CN103952684B - Led外延层生长方法及led外延层 - Google Patents

Led外延层生长方法及led外延层 Download PDF

Info

Publication number
CN103952684B
CN103952684B CN201410165324.0A CN201410165324A CN103952684B CN 103952684 B CN103952684 B CN 103952684B CN 201410165324 A CN201410165324 A CN 201410165324A CN 103952684 B CN103952684 B CN 103952684B
Authority
CN
China
Prior art keywords
layer
gan layer
growth
thickness
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410165324.0A
Other languages
English (en)
Other versions
CN103952684A (zh
Inventor
张宇
林传强
农民涛
周佐华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangneng Hualei Optoelectrical Co Ltd
Original Assignee
Xiangneng Hualei Optoelectrical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangneng Hualei Optoelectrical Co Ltd filed Critical Xiangneng Hualei Optoelectrical Co Ltd
Priority to CN201410165324.0A priority Critical patent/CN103952684B/zh
Publication of CN103952684A publication Critical patent/CN103952684A/zh
Application granted granted Critical
Publication of CN103952684B publication Critical patent/CN103952684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种提高P层Mg激活效率的LED外延层生长方法及制得的LED外延层,生长方法中的生长P型GaN层步骤为:在温度930-950℃,压力200-600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100-300nm;A组原料为NH3、TMGa和Cp2Mg源,生成5-20nmnm的GaN:Mg层;B组原料为NH3、TMGa、Cp2Mg和SiH4,生成5-10nm的掺Mg和Si的GaN层。本发明通过调整P型GaN层生长方式,将高温P型GaN层设计为GaN:Mg和GaN:Mg/Si层超晶格,改善空穴迁移率,降低驱动电压,提高空穴对发光层的注入,增加器件的发光效率。

