炼铝炉渣与黏结剂水溶液混合并加压成为耐火材料粗胚后,在烧结之前,该耐火材料粗胚会有龟裂或爆裂现象,因此200网目以下耐火材料粗胚因含氮量较高导致氨气逸散量高,造成加压时龟裂或爆裂比率大于5%;200网目以上耐火材料粗胚因含氮量较低导致氨气逸散量低,造成加压时龟裂或爆裂比率小于0.5%。 After the aluminum smelting slag is mixed with the aqueous binder solution and pressurized to form a rough refractory material, the rough refractory material will crack or burst before sintering. High results in high ammonia gas dissipation, resulting in cracking or bursting ratios greater than 5% during pressurization; coarse refractory materials with a mesh size of 200 or more have low ammonia gas dissipation due to low nitrogen content, resulting in cracking during pressurization Or the burst rate is less than 0.5%.
烧结前的耐火材料粗胚未发生龟裂或爆裂,但耐火材料粗胚在高温烧结过程中,耐火砖会因烧结时氨气逸散产生龟裂或爆裂,200网目以下耐火材料粗胚因含氮量较高导致氨气逸散量高,造成高温烧结时龟裂或爆裂比率大于5%;200网目以上耐火材料粗胚因含氮量较低导致氨气逸散量低,造成高温时龟裂或爆裂比率小于0.5%。 The rough refractory blanks before sintering did not crack or burst, but during the high-temperature sintering process of the rough refractory blanks, the refractory bricks will crack or burst due to the escape of ammonia gas during sintering. The high nitrogen content leads to high ammonia gas emission, which causes the cracking or bursting rate to be greater than 5% during high-temperature sintering; the coarse refractory material with a mesh size of 200 or more has low ammonia gas emission due to low nitrogen content, resulting in high temperature The rate of cracking or bursting is less than 0.5%.
藉以使本发明至少具有以下功效: So that the present invention has at least the following effects:
5. 藉由控制炉渣颗粒的粒径,使其大于200网目(mesh)且小于400网目(mesh),可以使炉渣颗粒中的氮含量降至4705ppm-6880ppm,有效解决耐火材料的龟裂或爆裂、龟裂或爆裂等问题。 5. By controlling the particle size of the slag particles to make it larger than 200 mesh (mesh) and smaller than 400 mesh (mesh), the nitrogen content in the slag particles can be reduced to 4705ppm-6880ppm, effectively solving the cracking of refractory materials or popping, cracking or popping problems.
6. 控制炉渣颗粒的粒径符合上述网目,只需以研磨方式即可达成,成本低廉且加工迅速。 6. To control the particle size of the slag particles to meet the above mesh, it can be achieved only by grinding, which is low cost and fast processing.
7. 炉渣颗粒中的氮含量降低,耐火材料粗胚的氨气外逸现象可以随之有效降低。 7. The nitrogen content in the slag particles is reduced, and the ammonia gas escape phenomenon of the rough refractory material can be effectively reduced accordingly.
8. 控制炉渣颗粒的粒径控制于200网目~400网目之间,耐火砖的表面细致度更佳。 8. Control the particle size of slag particles between 200 mesh and 400 mesh, and the surface fineness of refractory bricks is better.
综上所述,本发明铝集尘灰及铝金属冶炼炉渣再利用方法可有效改善已用的种种缺点,可控制炉渣颗粒的粒径,使炉渣颗粒的氮含量有效降低,且当该炉渣颗粒混合黏结剂水溶液后,可以有效减少因水与氮化铝反应而逸出氨气的现象,以减少耐火材料粗胚或耐火材料龟裂或爆裂现象,而达到制作成本低廉以及耐火材料表面细致度佳的功效;进而使本发明的产生能更进步、更实用、更符合消费者使用所须,确已符合发明专利申请要件,爰依法提出专利申请。 In summary, the aluminum dust collection ash and aluminum metal smelting slag reuse method of the present invention can effectively improve the various shortcomings that have been used, can control the particle size of the slag particles, effectively reduce the nitrogen content of the slag particles, and when the slag particles After mixing the binder aqueous solution, it can effectively reduce the phenomenon of ammonia gas escaping due to the reaction between water and aluminum nitride, so as to reduce the phenomenon of rough refractory material or refractory material cracking or bursting, so as to achieve low production cost and fineness of refractory material surface Good efficacy; and then make the production of the present invention more progressive, more practical, and more in line with the needs of consumers, and indeed meet the requirements for patent application for inventions, and apply for a patent according to law.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310046708.6A CN103964709B (en) | 2013-02-06 | 2013-02-06 | Aluminum metal smelting slag reuse method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310046708.6A CN103964709B (en) | 2013-02-06 | 2013-02-06 | Aluminum metal smelting slag reuse method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103964709A true CN103964709A (en) | 2014-08-06 |
CN103964709B CN103964709B (en) | 2016-03-09 |
Family
ID=51234775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310046708.6A Active CN103964709B (en) | 2013-02-06 | 2013-02-06 | Aluminum metal smelting slag reuse method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103964709B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105819475A (en) * | 2015-01-07 | 2016-08-03 | 蒋世杰 | Radio frequency plasma synthesis method for extracting aluminum oxide from aluminum slag |
CN109719114B (en) * | 2018-12-13 | 2020-12-01 | 淮北阳晖科技有限公司 | Recycling process of slag of aluminum smelting furnace |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW215075B (en) * | 1992-02-14 | 1993-10-21 | Ind Tech Res Inst | Bis aluminum sediment recycling method |
