CN103920497A - 一种石墨烯负载原子级厚度超薄金属片的制备方法 - Google Patents

一种石墨烯负载原子级厚度超薄金属片的制备方法 Download PDF

Info

Publication number
CN103920497A
CN103920497A CN201410131573.8A CN201410131573A CN103920497A CN 103920497 A CN103920497 A CN 103920497A CN 201410131573 A CN201410131573 A CN 201410131573A CN 103920497 A CN103920497 A CN 103920497A
Authority
CN
China
Prior art keywords
graphene
hydrotalcite
preparation
graphite oxide
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410131573.8A
Other languages
English (en)
Other versions
CN103920497B (zh
Inventor
卫敏
邵明飞
栗振华
段雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201410131573.8A priority Critical patent/CN103920497B/zh
Publication of CN103920497A publication Critical patent/CN103920497A/zh
Application granted granted Critical
Publication of CN103920497B publication Critical patent/CN103920497B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明首次提出一种以水滑石单层层板为前体制备单原子层厚度金属片的方法,采用该方法制备出一种有序的原子级厚度过渡金属纳米片负载在石墨烯上的纳米材料。该方法首先制备氧化石墨烯胶体溶液;然后制备水滑石剥层的胶体溶液,把剥层的水滑石胶体溶液滴入到氧化石墨烯的溶液中,在静电作用下发生沉淀至上层溶液变澄清;把得到的沉淀用硼氢化钠还原即得。制备的石墨烯负载原子级厚度超薄金属片能够实现每个原子的充分暴露,并且由于石墨烯的存在,又具备优异的电学性质。本发明制备的石墨烯负载原子级厚度超薄金属片在催化、电化学、功能器件等领域具有重要的应用价值。