Description

LED外延层生长方法及LED外延层
技术领域
本发明涉及LED外延设计技术领域,特别地,涉及一种提高P层MG激活效率的LED外延层生长方法及制得的LED外延层。
背景技术
以GaN为基础的发光二极管(LED)作为一种高效、环保、绿色新型固态照明光源,具有低电压、低功耗、体积小、重量轻、寿命长、高可靠性灯优点,正在迅速被广泛地应用于交通信号灯、手机背光源、户外全彩显示屏、城市景观照明、汽车内外灯、隧道灯等。
因此,LED的各方面性能提升都被业界重点关注。
目前,国内MOCVD生长LED外延层其中涉及到P型GaN层的生长,采用Mg做掺杂剂,Mg在GaN内的电离率非常低,行业公认的数据是:Mg的电离率仅有Mg掺杂浓度的1%。提高Mg电离率的方法一般是加重Mg掺杂浓度,随着Mg的掺杂加重,P型GaN的晶体质量变差,空穴的迁移率降低,阻值增加,器件的驱动电压随之增加,器件的能耗随之增加;而行业公认的提升器件的品质方向是驱动电压低,光输出高为目标,限制了Mg掺杂浓度的上限。
发明内容
本发明目的在于提供一种提高P层MG激活效率的LED外延层生长方法及制得的LED外延层,以解决Mg电离浓度过低的技术问题。
为实现上述目的,本发明提供了一种LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有源层MQW、生长P型AlGaN层、生长P型GaN层步骤,
所述生长P型GaN层步骤为:
在温度为950-1100℃,反应腔压力在200-600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100-300nm;
其中,A组原料为50000-60000sccm的NH3、20-40sccm的TMGa源、1500-2500sccm的Cp2Mg源,生成厚度为5-20nm的GaN层;B组原料为50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源、5-15sccm的SiH4,生成厚度为5-10nm的掺Mg和Si的GaN层,Mg的掺杂浓度为1E19-1E20atom/cm3,Si的掺杂浓度1E17-1E18atom/cm3
优选的,先通入A组原料,再通入B组原料。
优选的,先通入B组原料,再通入A组原料。
优选的,所述生长P型GaN层步骤中,掺杂Si浓度低于掺杂Mg浓度的1-2个数量级。
优选的,所述生长有源层MQW步骤为:
在温度700-750℃,压力300-400mbar的反应室内,通入1500-1700sccm的TMIn和20-30sccm的TMGa生长掺杂In的厚度为3-4nm的InxGa(1-x)N层,其中x=0.15-0.25;
温度为800-850℃,生长厚度为10-15nm的GaN层,InxGa(1-x)N/GaN层的周期数为10-15;In的掺杂浓度为1E20-3E20atom/cm3
本发明还公开了根据上述的LED外延层生长方法制得的LED外延层,包括厚度为100-300nm的P型GaN层,所述P型GaN层包括若干个双层单元,每个双层单元包括:
掺Mg的GaN层:厚度为5-20nm;
掺Mg和Si的GaN层:厚度为5-10nm。
优选的,在所述双层单元中,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之上,或者,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之下。
优选的,在非掺杂GaN层和有源层MQW之间,包括掺Si的GaN层,厚度为2-4μm。
本发明具有以下有益效果:
本发明通过对P型GaN层生长方式的调整,将原本恒定掺杂的高温P型掺Mg的GaN层设计为GaN:Mg和GaN:Mg/Si组合成的超晶格材料,并将超晶格内含的GaN材料的厚度设计为1-5nm。在P层里适当的增加n型掺杂剂Si,适当的激活Mg的电离,增加空穴浓度,一方面Si的掺杂可以提高P层的晶体质量,提高空穴的迁移率,降低驱动电压,一方面增加空穴浓度,提高空穴对发光层的注入,增加器件的发光效率,使得器件的总体光效提到提升。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明对比实施例的结构示意图;
图2是本发明实施例的结构示意图;
图3是样品1与样品2的亮度对比图;
图4是样品1与样品2的电压对比图;
其中,1、衬底,2、低温缓冲GaN层,3、非掺杂GaN层,4、掺Si的GaN层,5、MQW有源层,6、P型AlGaN层,7、P型GaN层,8、掺Mg的GaN层,9、掺Mg和Si的GaN层。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。
以下分别说明采用以现有传统方法制备样品1的对比实施例一,和采用本发明生长方法制备样品2的实施例一,再将两种方法得到样品1和样品2进行性能检测比较。
对比实施例一、
参见图1,本发明运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在100mbar到800mbar之间。
1、在1000-1200℃,反应腔压力维持在100-200mbar的氢气气氛下高温处理蓝宝石衬底5-10分钟;
2、降温至540℃下,反应腔压力维持在400-600mbar,在蓝宝石衬底上生长厚度为20-50nm的低温缓冲层GaN;
3、升高温度到1000-1200℃下,反应腔压力维持在400-600mbar,持续生长2-3μm的非掺杂GaN;
4、然后反应室压力控制在150-600mbar,持续生长掺杂Si的N型GaN,Si掺杂浓度5E18-1E19atom/cm3,总厚度控制在3-4μm;
5、周期性生长有源层MQW,反应腔压力维持在300-400mbar,低温730-750℃生长掺杂In的2.5-3.5nm的InxGa(1-x)N(x=0.15-0.25)层,In的掺杂浓度为1E20-3E20atom/cm3,高温800-850℃生长10-14nmGaN层,InxGa(1-x)N/GaN周期数为10-15;
6、再升高温度到900-950℃,反应腔压力维持在200-600mbar,持续生长30-50nm的P型AlGaN层,Al掺杂浓度1E20-3E20atom/cm3,Mg掺杂浓度1E19-2E19atom/cm3
7、再升高温度到950-1100℃,反应腔压力维持在100-300mbar,持续生长100-300nm的掺镁的P型GaN层,Mg掺杂浓度1E19-1E20atom/cm3
8、最后将反应室压力控制在400-600mbar,降温至650-680℃,保温10-20min,接着炉内冷却。
实施例一、
参见图2,本发明运用AixtronMOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在100mbar到800mbar之间。
一种提高P层MG激活效率的LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有源层MQW、生长P型AlGaN层、生长P型GaN层步骤,其操作方式为:
1、在1000-1200℃,反应腔压力维持在100-200mbar的氢气气氛下高温处理蓝宝石衬底5-10分钟;
2、降温至540℃下,反应腔压力维持在400-600mbar,在蓝宝石衬底上生长厚度为20-50nm的低温缓冲层GaN;
