CN103920482A - 一种锆掺杂钙钛矿型光催化剂及其制备方法 - Google Patents
一种锆掺杂钙钛矿型光催化剂及其制备方法 Download PDFInfo
- Publication number
- CN103920482A CN103920482A CN201410178555.5A CN201410178555A CN103920482A CN 103920482 A CN103920482 A CN 103920482A CN 201410178555 A CN201410178555 A CN 201410178555A CN 103920482 A CN103920482 A CN 103920482A
- Authority
- CN
- China
- Prior art keywords
- solution
- zirconium
- preparation
- perovskite type
- type photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- 229960000583 acetic acid Drugs 0.000 claims abstract description 15
- 239000012362 glacial acetic acid Substances 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims abstract description 9
- 238000001354 calcination Methods 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 7
- GBNDTYKAOXLLID-UHFFFAOYSA-N zirconium(4+) ion Chemical compound [Zr+4] GBNDTYKAOXLLID-UHFFFAOYSA-N 0.000 claims abstract description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical class O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000000227 grinding Methods 0.000 claims abstract description 6
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 3
- 238000003756 stirring Methods 0.000 claims description 24
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims description 24
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 claims description 12
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 229910002367 SrTiO Inorganic materials 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000003381 stabilizer Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000376 reactant Substances 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract 1
- 238000001782 photodegradation Methods 0.000 abstract 1
- 230000001699 photocatalysis Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 238000007146 photocatalysis Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000003760 magnetic stirring Methods 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 229960000907 methylthioninium chloride Drugs 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000877463 Lanio Species 0.000 description 2
- 229910002370 SrTiO3 Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000320 mechanical mixture Substances 0.000 description 2
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 2