Description

一种石墨烯负载原子级厚度超薄金属片的制备方法
技术领域
本发明属于无机材料合成技术领域,特别涉及一种石墨烯负载原子级厚度超薄金属片的制备方法。
背景技术
近年来,具有单原子层或者几个原子层厚度的二维材料(例如石墨烯)由于其特殊的物理化学性质已引起广泛关注。但是具有单原子层厚度的二维金属纳米片研究的相对较少,尤其是过渡金属纳米片并未见报导。而相对于贵金属纳米片,过渡金属纳米片不但具有高的活性和稳定性,其来源也更为丰富和廉价,但由于受金属原子自身性质的限制,很难通过物理或化学方法实现其原子在二维层面上的有序排列。
层状双金属氢氧化物(LDHs,又称水滑石)的层板由金属元素组成、比例可以调控,除此之外,水滑石还具备结构拓扑转变效应,在还原过程中,水滑石层板的金属离子会经历一个拓扑转变得到金属单质,利用该过程可以制备负载型金属氧化物或金属纳米粒子,获得具有一定取向且高度分散的纳米催化材料。尽管,利用水滑石的这一效用可以制备高分散的纳米金属颗粒,但目前还很难实现对每个金属单质原子的充分暴露,这就不能充分发挥其功能。因此,以水滑石为前体制备单原子层厚度的纳米片具有很大的挑战和机遇。
发明内容
本发明的目的是提供一种石墨烯负载原子级厚度超薄金属片的制备方法。该方法是以水滑石单层层板为前体原位还原实现单原子层金属片的制备。
本发明的合成步骤包括三个部分:首先制备氧化石墨烯胶体溶液;然后制备水滑石剥层的胶体溶液,把剥层的水滑石胶体溶液滴入到氧化石墨烯的溶液中,在静电作用下发生沉淀至上层溶液变澄清;把得到的沉淀用硼氢化钠还原即得到石墨烯负载原子级厚度超薄金属片。
本发明所述的一种石墨烯负载原子级厚度超薄金属片的制备方法,其具体操作步骤如下:
1).将氧化石墨超声分散于去离子水中,制得1-5mg/L的单层氧化石墨烯胶体溶胶;
2).将硝酸根插层的水滑石0.05-0.2g加入到体积为50-200mL甲酰胺溶液中氮气保护下搅拌20-50h,得到单层水滑石纳米片胶体溶液;
3).将步骤2)制得的单层水滑石纳米片胶体溶液逐滴加入到步骤1)制得的单层氧化石墨烯胶体溶胶中,直至沉淀完全,上层液体变得透明澄清后停止滴加,离心洗涤,然后以0.7-1.3mg/mL将沉淀分散于去离子水中,之后加入0.008-0.012g/mL的硼氢化钠,搅拌反应1-3h,过滤,乙醇洗涤,真空干燥10-24h,得到石墨烯负载原子级厚度超薄金属片。
所述的氧化石墨的制备方法为:在冰水浴下,将1.5-3.0g石墨粉和1-1.5g硝酸钠混合,然后加入50-69mL浓硫酸,在磁力搅拌下再加入5.0-9.0g高锰酸钾;搅拌均匀后升温到30-40℃,恒温搅拌20-30min后加入100-150mL去离子水,同时升温至90-100℃,再恒温搅拌10-15min后移入冰水浴中冷却;最后倾倒入盛有400-500mL去离子水和1-3mL浓度为28-30wt%双氧水的大烧杯中,1000-1500r/min下离心取上层液体,真空干燥10-24h,即得到氧化石墨。
所述的硝酸根插层的水滑石的二价金属阳离子选自Mg2+、Co2+、Ni2+、Ca2+、Cu2+、Fe2+、Mn2+中的一种或几种,三价金属阳离子选自Al3+、Co3+、Fe3+、Cr3+中的一种或几种;并且二价金属阳离子或三价金属阳离子中至少含一种上述的过渡金属阳离子。
本发明的优点在于:本发明首次提出了一种以水滑石单层层板为前体制备单原子层厚度金属片的方法,采用该方法制备出一种有序的原子级厚度过渡金属纳米片负载在石墨烯上的纳米材料。该方法以水滑石为前体,通过水滑石层板金属元素的高度分散和可调性能优势,制备的纳米片具有超薄,有序,稳定性好等优点,能够实现每个原子的充分暴露,并且由于石墨烯的存在,又具备优异的电学性质。本发明制备的石墨烯负载原子级厚度超薄金属片在催化、电化学、功能器件等领域具有重要的应用价值。
附图说明
图1是实施例1中的制备过程及相关数码照片。
图2是实施例1中石墨烯负载原子级厚度超薄金属片的透射电镜照片。
图3是实施例1得到的石墨烯负载原子级厚度超薄金属片的原子力照片和相应厚度。
图4是实施例1中石墨烯负载原子级厚度超薄金属片的电化学催化性能。
具体实施方式
【实施例1】