3、升高温度到1000-1200℃下,反应腔压力维持在400-600mbar,持续生长2-3μm的非掺杂GaN;
4、然后反应室压力控制在150-600mbar,持续生长掺杂Si的N型GaN,Si掺杂浓度5E18-1E19atom/cm3,总厚度控制在3-4μm;
5、周期性生长有源层MQW,反应腔压力维持在300-400mbar,通入1500-1700sccm的TMIn和20-30sccm的TMGa,低温730-750℃生长掺杂In的2.5-3.5nm的InxGa(1-x)N(x=0.15-0.25)层,In掺杂浓度1E20-3E20atom/cm3,高温800-840℃生长10-14nm的GaN层,InxGa(1-x)N/GaN周期数为10-15;
6、再升高温度到900-950℃,反应腔压力维持在200-600mbar,持续生长30-50nm的P型AlGaN层,Al掺杂浓度1E20-3E20atom/cm3,Mg掺杂浓度1E19-2E19atom/cm3
7、再升高温度到950-1100℃,反应腔压力维持在200-600mbar,(1)通入50000-60000sccm的NH3、20-40sccmTMGa源、1500-2500sccm的Cp2Mg源以及载气生长5-20nm的GaN:Mg;(2)接着通入50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源、5-15sccm的SiH4以及载气生长5-10nm的GaN:Mg/Si层,Mg的掺杂浓度1E19-1E20atom/cm3;接着以(1)、(2)为基础交替时长,高温P层控制在100-300nm;
其中,(1)(2)步骤的先后顺序可以调换。也即是,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之上,或者,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之下。
8、最后降温至700-800℃,保温20-30min,接着炉内冷却。
然后,采用对比实施例一描述的方法制备样品1,采用实施例一描述的方法制备样品2;样品1和样品2不同点在于高温P层的生长参数不同,生长其它外延层生长条件完全一样。生长条件请参考表1。
表1生长参数的对比
样品1和样品2在相同的前工艺条件下镀ITO层200nm,相同的条件下镀Cr/Pt/Au电极约170nm,相同的条件下镀保护层SiO2约50nm,然后在相同的条件下将样品研磨切割成762μm*762μm(30mi*30mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选150颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。
将积分球获得的数据进行分析对比,对比结果请参考附图三和附图四,从图三数据得出样品2较样品1光输出高出约5%,图四数据得出样品2驱动电压下降约0.10v。
参见图2,本发明还提供了一种根据上述LED外延层生长方法制得的LED外延层,依次包括衬底1、低温缓冲GaN层2、非掺杂GaN层3、掺Si的GaN层4、MQW有源层5、P型AlGaN层6和P型GaN层7,其中,所述P型GaN层7的厚度为100-300nm,所述P型GaN层7包括若干个双层单元,每个双层单元包括:
掺Mg的GaN层8:厚度为5-20nm;
掺Mg和Si的GaN层9:厚度为5-10nm。
可以理解的是,双层单元中的层次顺序可以根据实际情况调整,所述掺Mg的GaN层8在所述掺Mg和Si的GaN层9之上,或者,所述掺Mg的GaN层8在所述掺Mg和Si的GaN层9之下。
在非掺杂GaN层3和MQW有源层5之间的掺Si的GaN层4,厚度为2-4μm。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有源层MQW、生长P型AlGaN层、生长P型GaN层步骤,其特征在于,
所述生长P型GaN层步骤为:
在温度为950-1100℃,反应腔压力在200-600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100-300nm;
其中,A组原料为50000-60000sccm的NH3、20-40sccm的TMGa源、1500-2500sccm的Cp2Mg源,生成厚度为5-20nm的GaN层;B组原料为50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源、5-15sccm的SiH4,生成厚度为5-10nm的掺Mg和Si的GaN层,Mg的掺杂浓度为1E19-1E20atom/cm3,Si的掺杂浓度1E17-1E18atom/cm3
2.根据权利要求1所述的一种LED外延层生长方法,其特征在于,先通入A组原料,再通入B组原料。
3.根据权利要求1所述的一种LED外延层生长方法,其特征在于,先通入B组原料,再通入A组原料。
4.根据权利要求1所述的一种LED外延层生长方法,其特征在于,
所述生长P型GaN层步骤中,掺杂Si浓度低于掺杂Mg浓度的1-2个数量级。
5.根据权利要求1所述的一种LED外延层生长方法,其特征在于,所述生长有源层MQW步骤为:
在温度700-750℃,压力300-400mbar的反应室内,通入1500-1700sccm的TMIn和20-30sccm的TMGa生长掺杂In的厚度为3-4nm的InxGa(1-x)N层,其中x=0.15-0.25;
温度为800-850℃,生长厚度为10-15nm的GaN层,InxGa(1-x)N/GaN层的周期数为10-15;In的掺杂浓度为1E20-3E20atom/cm3
6.根据权利要求1-5任一项所述的LED外延层生长方法制得的LED外延层,其特征在于,包括厚度为100-300nm的P型GaN层,所述P型GaN层包括若干个双层单元,每个双层单元包括:
掺Mg的GaN层:厚度为5-20nm;
掺Mg和Si的GaN层:厚度为5-10nm。
7.根据权利要求6所述的LED外延层,其特征在于,在所述双层单元中,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之上,或者,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之下。
8.根据权利要求6所述的LED外延层,其特征在于,在非掺杂GaN层和有源层MQW之间,包括掺Si的GaN层,厚度为2-4μm。
CN201410165324.0A 2014-04-23 2014-04-23 Led外延层生长方法及led外延层 Active CN103952684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410165324.0A CN103952684B (zh) 2014-04-23 2014-04-23 Led外延层生长方法及led外延层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410165324.0A CN103952684B (zh) 2014-04-23 2014-04-23 Led外延层生长方法及led外延层