TW583155B (en) * | 2002-11-19 | 2004-04-11 | Spire Environmental Prot Techn | Method for recycling aluminum slag ash |
CN1541782A (en) * | 2003-11-08 | 2004-11-03 | 隆杰环保科技股份有限公司 | Method for utilizing aluminium cinder as resource |
CN101066876A (en) * | 2007-06-13 | 2007-11-07 | 潘国明 | Process of producing high grade refractory material with alumina-chrome slag |
-
2013
- 2013-02-06 CN CN201310046708.6A patent/CN103964709B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW215075B (en) * | 1992-02-14 | 1993-10-21 | Ind Tech Res Inst | Bis aluminum sediment recycling method |
TW583155B (en) * | 2002-11-19 | 2004-04-11 | Spire Environmental Prot Techn | Method for recycling aluminum slag ash |
CN1541782A (en) * | 2003-11-08 | 2004-11-03 | 隆杰环保科技股份有限公司 | Method for utilizing aluminium cinder as resource |
CN101066876A (en) * | 2007-06-13 | 2007-11-07 | 潘国明 | Process of producing high grade refractory material with alumina-chrome slag |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105819475A (en) * | 2015-01-07 | 2016-08-03 | 蒋世杰 | Radio frequency plasma synthesis method for extracting aluminum oxide from aluminum slag |
CN109719114B (en) * | 2018-12-13 | 2020-12-01 | 淮北阳晖科技有限公司 | Recycling process of slag of aluminum smelting furnace |
Also Published As
Publication number | Publication date |
---|---|
CN103964709B (en) | 2016-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Co-utilization of spent pot-lining and coal gangue by hydrothermal acid-leaching method to prepare silicon carbide powder | |
Wu et al. | Extraction of aluminum by pressure acid-leaching method from coal fly ash | |
Sun et al. | Experimental study of extracting alumina from coal fly ash using fluidized beds at high temperature | |
CN106892441A (en) | Aluminium ash Application way | |
CN105800971B (en) | The complementary cementitious material made of the fine powder in regeneration concrete shattering process | |
CN112430124A (en) | Method for preparing light porous sintered material by using aluminum ash | |
CN103666442B (en) | Low-density high-intensity ceramsite proppant and preparation method thereof | |
Wang et al. | Extraction of alumina from fly ash by ammonium hydrogen sulfate roasting technology | |
CN107686369A (en) | A kind of method for preparing carborundum porous ceramics with the carborundum cutting waste material of crystalline silicon | |
CN107459337B (en) | Method for preparing baked brick by modifying water-based drilling cured material | |
CN103567363A (en) | High-collapsibility water-glass sand and preparation method thereof | |
CN103381321B (en) | A kind of air purifying filter core and preparation method thereof | |
CN102942372A (en) | A method for producing regenerated magnesia-carbon bricks using waste magnesia-carbon bricks as raw materials | |
CN114085067A (en) | A method for preparing sintered material using secondary aluminum ash | |
CN103964709B (en) | Aluminum metal smelting slag reuse method | |
CN110183120A (en) | Utilize the method for original state electrolytic manganese residues and steel slag tailing slurry production activity of cement admixture | |
TW201420772A (en) | Reuse method for aluminum dust and aluminum metal smelting furnace cinder | |
CN108249411B (en) | Preparation method of ground phosphate rock or crushed phosphate rock binder and molded ore production method | |
CN102746936A (en) | Recycling purification method for carborundum powder in silicon slice cutting waste liquid | |
JP5781106B2 (en) | Aluminum dust collection and aluminum smelting slag recycling method | |
CN103803830A (en) | Activation treatment method of renewable powder | |
CN103468240A (en) | Ultralow-density ceramsite proppant with flint clay tailings as raw materials and preparation method of ultralow-density ceramsite proppant | |
CN103553572A (en) | Electrolytic manganese waste slag sintered building brick and preparation method thereof | |
CN203187578U (en) | Aluminum dust collection ash and aluminum metal smelting slag reuse structure | |
CN117511582A (en) | An integrated processing method for microwave heating oil shale resources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180907 Address after: 2 floor 205, building 2, Tin Village Road, Haidian District, Beijing, 23 Patentee after: Beijing Zhong Guan Jia Jie environmental protection technology Co., Ltd. Address before: 5, 193 Chongming Road, Tainan East, Taiwan, China Patentee before: Jia Jie Metallgesellschaft AG |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211102 Address after: Room 3-10, unit 1, floor 3, No. 2, Zhengda Road, Shijingshan District, Beijing 100043 Patentee after: Beijing qinghejin Environmental Protection Technology Co.,Ltd. Address before: 100143 205, floor 2, building 2, No. 23, Tiancun Road, Haidian District, Beijing Patentee before: Beijing Zhong Guan Jia Jie environmental protection technology Co.,Ltd. |