氧化石墨的制备:在冰水浴下,将3.0g石墨粉和1.5g硝酸钠混合,然后加入69mL浓硫酸,在磁力搅拌下再加入9.0g高锰酸钾;搅拌均匀后升温到35℃,恒温搅拌30min后加入138mL去离子水,同时升温至98℃,再恒温搅拌15min后移入冰水浴中冷却;最后倾倒入盛有420mL去离子水和3mL浓度为30wt%双氧水的大烧杯中,1000r/min下离心取上层液体,真空干燥24h,即得到氧化石墨。
1.将上述制备的氧化石墨超声分散于去离子水中,制得5mg/L的单层氧化石墨烯胶体溶胶;
2.a:在400mL去离子水中加入0.08mol六水合硝酸镍、0.04mol九水合硝酸铝和0.4mol尿素,充分溶解后转移到聚四氟乙烯反应釜中,于140℃下反应12小时,将所得固体用去离子水与无水乙醇各洗涤3次后空气条件下烘干,得到碳酸根插层的镍铝水滑石;
b:取0.4g步骤a中所得的碳酸根插层的镍铝水滑石、0.6mol硝酸钠和0.002mol质量分数为69.2%的浓硝酸溶于400mL去离子水中,氮气保护下室温连续搅拌24h,将所得固体离心洗涤后真空干燥,得到硝酸根插层镍铝水滑石;
c:在100mL甲酰胺中加入0.1g步骤b中所得硝酸根插层镍铝水滑石,氮气保护下室温连续搅拌48h,得到单层镍铝水滑石纳米片胶体溶液;
3.将步骤2制得的单层水滑石纳米片胶体溶液逐滴加入到步骤1制得的单层氧化石墨烯胶体溶胶中,直至沉淀完全,上层液体变得透明澄清后停止滴加,离心洗涤,然后以1.0mg/mL沉淀分散于去离子水中,之后加入0.008g/mL硼氢化钠,搅拌反应3h,过滤,乙醇洗涤,真空干燥24h,得到石墨烯负载原子级厚度超薄金属片。
【实施例2】
1.将实施例1制备的氧化石墨超声分散于去离子水中,制得5mg/L的单层氧化石墨烯胶体溶胶;
2.a:在800mL去离子水中加入0.008mol六水合硝酸钴、0.004mol九水合硝酸铝和0.028mol尿素,充分溶解后于97℃水浴中氮气保护下连续搅拌48h,将所得固体用去离子水与无水乙醇各洗涤3次后空气条件下烘干,得到碳酸根插层钴铝水滑石;
b:取0.4g步骤a中所得固体、0.6mol硝酸钠和0.002mol质量分数为69.2%的浓硝酸溶于400mL去离子水中,氮气保护下室温连续搅拌24h,将所得固体离心洗涤后真空干燥,得到硝酸根插层钴铝水滑石;
c:在100mL甲酰胺中加入0.1g步骤b中所得硝酸根插层钴铝水滑石,氮气保护下室温连续搅拌48h,得到单层钴铝水滑石纳米片胶体溶液;
3.将步骤2制得的单层水滑石纳米片胶体溶液逐滴加入到步骤1制得的单层氧化石墨烯胶体溶胶中,直至沉淀完全,上层液体变得透明澄清后停止滴加,离心洗涤,然后以1.0mg/mL沉淀分散于去离子水中,之后加入0.009g/mL硼氢化钠,搅拌反应3h,过滤,乙醇洗涤,真空干燥24h,得到石墨烯负载原子级厚度超薄金属片。
【实施例3】
1.将实施例1制备的氧化石墨超声分散于去离子水中,制得5mg/L的单层氧化石墨烯胶体溶胶;
2.a:在1000mL去离子水中加入0.005mol六水合二氯化钴、0.0025mol六水合二氯化镍和0.045mol六亚甲基四胺,充分溶解后,将上述溶液在氮气保护下连续搅拌且冷凝回流5h,将所得固体用去离子水与无水乙醇各洗涤3次后在空气条件下烘干,得到碳酸根插层钴镍水滑石;
b:取0.186g步骤a中所得固体,分散到溶有0.00667mol溴的乙腈溶液中,将混合物氮气保护下室温连续搅拌24h,将所得固体用无水乙醇洗涤5次后真空干燥,得到溴离子插层钴镍水滑石;
c:取0.23g步骤b中所合成的固体均匀分散到200mL溶有0.3mol硝酸钠的乙醇水溶液中(乙醇:水=1:1v/v),将混合物氮气保护下室温连续搅拌24h,将所得固体用无水乙醇洗涤5次后真空干燥,得到硝酸根插层钴镍水滑石;
d:在100mL甲酰胺中加入0.05g步骤c中所得硝酸根插层钴镍水滑石,氮气保护下室温连续搅拌48h,得到单层钴镍水滑石纳米片胶体溶液;
3.将步骤2制得的单层水滑石纳米片胶体溶液逐滴加入到步骤1制得的单层氧化石墨烯胶体溶胶中,直至沉淀完全,上层液体变得透明澄清后停止滴加,离心洗涤,然后以1.0mg/mL沉淀分散于去离子水中,之后加入0.012g/mL硼氢化钠,搅拌反应3h,过滤,乙醇洗涤,真空干燥24h,得到石墨烯负载原子级厚度超薄金属片。

Claims (3)

1.一种石墨烯负载原子级厚度超薄金属片的制备方法,其特征在于,其具体操作步骤如下:
1).将氧化石墨超声分散于去离子水中,制得1-5mg/L的单层氧化石墨烯胶体溶胶;
2).将硝酸根插层的水滑石0.05-0.2g加入到体积为50-200mL甲酰胺溶液中氮气保护下搅拌20-50h,得到单层水滑石纳米片胶体溶液;
3).将步骤2)制得的单层水滑石纳米片胶体溶液逐滴加入到步骤1)制得的单层氧化石墨烯胶体溶胶中,直至沉淀完全,上层液体变得透明澄清后停止滴加,离心洗涤,然后以0.7-1.3mg/mL将沉淀分散于去离子水中,之后加入0.008-0.012g/mL的硼氢化钠,搅拌反应1-3h,过滤,乙醇洗涤,真空干燥10-24h,得到石墨烯负载原子级厚度超薄金属片。
2.根据权利要求1所述的制备方法,其特征在于,所述的氧化石墨的制备方法为:在冰水浴下,将1.5-3.0g石墨粉和1-1.5g硝酸钠混合,然后加入50-69mL浓硫酸,在磁力搅拌下再加入5.0-9.0g高锰酸钾;搅拌均匀后升温到30-40℃,恒温搅拌20-30min后加入100-150mL去离子水,同时升温至90-100℃,再恒温搅拌10-15min后移入冰水浴中冷却;最后倾倒入盛有400-500mL去离子水和1-3mL浓度为28-30wt%双氧水的大烧杯中,1000-1500r/min下离心取上层液体,真空干燥10-24h,即得到氧化石墨。
3.根据权利要求1所述的制备方法,其特征在于,所述的硝酸根插层的水滑石的二价金属阳离子选自Mg2+、Co2+、Ni2+、Ca2+、Cu2+、Fe2+、Mn2+中的一种或几种,三价金属阳离子选自Al3+、Co3+、Fe3+、Cr3+中的一种或几种;并且二价金属阳离子或三价金属阳离子中至少含一种上述的过渡金属阳离子。
CN201410131573.8A 2014-04-02 2014-04-02 一种石墨烯负载原子级厚度超薄金属片的制备方法 Expired - Fee Related CN103920497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410131573.8A CN103920497B (zh) 2014-04-02 2014-04-02 一种石墨烯负载原子级厚度超薄金属片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410131573.8A CN103920497B (zh) 2014-04-02 2014-04-02 一种石墨烯负载原子级厚度超薄金属片的制备方法

Publications (2)

Publication Number Publication Date
CN103920497A true CN103920497A (zh) 2014-07-16
CN103920497B CN103920497B (zh) 2016-03-30

Family

ID=51139030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410131573.8A Expired - Fee Related CN103920497B (zh) 2014-04-02 2014-04-02 一种石墨烯负载原子级厚度超薄金属片的制备方法

Country Status (1)

Country Link
CN (1) CN103920497B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475573A (zh) * 2016-11-01 2017-03-08 河北大学 一种以石墨烯为衬底的金属单原子二维材料的制备及应用
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN106914237A (zh) * 2017-02-28 2017-07-04 清华大学 一种金属单原子的制备方法
CN108558369A (zh) * 2018-05-18 2018-09-21 郦璋 一种复合陶瓷电容材料的制备方法
CN112928271A (zh) * 2021-01-25 2021-06-08 北京化工大学 用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120202056A1 (en) * 2009-10-15 2012-08-09 Bayer Technology Services Composite materials having graphene layers and production and use thereof
CN103143361A (zh) * 2013-03-29 2013-06-12 北京化工大学 一种石墨烯促进型水滑石基脱硝催化剂及其制备方法
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN103466611A (zh) * 2013-09-29 2013-12-25 黑龙江大学 石墨烯负载纳米银镍合金复合粉体材料的制备方法
CN103551591A (zh) * 2013-11-11 2014-02-05 福建医科大学 多孔铂-氧化石墨烯复合纳米材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120202056A1 (en) * 2009-10-15 2012-08-09 Bayer Technology Services Composite materials having graphene layers and production and use thereof
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN103143361A (zh) * 2013-03-29 2013-06-12 北京化工大学 一种石墨烯促进型水滑石基脱硝催化剂及其制备方法
CN103466611A (zh) * 2013-09-29 2013-12-25 黑龙江大学 石墨烯负载纳米银镍合金复合粉体材料的制备方法
CN103551591A (zh) * 2013-11-11 2014-02-05 福建医科大学 多孔铂-氧化石墨烯复合纳米材料及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475573A (zh) * 2016-11-01 2017-03-08 河北大学 一种以石墨烯为衬底的金属单原子二维材料的制备及应用
CN106475573B (zh) * 2016-11-01 2018-05-04 河北大学 一种以石墨烯为衬底的金属单原子二维材料的制备及应用
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN106693945B (zh) * 2016-11-29 2019-10-18 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN106914237A (zh) * 2017-02-28 2017-07-04 清华大学 一种金属单原子的制备方法
CN106914237B (zh) * 2017-02-28 2019-08-16 清华大学 一种金属单原子的制备方法
CN108558369A (zh) * 2018-05-18 2018-09-21 郦璋 一种复合陶瓷电容材料的制备方法
CN112928271A (zh) * 2021-01-25 2021-06-08 北京化工大学 用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法
CN112928271B (zh) * 2021-01-25 2022-07-05 北京化工大学 用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法

Also Published As

Publication number Publication date
CN103920497B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
Zhang et al. Boosting photocatalytic hydrogen evolution achieved by NiSx coupled with g-C3N4@ ZIF-67 heterojunction
Zhao et al. MOF-derived ZnO/Ni3ZnC0. 7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries
CN103137957B (zh) 一种多孔石墨烯-金属氧化物复合材料及其制备方法
Qiu et al. Ni-doped cobalt hexacyanoferrate microcubes as battery-type electrodes for aqueous electrolyte-based electrochemical supercapacitors
Wang et al. Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for High-Performance supercapacitors
Xing et al. Interface engineering boosts electrochemical performance by fabricating CeO2@ CoP Schottky conjunction for hybrid supercapacitors
CN103920497B (zh) 一种石墨烯负载原子级厚度超薄金属片的制备方法
Daneshvar et al. Porous SnO2–CuxO nanocomposite thin film on carbon nanotubes as electrodes for high performance supercapacitors
CN104475753B (zh) 液相还原法制备石墨烯负载纳米Cu3.8Ni合金的方法
CN102842710A (zh) 一种Co3O4/石墨烯纳米复合材料的制备方法
Zheng et al. Nanocomposite of Mo2N quantum Dots@ MoO3@ nitrogen-doped carbon as a high-performance anode for lithium-ion batteries
Fang et al. Modified CNTs interfacial anchoring and particle-controlled synthesis of amorphous cobalt-nickel-boron alloy bifunctional materials for NaBH4 hydrolysis and supercapacitor energy storage
Yu et al. Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes
Chen et al. Facile self-assembly of sandwich-like MXene/graphene oxide/nickel–manganese layered double hydroxide nanocomposite for high performance supercapacitor
Li et al. Bimetallic two-dimensional materials for electrocatalytic oxygen evolution
Ma et al. Construction of high-performance asymmetric supercapacitor based on FeCo-LDH@ C3N4 composite electrode material with penetrating structure
Li et al. Fabricated Ga (III) heterovalent substituted NiCo layered double hydroxides (NiCoGa-LDHs) electrode material for designed hybrid supercapacitor
Ran et al. MnO2@ MoS2/RGO hollow structure as high-performance supercapacitor electrode materials
Shi et al. A special core-shell ZnS-CNTs/S@ NH cathode constructed to elevate electrochemical performances of lithium-sulfur batteries
Su et al. Heterostructured Ni3B/Ni nanosheets for excellent microwave absorption and supercapacitive application
Wan et al. High-mass-loading cobalt iron phosphide@ nickel vanadium layered double hydroxide heterogeneous nanosheet arrays for hybrid supercapacitors
Yuan et al. Cu/Co mixed hierarchical tubular heterostructures for alkaline supercapacitors
Yue et al. Defective ZnCoNiP nanosheets derived from metal-organic-frameworks as electrodes for high-performance supercapacitors
Wang et al. Bimetal-organic framework-derived nanorod-like FexNi1− x@ C, P composites for electrochemical hydrogen evolution
Meng et al. ZnNiCo layered double hydroxide@ Mxene with 2D/2D hierarchical structure derived from micro-sized ZIF-8/67 anchored to Mxene for asymmetric supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

CF01 Termination of patent right due to non-payment of annual fee