Publications (2)

Publication Number Publication Date
CN103952684A CN103952684A (zh) 2014-07-30
CN103952684B true CN103952684B (zh) 2016-04-20

Family

ID=51330027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410165324.0A Active CN103952684B (zh) 2014-04-23 2014-04-23 Led外延层生长方法及led外延层

Country Status (1)

Country Link
CN (1) CN103952684B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261678B (zh) * 2015-11-03 2018-06-15 湘能华磊光电股份有限公司 一种提高led内量子效率的外延生长方法
CN106328494A (zh) * 2016-09-20 2017-01-11 湘能华磊光电股份有限公司 提高光效的led外延生长方法
CN111769180B (zh) * 2020-07-10 2021-04-13 湘能华磊光电股份有限公司 适用于小间距显示屏的led外延生长方法
CN111769181B (zh) * 2020-07-10 2021-04-13 湘能华磊光电股份有限公司 一种适用于小间距显示屏的led外延生长方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891790A (en) * 1997-06-17 1999-04-06 The Regents Of The University Of California Method for the growth of P-type gallium nitride and its alloys
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
US7994027B2 (en) * 2008-05-09 2011-08-09 George Mason Intellectual Properties, Inc. Microwave heating for semiconductor nanostructure fabrication
CN103346219B (zh) * 2013-07-12 2016-02-24 湘能华磊光电股份有限公司 复式多量子阱发光层结构的生长方法及led外延结构
CN103413877B (zh) * 2013-08-16 2016-01-20 湘能华磊光电股份有限公司 外延结构量子阱应力释放层的生长方法及其外延结构
CN103413880B (zh) * 2013-08-30 2016-02-24 湘能华磊光电股份有限公司 提高led抗静电能力的外延生长方法及其外延结构

Also Published As

Publication number Publication date
CN103952684A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
CN103560187B (zh) 含有超晶格势垒层的led结构外延生长方法及其结构
CN104157746A (zh) 新型量子阱势垒层的led外延生长方法及外延层
CN103107255B (zh) 一种led外延片生长方法
CN111223764A (zh) 一种提高辐射复合效率的led外延生长方法
CN105098004B (zh) 一种发光二极管外延片的生长方法及外延片
CN103952684B (zh) Led外延层生长方法及led外延层
CN103474539A (zh) 含有超晶格层的led结构外延生长方法及其结构
CN104091871B (zh) 一种发光二极管外延片及其制造方法
CN108550665A (zh) 一种led外延结构生长方法
CN103346219B (zh) 复式多量子阱发光层结构的生长方法及led外延结构
CN106384764A (zh) 一种led外延结构及其生长方法
CN107359227B (zh) 一种发光二极管及其制造方法
CN104362237B (zh) 一种发光二极管的生长方法及发光二极管
CN103943740B (zh) 增加发光效率的led外延层生长方法及led外延层
CN103594570B (zh) 含有超晶格势垒层的led结构外延生长方法及其结构
CN105957927B (zh) 一种发光二极管外延片的生长方法
CN103746054B (zh) 阻挡电子泄漏和缺陷延伸的外延生长方法及其结构
CN105869994B (zh) 一种超晶格层的生长方法及含此结构的led外延结构
CN107507891A (zh) 提高内量子效率的led外延生长方法
CN104900778B (zh) 一种发光二极管外延片的生长方法及外延片
CN106328780A (zh) 基于AlN模板的发光二极管衬底外延生长的方法
CN103337451B (zh) 外延结构的电子阻挡层生长方法及其相应的外延结构
CN105576090B (zh) 发光二极管外延片的制备方法及发光二极管外延片
CN113328015A (zh) 提高亮度的发光二极管芯片制作方法
CN111952418A (zh) 一种提升发光效率的led多量子阱层生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant