CN103947072A - 用于感应功率传输的磁场成形 - Google Patents
用于感应功率传输的磁场成形 Download PDFInfo
- Publication number
- CN103947072A CN103947072A CN201280052907.1A CN201280052907A CN103947072A CN 103947072 A CN103947072 A CN 103947072A CN 201280052907 A CN201280052907 A CN 201280052907A CN 103947072 A CN103947072 A CN 103947072A
- Authority
- CN
- China
- Prior art keywords
- magnetic flux
- ipt system
- liner
- magnetic core
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/38—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
- B60L53/39—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/363—Electric or magnetic shields or screens made of electrically conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Regulation Of General Use Transformers (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
一种用于生成或接收磁通量的IPT系统磁通量设备,所述设备包括导磁磁芯(2)和与所述磁芯(2)磁关联的至少一个线圈(4)。屏蔽(6)排斥磁通量,并被定位在所述磁芯(2)的相对面上,使得所述屏蔽(6)包括延伸到所述磁芯的至少一部分周界之外的外面部分(δA1)。
Description
技术领域
本发明涉及用于成形(shaping)或引导由感应功率传输(IPT)系统中使用的磁通量生成或接收设备来生成或接收的磁场的设备和方法。
背景技术
IPT系统是众所周知的。如国际专利申请WO 2010/090539中讨论的,在一些IPT应用(诸如电动车辆充电)中,需要提供松散耦合的系统,松散耦合的系统能够用磁通量发射和接收结构之间的大的气隙操作。
由于大规模部署固定充电和道路供电电动车辆的应用的趋势,使用最少的材料高效地操作的磁通量发射和接收结构是非常期望的。
除了效率之外,松散耦合系统的另一问题是消除或控制可能造成健康危害的杂散磁场,在大多数国家,法规规定将杂散磁场控制在特定范围内。
发明内容
本发明的目的是提供用于感应功率传输的改进的设备或方法,或者提供改进的IPT功率传输衬垫,或者至少给公众或业界提供有用的替代方式。
因此,一方面,本发明概括地提供一种用于生成或接收磁通量的IPT系统磁通量设备,所述设备包括:导磁磁芯装置、与所述磁芯装置磁关联的至少一个线圈和屏蔽(shielding)装置,所述屏蔽装置排斥在所述磁芯装置的相对面上提供的磁通量,使得所述屏蔽装置包括延伸到所述磁芯装置的至少一部分周界之外的外面部分。
所述屏蔽装置包括板材。
优选地,所述设备包括衬垫。
优选地,所述外面部分具有周界边缘,并且在所述磁芯周界和所述周界边缘之间有间隙。在一个实施例中,所述间隙可以填充或部分地填充非磁性材料。
在一个实施例中,所述外面部分基本上在所述磁芯的平面上从衬垫延伸,并且所述周界边缘以相对于所述外面部分成一定角度地提供。在一个实施例中,所述角度基本上是90度,使得所述周界边缘基本上包括唇缘。在其它的实施例中,所述周界边缘被设置成相对于所述外面部分成大于90度的角度,例如相对于所述外面部分成大约90度和150度之间的角度。
在一个实施例中,所述外面部分基本上包围所述磁芯。
优选地,所述外面部分进一步包括所述唇缘的凸缘边。在一个实施例中,所述凸缘在大致平行于第一部分的平面内。
优选地,所述线圈是基本扁平的线圈。
优选地,所述线圈提供于与屏蔽相对的磁芯的一面上。
在另一实施例中,所述屏蔽装置进一步包括笼子(cage)。所述笼子适于接收一个或更多个绕组。在一个实施例中,所述笼子包括箱形区段。
优选地,所述板材包括板。
替代性地,所述板材包括网状材料。
替代性地,所述板材包括板的一个或更多个区段和网状物的一个或更多个区段。
优选地,所述板材包括延伸到所述磁芯的周界之外的凸缘。
优选地,所述磁芯具有纵轴线,所述屏蔽的外面部分延伸到所述磁芯的每个纵向端之外。
优选地,所述板材是由铝构造的。
根据本发明的另一方面,提供了一种用于生成或接收磁通量的IPT系统磁通量衬垫,所述衬垫包括导磁磁芯装置、与所述磁芯磁关联的至少一个线圈和笼子装置,所述笼子装置适于接收所述线圈的一个或更多个绕组。
优选地,所述笼子提供于所述磁芯的第一面上,使得在所述磁芯的第一面上的一匝或更多匝线圈通过所述笼子。
替代性地,所述笼子提供于所述磁芯的一端,另一笼子装置提供于所述磁芯的相对端,并且另一线圈被提供,因此一匝或更多匝的线圈通过所述笼子装置,一匝或更多匝的另一线圈通过所述另一笼子装置。
通过下面的描述,本发明的更多方面将变得明显。
附图说明
参照附图在下文描述本发明的一个或更多个实施例,其中:
图1是圆形感应功率传输衬垫的平面图;
图2A和B是显示线圈直径相对于衬垫直径的比率变化时,具有相同电感的两个相同的耦合衬垫的PSU和互感的变化的图形;
图3是显示PSU随外面部分(δAl)(即磁芯周界和由背板或屏蔽界定的外衬垫直径之间的距离)变化的图形;
图4示出了对于图1的衬垫,作为距离的函数的B;
图5是双D衬垫的透视图;
图6是显示衬垫结构的一个实施例的横截面的立视图;
图7是图6衬垫的透视图;
图8是显示衬垫构造的另一实施例的横截面的立视图;
图9是图8的构造的透视图;
图10示出了图8和10中所示的衬垫的横截面的立视图,但标识了所述屏蔽结构的尺寸;
图11是另一衬垫结构的透视图;
图12是显示图11的衬垫结构和在衬垫加电时的磁场的部分横截面;
图13示出了双D衬垫的衬垫结构;
图14和15示出了与具有不延伸到磁芯周界之外的背板或屏蔽的结构相比,对于图13B和13C的衬垫结构,B随距离的变化;
图16A至16F示出了多种不同的衬垫实施例的横截面的正视图和由每个实施例产生的磁场的表示。
具体实施方式
如上文讨论的,用来生成并接收磁通量以便提供IPT系统的初级和次级电路之间的耦合的磁结构或设备可以采用各种方式。所述的结构通常被称作衬垫,原因是它们通常在两个维度上延伸得比在第三维度上延伸得更远。第三维度通常有这样的厚度,该厚度旨在被最小化使得衬垫结构能够被并入在车辆的另一侧中和/或例如道路、停车位和车库地面中。
一种已知的衬垫结构在WO 2008/140333中公开,该衬垫结构在设计上大致是圆形的。图1示出了对于圆形功率衬垫的布局。从该图可以看到,磁芯结构包括多个导磁材料(诸如铁氧体)的径向方向的条状物2。在一个例子中,直径(图1中的Pd)长度为700毫米的衬垫使用容易获得的I93磁芯(每个径向条状物有3个)制造。一个或更多个基本扁平的线圈4位于磁芯结构之上。在磁芯结构的相对面(即底侧)上提供屏蔽,所述屏蔽包括由板材(优选为铝)制成的背板6,其在屏蔽的外面部分(δAl)的周界上具有形式为环8(即向上方向的凸缘)的周界边缘。铝背板6和环8提高了鲁棒性,并在衬垫周围提供对可能存在的泄露磁通的屏蔽。与图1的衬垫不同,现有技术的圆形衬垫中的环8位于非常邻近磁芯的边缘(即每个径向铁氧体条2的外端)的位置。
图1中的符号如下:
Few 铁氧体宽度
FeL
铁氧体长度
δA1 延长半径
Cd
线圈直径
Pd 衬垫直径
CW 线圈宽度
25匝线圈(Ø4mm绞合线),10mm厚的环
I1 在20kHz时为23A
构造背板结构6和环8的材料优选为排斥磁通量的材料。该材料还优选是良导体,并且是没有损耗的。背板6可以包括板状材料或网状材料(例如铝板或铝网丝)。同样,背板材料可以包括各种材料的组合,例如,支撑磁芯的板以及延长到磁芯周界之外的网丝部分。与使用网丝材料关联的优点包括更低的成本、与周围基底(例如在道路应用中)的改进结合以及从结构到周围环境的改进热传递。
我们发现将环8放置在靠近磁芯周界会降低泄露磁通,但不是理想的,原因是它对耦合具有不利影响。如下文进一步讨论的,使环8和背板6延伸到磁芯的外周界之外能够对给定的磁场泄露带来优化耦合。
我们之前进行的工作已经表明圆形衬垫的理想线圈直径是包括铝环的衬垫直径的57%。为了进一步研究,进行了仿真,其中,在有铝环(R)和没有铝环(NR)时,以125mm的垂直间隔,在700毫米直径的衬垫上改变线圈直径(Cd)。
结果显示于图2a和2b中,这两个图示出了PSU(开路电压乘以短路电流)和耦合因数k。假设发射器衬垫和接收器衬垫是相同的,并具有相同的电感。可以看到,如果去掉环,则功率有明显增大。对于没有环的衬垫,416mm的磁芯直径(大约是衬垫直径的60%)是在传输功率和耦合系数之间的良好折衷。如图2b所示,当线圈变得非常靠近环时,衬垫本身的电感急剧下降,而如果去掉环,则其本身的电感下降相对缓慢。由于来自会降低电感的任何电流的反向磁通,环有效地抵消了来自线圈的磁通。
当线圈大致位于具有环的衬垫中心时(~0.55<Cd/Pd<~0.7),磁通能够进入并从铁氧体的端部出来,产生增大的电感。对于没有环的衬垫,Cd为200mm时产生最大电感,但看起来线圈的外边缘上的磁通只具有很小的区域,通过该很小的区域磁通能够进入铁氧体条—铁氧体分布关于线圈不是径向对称的。这可以在确定衬垫能够在其磁场中存储多少能量的电感方面进行解释。磁力线倾向于通过穿越最小磁阻的路径,排列自身以最小化能量存储。由于衬垫的构造,在衬垫的后部没有磁通出来;线圈静置在铁氧体上,铁氧体静置在一层铝屏蔽上。假设Cd小于其理想值,在线圈的内侧上,磁力线会互相排斥得更厉害,原因是在线圈的内侧上存在更小的磁通容量(链接线圈的磁力线的数量是固定的)。Cd被优化后,由于在线圈的内侧上的增大容量,整体磁场“排斥”被最小化,因此,存储的能量以及此特殊布置的电感被最大化。
图2(b)中显示的结果表明当加入环时,由于磁通的抵消效应,衬垫的电感下降。以功率传输为代价降低磁通泄露通常是必要的,以确保高功率系统能够满足磁场泄露标准。因此,为了分别地确定环和背板对功率传输的影响,进行了仿真,在有环和无环时,改变板材在磁芯周界之外的外面部分(δAl)。PSU和k曲线显示于图3中。这里,标志“R”暗示背板和环都存在,而标志“P”表明只有延长的背板存在。M代表发射器衬垫和接收器衬垫之间的互感,L2代表接收器衬垫的电感。将环放置在靠近铁氧体的端部明显地降低性能,因为去掉环时PSU增加了27%。具有环和不具有环的衬垫达到3.9kVA的PSU,然而,在此点直径增加了170mm。
当δAl> 100mm时,PSU曲线稍微分开,这表明环具有微小的“磁通捕捉”效应。由于性能有很少提升且更小的衬垫是更优的,因此建议优化的衬垫有40mm的外面部分δAl。
既然仿真结果表明试验结果在几个百分点内是匹配的,因此通过仿真研究了磁场泄露。这里,用20kHz的正弦23A电流激励发射器衬垫,开路接收器衬垫放置于其上125mm处。沿从衬垫之间的气隙的中心向外延伸的1米轮廓记录磁通量密度。由于来自铝背板的屏蔽,磁通密度在接收器上方(是上衬垫)和发射器下方明显更低。结果显示于图4中,这里,绘制了各种磁场泄露曲线。第一个标记为“无环”的曲线示出了没有环且使δAl=0的输出。这与环被放置就位但具有增大的δAl值的其它设计形成对比。“40mm板”轮廓(在无环时,使δAl=40mm)也被加入,原因是从功率角度讲其被描述为理想的。与将环放置得非常靠近铁氧体端部一样,去掉环大大地增加了磁通泄露。较大的背板轻微地衰减了泄露,但要达到最大的降低需要有环。当δAl增大时,磁场泄露降低,但这会有利地增大PSU(如图3中所示)。在接收器衬垫中,外面部分δAl的上限是由EV底盘上可用的最大空间和增加的铝的额外成本决定的。图2(a)中的磁通矢量表明通过引起磁场弯曲,环产生了更高的磁阻路径,从而降低了泄露。此“磁通捕捉”方法产生更低的功率传输。因此,没有环的板提供了在泄露和耦合之间的折衷。磁通能够容易地通过其端部进入铁氧体条中,产生增大的功率。
图2、3和4中的测量值图示了对衬垫附近的金属物体的衬垫敏感性。EV的底盘通常由钢制成,这能够严重地降低接收器或发射器衬垫的品质因数QL(这里,QL是在工作频率下线圈的电抗除以其电阻)。更大的泄露在EV底盘周围产生更多的能量损失-此损失与B2成比例,因此磁通密度的微小降低可能是非常有效的。图4显示环降低了磁通可以通过其逃逸的区域,但不逃逸的磁通倾向于向内朝其相对的衬垫弯曲。因此,此磁通泄露较不可能与周围的底盘平行。相反地,当如图2(b)所示去掉环时(背板仍存在),磁通路径的这种成形被降低,允许磁通无阻碍地朝向底盘行进,产生更大的泄露因此造成更大的损失。
因此,在一些应用中,只提供具有延伸到磁芯的周界之外的凸缘的屏蔽板可能是有利的。同样,提供唇缘(诸如环),使得凸缘结构提供磁芯之间的凹陷或间隙,唇缘也可以是有利的。
国际非电离辐射防护委员会(ICNIRP)已经制定出规定人类对时变磁场的暴露极限的指南。在3kHz-10MHz的范围内人体平均极限是27μT(不过必须考虑大于100kHz的RF特定水平)。现场极限可能更大,但它们的幅值必须由每个国家的标准机构限定。具有以40mm的δAl放置的环的700mm的圆形衬垫在离衬垫中心大于500mm的点具有小于27μT的现场值,因此人体平均值会显著地更低。如果去掉环(δAl=
40mm),则在540mm的距离时达到此27μT的现场值,如果从原始衬垫去掉环(δAl= 0mm),则在600mm下达到此27μT的现场值。对于典型车辆的宽度尺寸,这些距离是容易接受的,不过,如果要求在更大的气隙上有更高的功率水平,则环可能需要进一步延长。
双
D
拓扑
图5中示出了另一衬垫拓扑,该拓扑通过在形成磁芯的铁氧体条2的上方(而不是周围)放置两个线圈消除了不需要的后磁通路径。铁氧体引导线圈(标记为a和b)后面的主磁通,迫使磁通在一侧(就是线圈位于的这一侧)上建立起来。因此,在磁芯下面提供的任何铝(在图5中没有显示)只需要屏蔽杂散场,产生可以忽略的损耗。理想磁通路径显示于图5中,其在衬垫上形成弓形。这些路径允许良好耦合到类似形状的接收器,原因是基本高度(hz)基本上与衬垫长度的½成比例。获得两个功率衬垫之间的高耦合因数的关键特征是衬垫内耦合。衬垫内磁通(Φip)的高度是通过调节线圈a和b在他们彼此非常靠近的区域中的宽度来控制的。此区域在图5中被阴影化,并被称作线圈a和线圈b之间的“磁管”。耦合到接收器衬垫的磁通Φip中一部分是互磁通(ΦM),因此,形成磁管的线圈部分应当理想地制成尽可能长。相反,线圈的剩余长度应当被理想地最小化以节省铜,降低Rac。这样做会产生形状类似“D”的线圈,并且由于有两个这种线圈背靠背放置,此衬垫在本文档中被称作双D(DD)结构。
此外,背板结构可以用来控制衬垫前方的磁场的形状和/或用来消除恰巧在衬垫的侧面或后面周围传播的任何磁场。DD衬垫上的这种背板结构或磁通成形结构的效果以及该衬垫的变形在下文讨论。
已经研究了在DD衬垫的周界周围的铝背板的单一平面的外面部分延长的效果,以及提供周界边缘(诸如环(作为延长的凸缘的一部分提供的形式为直立的、有角度的或垂直的唇缘))的效果。参照图13A,图解说明了DD衬垫的设计,其中背板或屏蔽板16具有50mm的延长凸缘16a。图13B示出了进一步增加5mm厚的环16b。包括仿真结构的尺寸(单位为mm)的平面图示于图13C中。DD发射器的结构具有4行6个一组的铁氧体板坯,而接收器具有4行8个一组的铁氧体板坯。发射器衬垫和接收器衬垫之间的气隙是125mm,没有偏置。
如图14和15所示,图13B和13C的衬垫结构与背板没有环并且不延伸到磁芯之外的结构(在图14和15中称作“Orig”)进行比较。我们发现延长铝将功率传输提高了2.5%,而延长铝并增加环将功率传输提高了5%。两种延长都抑制远场的磁场泄露。然而,中心位置的磁场并没有显著变化—考虑到功率提高了这正如期望的那样。
为了比较DD衬垫结构的其它可能的设计变形,通过JMAG仿真测量两个主要的量。ISC被测量以量化功率容量(PSU),并在衬垫的平面上距离衬垫的中心1米处进行泄露场(B_泄露)的测量。
然而,当设计被优化时,这些变量显著变化。由于有两个处于变化中的变量,因此通常难以全面量化优化过程的总体效果。因此,结果被修改,使得每次这些变量中只有一个变化。这是通过缩放轨道电流来进行的,使得1米处的泄露场被维持在恒定水平。例如,当特定的设计参数变化时,获得ISC和B_泄露。这之后,轨道电流被适当地缩放,这样泄露场保持在参考水平。此参考水平被设置为由标准的双D衬垫产生的泄露场。结果,各种提出的设计可以容易地与现有的双D衬垫比较。应当注意,缩放轨道电流的结果是,系统的PSU也被相应地缩放。下一部分显示了考虑过的各种设计。
双
D
同轴电缆(开始点)
同轴绕组10缠绕在磁芯2上,使得使用在背板/屏蔽板16中形成的笼子12屏蔽回路导线。板16在磁芯的纵向端上延长到磁芯2的周界之外,形成凸缘或端板14。设计旨在具有几乎为圆形的磁通路径,使得可以获得最大磁通路径高度和耦合。设计展示于图6和7中。
双
D
同轴电缆混合
接下来提出进一步的变形,并显示于图8和9中。此设计包含通过同轴笼子的同轴绕组(类似于图7和8的双D同轴电缆)以及双D绕组(类似于上文参照图5引用的双D结构的绕组a和b)。图8和9中所示的设计旨在使用双D绕组来进一步成形磁场,因此提高耦合并降低泄露场。
通过此设计进行优化过程。在优化过程中,改变几个参数,并量化它们的效果。变化的参数在图10中用图形表示。结果,同轴绕组10被去掉,选择的最优值总结如下:
• 双D绕组的数量(最佳值 N =
20,即与图5的当前双D类似的绕组)
• 铝(即背板)长度(最佳凹地长度= 75mm, 铝角度 = 45度,以及端板长度= 50mm)。
由优化过程产生的设计示于图11中。因此,铝提供具有向上方向唇缘的外面部分和唇缘的凸缘边或从唇缘下垂的凸缘边。尽管示出,但在图11的构造中不要求有笼子。
结果
图12示出了图11的设计产生的磁通密度图。背板结构(铝板材)在通过感生铝结构中的涡流来成形磁场方面起着重要作用。
使用之前概括的方法,提出的设计与当前的双D衬垫进行比较。结果在下面示出:
可以看出,对于与图5的双D结构相同的B_泄露,图11的设计提供了能够通过气隙耦合的功率量的显著增加。由于大多数的改进来自铁氧体行数从图5中的6增加到图11中的8,所以该结果有点误导,但凸缘又增加了10-15%。
我们现在参照图16A-16F考虑用于通常的双D结构的其它线圈和铝屏蔽布置。在这些图中,两个线圈分别缠绕为平螺旋线,但在这里显示为二维横截面。每个线圈包括20匝,所以在中心磁管中有40条线。磁管(即电极区之间)中的线都设置成中间隔开6.6mm,线圈中的端绕组21、22(即在磁芯的纵向端上的那些绕组)为中间隔开4mm的20匝(基本上是接触的)。没有任何铝屏蔽但端绕组定位在磁芯2的端部之外的这种布置产生图16A的磁通图案(通过衬垫结构的横截面周围的曲线18)。此磁通图案是非常高的,但在线圈的端部出来有磁通的溢出。这里,在端绕组下面没有任何铁氧体,高度和溢出都被放大。实际上,溢出磁通是不期望的,原因在此文档的前面部分给出,并且溢出磁通是非常难以降低的。
在图16B中,铁氧体23已经被放置于端绕组21、22之上。由板材形成的铝分隔物16已经被加入,以防止磁短路状况。铝位于磁芯2后面,凸缘在磁芯的纵向端部延伸到磁芯的周界之外。如图16B所示,磁通路径在铁氧体上基本上是理想的,但在衬垫的底部下面具有一些严重的不期望的端部磁通。衬垫中有八个铁氧体磁芯,铝16在第三和第四磁芯之间、以及在第六和第七磁芯之间过渡,覆盖第一和第八磁芯的端部。以此方式,除了这些端部磁通之外,图16B的磁通图案基本上与图16A的相同。
在图16C中,铁氧体23已经去掉,并被放置在被空气环绕的端绕组21、22的下面。所产生的磁通图案表明增加相邻的铁氧体磁芯能够非常容易地吸收不期望的端部磁通。
在图16D中,铝板16已经被改变,使得凸缘部分在每个端部提供同轴笼子。铁氧体23分离成在端绕组21、22的上面和下面,铁氧体和端绕组提供于笼子区域内。这里,与端绕组关联的铁氧体在其内部具有间隙。如果间隙不存在且除了绕组之外的整个空间填充有铁氧体,则端绕组的电感会非常高,但间隙可能从小间隙变化到根本没有铁氧体,以控制端绕组对磁通图案的影响。如图16D所示,不期望的端部磁通被基本上消除。
转到图16E,铁氧体23已经被去掉,使得端绕组21、22位于笼子区域内的空气中。所产生的磁通图案是非常接近理想的磁通图案,但铝16中的损耗可能非常高。如图16F所示,可以通过将端绕组21、22在更长的长度上展开来降低损耗,以得到极好的磁通图案。
在其它发射器和接收器拓扑(诸如在WO 2011/016737中描述的双极拓扑)中加入延长的铝屏蔽和凸缘也是有帮助的。
Claims (15)
1.一种用于生成或接收磁通量的IPT系统磁通量设备,所述设备包括导磁磁芯装置、与所述磁芯装置磁关联的至少一个线圈、和屏蔽装置,所述屏蔽装置排斥在所述磁芯装置的相对面上提供的磁通量,使得所述屏蔽装置包括延伸到所述磁芯装置的至少一部分周界之外的外面部分。
2.根据权利要求1所述的IPT系统磁通量设备,其中,所述屏蔽装置包括板材。
3.根据权利要求1或权利要求2所述的IPT系统磁通量设备,其中,所述外面部分具有周界边缘,并且在所述磁芯周界和所述周界边缘之间有间隙。
4.根据权利要求3所述的IPT系统磁通量设备,其中,所述间隙被填充或被部分填充非磁性材料。
5.根据权利要求1-4中任一项所述的IPT系统磁通量设备,其中,所述外面部分基本上在所述磁芯的平面上从衬垫延伸,并且所述周界边缘以相对于所述外面部分成角度地提供。
6.根据权利要求5所述的IPT系统磁通量设备,其中,所述角度基本上是90度,使得所述周界边缘基本上包括唇缘。
7.根据权利要求5所述的IPT系统磁通量设备,其中,所述周界边缘被设置成相对于所述外面部分成大于90度的角度。
8.根据权利要求7所述的IPT系统磁通量设备,其中,所述角度在相对于所述外面部分的大约90度和150度之间。
9.根据前述权利要求中任一项所述的IPT系统磁通量设备,其中,所述外面部分基本上包围所述磁芯。
10.根据前述权利要求中任一项所述的IPT系统磁通量设备,其中,所述外面部分进一步包括所述唇缘的凸缘边。
11.根据权利要求10所述的IPT系统磁通量设备,其中,所述凸缘在大致平行于第一部分的平面内。
12.根据前述权利要求中任一项所述的IPT系统磁通量设备,其中,所述屏蔽装置进一步包括笼子。
13.一种用于生成或接收磁通量的IPT系统磁通量设备,衬垫包括导磁磁芯、与所述磁芯磁关联的至少一个线圈和笼子装置,所述笼子装置适于接收所述线圈的一个或更多个绕组。
14.根据权利要求13所述的IPT系统磁通量设备,其中,所述笼子提供于所述磁芯的第一面上,使得在所述磁芯的第一面上的一匝或更多匝线圈通过所述笼子。
15.根据前述权利要求中任一项所述的IPT系统磁通量设备,其中,所述设备包括衬垫。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010114042.3A CN111293788B (zh) | 2011-09-07 | 2012-09-07 | 用于感应功率传输的磁场成形 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ59505611 | 2011-09-07 | ||
NZ595056 | 2011-09-07 | ||
PCT/NZ2012/000160 WO2013036146A1 (en) | 2011-09-07 | 2012-09-07 | Magnetic field shaping for inductive power transfer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010114042.3A Division CN111293788B (zh) | 2011-09-07 | 2012-09-07 | 用于感应功率传输的磁场成形 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103947072A true CN103947072A (zh) | 2014-07-23 |
Family
ID=47832425
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280052907.1A Pending CN103947072A (zh) | 2011-09-07 | 2012-09-07 | 用于感应功率传输的磁场成形 |
CN202010114042.3A Active CN111293788B (zh) | 2011-09-07 | 2012-09-07 | 用于感应功率传输的磁场成形 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010114042.3A Active CN111293788B (zh) | 2011-09-07 | 2012-09-07 | 用于感应功率传输的磁场成形 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10263466B2 (zh) |
EP (1) | EP2751900B1 (zh) |
JP (1) | JP6407024B2 (zh) |
KR (1) | KR101970322B1 (zh) |
CN (2) | CN103947072A (zh) |
WO (1) | WO2013036146A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111463000A (zh) * | 2020-05-20 | 2020-07-28 | 河北工业大学 | 一种适用于电动汽车无线供电系统的复合式屏蔽结构 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102577011B (zh) | 2009-08-07 | 2019-02-22 | 奥克兰联合服务有限公司 | 感应电力传递装置 |
JP2015508940A (ja) | 2012-02-16 | 2015-03-23 | オークランド ユニサービシズ リミテッドAuckland Uniservices Limited | 複数コイル磁束パッド |
EP2984727A4 (en) * | 2013-03-27 | 2016-12-07 | Auckland Uniservices Ltd | CONFINEMENT OF ELECTROMAGNETIC FIELD |
US9676285B2 (en) | 2013-05-01 | 2017-06-13 | Qualcomm Incorporated | Vehicle charging pad having reduced thickness |
EP3080825B1 (en) | 2013-11-13 | 2020-12-23 | Apple Inc. | Transmitter for inductive power transfer systems |
US9837204B2 (en) | 2013-12-17 | 2017-12-05 | Qualcomm Incorporated | Coil topologies for inductive power transfer |
CN103746465A (zh) * | 2014-01-17 | 2014-04-23 | 杭州信多达电器有限公司 | 一种无线充电发射线圈组件 |
JP2015142019A (ja) * | 2014-01-29 | 2015-08-03 | トヨタ自動車株式会社 | 受電装置 |
US10325719B2 (en) | 2014-05-19 | 2019-06-18 | Apple Inc. | Magnetically permeable core and an inductive power transfer coil arrangement |
WO2015178780A1 (en) | 2014-05-19 | 2015-11-26 | Powerbyproxi Limited | Magnetically permeable core and inductive power transfer coil arrangement |
JP6519773B2 (ja) * | 2014-05-22 | 2019-05-29 | 株式会社デンソー | 電力伝送用パッドおよび非接触電力伝送システム |
US9812875B2 (en) | 2014-09-05 | 2017-11-07 | Qualcomm Incorporated | Systems and methods for adjusting magnetic field distribution using ferromagnetic material |
CN107210126A (zh) * | 2014-09-11 | 2017-09-26 | 奥克兰联合服务有限公司 | 具有受控磁通抵消的磁通耦合结构 |
US9941708B2 (en) * | 2014-11-05 | 2018-04-10 | Qualcomm Incorporated | Systems, methods, and apparatus for integrated tuning capacitors in charging coil structure |
US9960607B2 (en) * | 2014-12-29 | 2018-05-01 | Qualcomm Incorporated | Systems, methods and apparatus for reducing intra-base array network coupling |
GB2535463A (en) | 2015-02-16 | 2016-08-24 | Bombardier Transp Gmbh | Power transfer unit of a system for inductive power transfer, a method of manufacturing a power transfer unit and of operating a power transfer unit |
US9929606B2 (en) * | 2015-05-11 | 2018-03-27 | Qualcomm Incorporated | Integration of positioning antennas in wireless inductive charging power applications |
US10510482B2 (en) * | 2015-06-26 | 2019-12-17 | Bombardier Primove Gmbh | Primary sided-arrangement of primary winding structures, a method of manufacturing the primary-sided arrangement, a system for inductive power transfer and a method for inductively supplying power to a vehicle |
WO2017204663A1 (en) | 2016-05-25 | 2017-11-30 | Powerbyproxi Limited | A coil arrangement |
WO2017209630A1 (en) | 2016-06-01 | 2017-12-07 | Powerbyproxi Limited | A powered joint with wireless transfer |
US20180131242A1 (en) | 2016-11-04 | 2018-05-10 | Powerbyproxi Limited | Inductive power transmitter, receiver and method of operation |
CN206834025U (zh) | 2016-11-18 | 2018-01-02 | 鲍尔拜普罗克西有限公司 | 感应式电力传输线圈组件 |
US10978911B2 (en) | 2016-12-19 | 2021-04-13 | Apple Inc. | Inductive power transfer system |
US20180233961A1 (en) | 2017-02-14 | 2018-08-16 | Aiguo Hu | Inductive power transfer |
US11431196B2 (en) | 2017-12-01 | 2022-08-30 | Auckland Uniservices Limited | Misalignment tolerant hybrid wireless power transfer system |
US11207541B2 (en) | 2018-03-23 | 2021-12-28 | Regenesis Biomedical, Inc. | High-power pulsed electromagnetic field applicator systems |
US10593468B2 (en) | 2018-04-05 | 2020-03-17 | Apple Inc. | Inductive power transfer assembly |
US11547848B2 (en) | 2018-06-21 | 2023-01-10 | Regenesis Biomedical, Inc. | High-power pulsed electromagnetic field applicator systems |
US11833363B2 (en) | 2019-10-25 | 2023-12-05 | Regenesis Biomedical, Inc. | Current-based RF driver for pulsed electromagnetic field applicator systems |
WO2022175714A1 (en) * | 2021-02-17 | 2022-08-25 | Daymak Inc. | Wireless power transfer (wpt) charging system for an electric vehicle |
US20240278031A1 (en) * | 2021-06-09 | 2024-08-22 | Regenesis Biomedical, Inc. | Method and apparatus for providing pulsed electromagnetic field therapy |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5000178A (en) * | 1986-05-23 | 1991-03-19 | Lti Biomedical, Inc. | Shielded electromagnetic transducer |
US6407470B1 (en) * | 1997-10-24 | 2002-06-18 | Daimlerchrysler Ag | Electric power transmission device |
WO2005024865A2 (en) * | 2003-09-08 | 2005-03-17 | Splashpower Limited | Inductive power transfer units having flux shields |
CN101714767A (zh) * | 2002-05-13 | 2010-05-26 | 捷通国际有限公司 | 无接触式电能传输装置及方法 |
WO2010090539A1 (en) * | 2009-02-05 | 2010-08-12 | Auckland Uniservices Limited | Inductive power transfer apparatus |
WO2010090538A1 (en) * | 2009-02-05 | 2010-08-12 | Auckland Uniservices Limited | Inductive power transfer apparatus |
WO2010098547A2 (en) * | 2009-02-27 | 2010-09-02 | Korea Advanced Institute Of Science And Technology | Power supply device, power acquisition device and safety system for electromagnetic induction-powered electric vehicle |
WO2011016736A2 (en) * | 2009-08-07 | 2011-02-10 | Auckland Uniservices Limited | Roadway powered electric vehicle system |
CN201947065U (zh) * | 2010-10-18 | 2011-08-24 | 陈庭勋 | 贴近式无线输电装置结构 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9025391D0 (en) * | 1990-11-22 | 1991-01-09 | Rue Company The Plc De | Magnetic field sensor and method |
JP2673876B2 (ja) * | 1994-12-05 | 1997-11-05 | ティーディーケイ株式会社 | 電磁誘導コイルの駆動回路及び該駆動回路を用いた充電装置 |
GB2388715B (en) * | 2002-05-13 | 2005-08-03 | Splashpower Ltd | Improvements relating to the transfer of electromagnetic power |
US8350655B2 (en) * | 2003-02-26 | 2013-01-08 | Analogic Corporation | Shielded power coupling device |
KR102553884B1 (ko) * | 2007-05-10 | 2023-07-10 | 오클랜드 유니서비시즈 리미티드 | 멀티 전력을 공급받는 전기 자동차 |
WO2008140333A2 (en) | 2007-05-10 | 2008-11-20 | Auckland Uniservices Limited | Multi power sourced electric vehicle |
JP4453741B2 (ja) * | 2007-10-25 | 2010-04-21 | トヨタ自動車株式会社 | 電動車両および車両用給電装置 |
JP4743244B2 (ja) * | 2008-09-18 | 2011-08-10 | トヨタ自動車株式会社 | 非接触受電装置 |
US8401469B2 (en) * | 2008-09-26 | 2013-03-19 | Hewlett-Packard Development Company, L.P. | Shield for use with a computing device that receives an inductive signal transmission |
JP2010098807A (ja) * | 2008-10-15 | 2010-04-30 | Toyota Motor Corp | 非接触給電システム |
JP5274989B2 (ja) * | 2008-11-12 | 2013-08-28 | 昭和飛行機工業株式会社 | 非接触給電装置 |
JP2011010435A (ja) * | 2009-06-25 | 2011-01-13 | Fujitsu Ten Ltd | 非接触式電力供給装置および非接触式電力供給ユニット |
WO2011074091A1 (ja) * | 2009-12-17 | 2011-06-23 | トヨタ自動車株式会社 | シールドおよびそれを搭載する車両 |
-
2012
- 2012-09-07 CN CN201280052907.1A patent/CN103947072A/zh active Pending
- 2012-09-07 EP EP12829832.0A patent/EP2751900B1/en active Active
- 2012-09-07 WO PCT/NZ2012/000160 patent/WO2013036146A1/en active Application Filing
- 2012-09-07 CN CN202010114042.3A patent/CN111293788B/zh active Active
- 2012-09-07 JP JP2014529639A patent/JP6407024B2/ja active Active
- 2012-09-07 US US14/240,191 patent/US10263466B2/en active Active
- 2012-09-07 KR KR1020147007332A patent/KR101970322B1/ko active IP Right Grant
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5000178A (en) * | 1986-05-23 | 1991-03-19 | Lti Biomedical, Inc. | Shielded electromagnetic transducer |
US6407470B1 (en) * | 1997-10-24 | 2002-06-18 | Daimlerchrysler Ag | Electric power transmission device |
CN101714767A (zh) * | 2002-05-13 | 2010-05-26 | 捷通国际有限公司 | 无接触式电能传输装置及方法 |
WO2005024865A2 (en) * | 2003-09-08 | 2005-03-17 | Splashpower Limited | Inductive power transfer units having flux shields |
WO2005024865A3 (en) * | 2003-09-08 | 2005-06-16 | Splashpower Ltd | Inductive power transfer units having flux shields |
WO2010090539A1 (en) * | 2009-02-05 | 2010-08-12 | Auckland Uniservices Limited | Inductive power transfer apparatus |
WO2010090538A1 (en) * | 2009-02-05 | 2010-08-12 | Auckland Uniservices Limited | Inductive power transfer apparatus |
WO2010098547A2 (en) * | 2009-02-27 | 2010-09-02 | Korea Advanced Institute Of Science And Technology | Power supply device, power acquisition device and safety system for electromagnetic induction-powered electric vehicle |
WO2011016736A2 (en) * | 2009-08-07 | 2011-02-10 | Auckland Uniservices Limited | Roadway powered electric vehicle system |
WO2011016736A4 (en) * | 2009-08-07 | 2011-06-30 | Auckland Uniservices Limited | Roadway powered electric vehicle system |
CN201947065U (zh) * | 2010-10-18 | 2011-08-24 | 陈庭勋 | 贴近式无线输电装置结构 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111463000A (zh) * | 2020-05-20 | 2020-07-28 | 河北工业大学 | 一种适用于电动汽车无线供电系统的复合式屏蔽结构 |
CN111463000B (zh) * | 2020-05-20 | 2021-08-24 | 河北工业大学 | 一种适用于电动汽车无线供电系统的复合式屏蔽结构 |
Also Published As
Publication number | Publication date |
---|---|
US10263466B2 (en) | 2019-04-16 |
CN111293788A (zh) | 2020-06-16 |
JP6407024B2 (ja) | 2018-10-17 |
US20140361630A1 (en) | 2014-12-11 |
JP2014532296A (ja) | 2014-12-04 |
WO2013036146A1 (en) | 2013-03-14 |
KR20140065421A (ko) | 2014-05-29 |
KR101970322B1 (ko) | 2019-04-18 |
CN111293788B (zh) | 2023-11-03 |
EP2751900A1 (en) | 2014-07-09 |
EP2751900B1 (en) | 2021-08-04 |
EP2751900A4 (en) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103947072A (zh) | 用于感应功率传输的磁场成形 | |
JP7194091B2 (ja) | 誘導電力伝達装置 | |
CN108461264B (zh) | 一种偏移容错范围大的无线电能传输松散磁耦合变压器装置及其电路 | |
EP2586044B2 (en) | Coil and electric shielding arrangement and transformer comprising the arrangement | |
JP5437650B2 (ja) | 非接触給電装置 | |
CN111430125A (zh) | 通量耦合装置以及其磁性结构 | |
JP6546371B2 (ja) | コイルユニット及び非接触給電装置 | |
JPWO2013176152A1 (ja) | 移動体用非接触給電トランス | |
JP2009071248A (ja) | リアクトルおよびパワーコンディショナ装置 | |
CN109166708A (zh) | 一种变匝间距平面螺旋线圈 | |
CN203504792U (zh) | 防电磁泄漏的线圈装置 | |
EP2698799B1 (en) | Magnetic configuration for High Efficiency Power Processing | |
US9672978B2 (en) | Wireless power transmission antenna apparatus | |
JP5918020B2 (ja) | 非接触給電用コイル | |
KR102618677B1 (ko) | 권선을 포함하는 변압기 | |
KR101573813B1 (ko) | 저손실 하이브리드 변압기 및 그 제조 방법 | |
US9698606B2 (en) | Wireless power transmission antenna apparatus | |
US10283260B2 (en) | Transformer for reducing eddy current losses of coil | |
CN202855511U (zh) | 一种高压变压器线圈引线出线结构 | |
KR20220063200A (ko) | 기생 손실들이 감소된 평면 변압기 | |
JP2008172116A (ja) | リアクトル磁心およびリアクトル | |
CN111845389B (zh) | 一种能量传输装置 | |
CN220439389U (zh) | 一种高能效环保的变压器或电抗器产品 | |
KR101977483B1 (ko) | 하이브리드 변압기의 표유 부하손 저감 방법 | |
US10840004B2 (en) | Reducing reluctance in magnetic devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140723 |