- 229940012189 methyl orange Drugs 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
本发明涉及一种锆掺杂钙钛矿型光催化剂及其制备方法。所述催化剂的钙钛矿型结构为锐钛矿相与金红石相的混晶结构,分子式为ABO3,其中A为Sr,B为Ti,所述掺杂的锆离子为Zr4+。所述制备方法包括冰醋酸溶液的制备、钛酸丁酯-无水乙醇溶液的制备、以及两种溶液反应、干燥、煅烧和研磨等步骤。本发明所述锆掺杂钙钛矿型光催化剂在可见光波段具有具有较高的可见光光降解活性,而且由于反应过程在溶液中进行,反应物可以达到分子水平的均匀混合,使得所合成的催化剂的分散性好,纯度高,性能稳定。
Description
技术领域
本发明涉及一种光催化剂,尤其涉及一种对钙钛矿进行掺杂锆离子改性而得到的性能更高的光催化剂及其制备方法。
背景技术
工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物,如果不加以处理直接外排将会对自然环境造成极大的破坏。现代污水处理过程一般分为一、二、三级,三级处理是经二级处理后,为了从废水中去除某种特定的污染物而补充增加的一项或几项处理单元,目的在于废水回收、复用,但是三级处理耗资较大,管理也较复杂,现在只有少数国家建成了一些污水三级处理厂。
目前,开发高效、节能、无二次污染的环境治理、环境保护新技术已受到人们的广泛关注。在各类新技术中,光催化技术是最有前途的环境友好清洁新技术之一,它是利用光催化剂吸收光的能量分解有机物或分解水的过程。其机理是半导体价带中的电子受光激发跃迁到导带,在导带中形成光生电子,在价带中留下光生空穴。这些非平衡态的电子和空穴有极强的还原和氧化能力,当它们扩散到光催化剂的表面时,可将污染物氧化还原成无害的小分子,或将水分解成氢气和氧气。
在目前的光催化剂特别是非均相光催化中,钙钛矿型ABO3光催化剂在近十年来被认为是一种最具有发展前途的催化剂。钙钛矿型复合氧化物ABO3的禁带较窄,可吸收可见光发生电子跃迁,表现出良好的光催化活性,可用于有机物的光催化降解。这类半导体粒子含有能带结构,通常情况下是由一个充满电子的低能价带(VB)和一个空的高能导带(CB)构成。其光催化原理是氧的2p轨道构成价带,B位离子的3d轨道构成导带,当受到能量大于两者之间的能隙Eg的光照射后,价带电子被激发跃迁到导带,价带和导带上分别产生了光生空穴(h+)和光生电子(e-),并在电场作用下分离并迁移到粒子表面,电子和空穴与水及溶解氧作用,产生高化学活性的HO·和HO2·等自由基,使表面吸附氧转化为高活性的,进而与吸附在催化剂表面的染料分子发生氧化还原反,将其降解为无机小分子达到光催化作用。
但是,钙钛矿型ABO3光催化剂的催化性能还有待于进一步提高,特别是光催化过程中可见光利用率不高,一直是人们关注的问题。近年来,光催化剂用非金属如碳、氮等元素的掺杂来提高光催化活性已经成为光催化领域的热点之一。如Teruhisa等(Teruhisa O et al,Appl Catal A:General,2005,288:74-79)利用硫脲与钙钛矿SrTiO3粉末机械混合后经500℃焙烧得到掺碳的SrTiO3,使催化剂的禁带宽度减小,从而提高了光催化效率。然而采用机械混合煅烧法,掺杂过程不易控制,掺杂复重性较差,低分子的有机物易在煅烧过程中使碳流失,从而使碳掺杂后钙钛矿光催化性能的提高受到限制。
邹文静,韩晖等人在《钙钛矿型氧化物的制备及其催化活性评价》(“现代化工”,2010年)中公开了合成LaNiO3的方法,并研究其对甲基橙的降解效果,结果表明,LaNiO3对甲基橙的降解率为70%左右,降解率较低。
发明内容
针对现有技术的缺点,本发明的目的是提供一种制备方法简单、在可见光下光催化活性高的锆掺杂钙钛矿型光催化剂及其制备方法。
为实现上述目的,本发明提供的技术方案之一,是一种锆掺杂钙钛矿型光催化剂,所述钙钛矿型结构为锐钛矿相与金红石相的混晶结构,分子式为ABO3,其中A为Sr,B为Ti,所述掺杂的锆离子为Zr4+。
优选地,以摩尔百分比计,锆离子的掺杂量为8%,即SrTi92%Zr8%O3。
本发明提供的技术方案之二,是一种锆掺杂钙钛矿型光催化剂的制备方法,包括如下步骤:
(1)冰醋酸溶液的制备
将冰醋酸溶于去离子水中,搅拌均匀后,再加入浓度为1mol/L的硝酸锶溶液;
(2)钛酸丁酯-无水乙醇溶液的制备
将钛酸丁酯溶于无水乙醇中,搅拌均匀,得到淡黄色的溶液;
(3)反应
将步骤(1)所得冰醋酸溶液加热至50-60℃,边搅拌边加入步骤(2)所得钛酸丁酯-无水乙醇溶液,滴加完毕,再加入浓度为0.1mol/L的硝酸锆溶液,同时滴入乙二醇作溶液稳定剂,搅拌均匀,得淡黄色粘稠状溶胶;
(4)干燥,煅烧
将步骤(3)所得溶胶置于干燥箱内,在100-120℃下干燥5-8小时后,得凝胶,然后在500-600℃下煅烧3-5小时即可制得Zr掺杂的SrTiO3粉体,研磨,即得成品催化剂。
优选地,上述步骤(3)在加入硝酸锆的同时滴加氨水调节溶液的PH值在6.5-7之间。
在上述步骤(3)中,搅拌速度为400-600rpm。
本发明的有益效果:
(1)本发明所述锆掺杂钙钛矿型光催化剂在可见光波段具有具有较高的可见光光降解活性;
(2)本发明所述制备方法中的反应过程在溶液中进行,反应物可以达到分子水平的均匀混合,使得所合成的催化剂的介晶形貌均匀,分散性好,且产品中杂质含量低,性能稳定。
附图说明
图1为本发明实施例1所述Zr掺杂的SrTiO3催化剂制备过程流程图;
图2为本发明所述Zr掺杂的SrTiO3催化剂降解亚甲基蓝溶液实验示意图;
图3为本发明所述Zr掺杂的SrTiO3催化剂性能测试曲线图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。
实施例1
如图1所示,本发明所述锆掺杂钙钛矿型光催化剂的制备方法包括如下步骤:
(1)冰醋酸溶液的制备
将10ml冰醋酸溶于50ml去离子水中,搅拌均匀后,再加入1mol/l硝酸锶溶液30ml,得到溶液A;
(2)钛酸丁酯-无水乙醇溶液的制备
取10ml钛酸丁酯,溶于40ml无水乙醇中,搅拌10分钟,得到淡黄色的溶液B;
(3)反应
将步骤(1)所得A溶液加热至60℃,边搅拌边加入步骤(2)所得B溶液,滴加完毕,再加入0.1mol/l硝酸锆溶液24ml,在滴加硝酸锆溶液的同时滴加氨水调节溶液的PH值在6.5-7之间,并滴入8ml乙二醇作溶液稳定剂,磁力搅拌器60℃下搅拌约40min,随着溶剂的不断蒸发,溶液逐渐变稠,得淡黄色粘稠状溶胶;
(4)干燥,煅烧
将步骤(3)所得溶胶置于干燥箱内,在100℃下干燥6小时后,得凝胶,然后在550℃下煅烧4小时即可制得Zr掺杂的SrTiO3粉体,即SrTi92%Zr8%O3,研磨后即得成品催化剂。
实施例2
(1)冰醋酸溶液的制备
将10ml冰醋酸溶于60ml去离子水中,搅拌均匀后,再加入1mol/l硝酸锶溶液35ml,得到溶液A2;
(2)钛酸丁酯-无水乙醇溶液的制备
取12ml钛酸丁酯,溶于50ml无水乙醇中,搅拌20分钟,得到淡黄色的溶液B2;
(3)反应
将步骤(1)所得A2溶液加热至50℃,边搅拌边加入步骤(2)所得B2溶液,滴加完毕,再加入0.1mol/l硝酸锆溶液26ml,在滴加硝酸锆溶液的同时滴加氨水调节溶液的PH值在6.5-7之间,并滴入10ml乙二醇作溶液稳定剂,用磁力搅拌器50℃下搅拌约50min,随着溶剂的不断蒸发,溶液逐渐变稠,得淡黄色粘稠状溶胶;
(4)干燥,煅烧
将步骤(3)所得溶胶置于干燥箱内,在120℃下干燥4小时后,得凝胶,然后在600℃下煅烧3小时即可制得Zr掺杂的SrTiO3粉体,研磨后即得成品催化剂。
实施例3
(1)冰醋酸溶液的制备
将10ml冰醋酸溶于40ml去离子水中,搅拌均匀后,再加入1mol/l的硝酸锶溶液28ml,得到溶液A3;
(2)钛酸丁酯-无水乙醇溶液的制备
取15ml钛酸丁酯,溶于40ml无水乙醇中,搅拌12分钟,得到淡黄色的溶液B3;
(3)反应
将步骤(1)所得A3溶液加热至55℃,边搅拌边加入步骤(2)所得B3溶液,滴加完毕,再加入0.1mol/l的硝酸锆溶液22ml,在滴加硝酸锆溶液的同时滴加氨水调节溶液的PH值在6.5-7之间,并滴入6ml乙二醇作溶液稳定剂,用磁力搅拌器55℃下搅拌约45min,随着溶剂的不断蒸发,溶液逐渐变稠,得淡黄色粘稠状溶胶;
(4)干燥,煅烧
将步骤(3)所得溶胶置于干燥箱内,在110℃下干燥5小时后,得凝胶,然后在500℃下煅烧5小时即可制得Zr掺杂的SrTiO3粉体,研磨后即得成品催化剂。
实施例4
(1)冰醋酸溶液的制备
将10ml冰醋酸溶于55ml去离子水中,搅拌均匀后,再加入1mol/l硝酸锶溶液25ml,得到溶液A4;
(2)钛酸丁酯-无水乙醇溶液的制备
取8ml钛酸丁酯,溶于50ml无水乙醇中,搅拌20分钟,得到淡黄色的溶液B4;
(3)反应
将步骤(1)所得A4溶液加热至50℃,边搅拌边加入步骤(2)所得B4溶液,滴加完毕,再加入0.1mol/l硝酸锆溶液23ml,在滴加硝酸锆溶液的同时滴加氨水调节溶液的PH值在6.5-7之间,并滴入10ml乙二醇作溶液稳定剂,用磁力搅拌器50℃下搅拌约50min,随着溶剂的不断蒸发,溶液逐渐变稠,得淡黄色粘稠状溶胶;
(4)干燥,煅烧
将步骤(3)所得溶胶置于干燥箱内,在120℃下干燥4小时后,得凝胶,然后在600℃下煅烧3小时即可制得Zr掺杂的SrTiO3粉体,研磨后即得成品催化剂。
应用实施例:
制备10.0mg/L亚甲基蓝溶液,模拟有机污染物,在该溶液中按照2.0g/L比例投放实施例1-4所得光催化剂。如图2所示,图中反应箱由六块平面镜粘和而成,内置日光灯(40W)为光源,一组共约3-6个表面皿均距排列在日外灯下,为方便反应器的搁放,反应箱上面的平面镜为活动的,在实验时把它盖好,表面皿的直径约为50mm,与反应箱中的日光灯相距10cm左右。在日光灯下照射2小时,每隔15min取样,利用分光光度计进行亚甲基兰溶液浓度测定,结果见图3。
由图3所示可以看出,以摩尔百分比计,实施例1中锆离子的掺杂量为8%时所得催化剂具有最佳的光催化活性,降解率能达到93.4%,完全可以运用到三级污水处理过程中。
Claims (4)
1.一种锆掺杂钙钛矿型光催化剂,其特征在于,所述钙钛矿型结构为锐钛矿相与金红石相的混晶结构,分子式为ABO3,其中A为Sr,B为Ti,所述掺杂锆离子为Zr4+。
2.根据权利要求1所述的锆掺杂钙钛矿型光催化剂,其特征在于,以摩尔百分比计,锆离子的掺杂量为8%。
3.一种权利要求1所述的锆掺杂钙钛矿型光催化剂的制备方法,其特征在于,包括如下步骤:
(1)冰醋酸溶液的制备
将冰醋酸溶于去离子水中,搅拌均匀后,再加入浓度为0.1mol/l的硝酸锶溶液;
(2)钛酸丁酯-无水乙醇溶液的制备
将钛酸丁酯溶于无水乙醇中,搅拌均匀,得到淡黄色的溶液;
(3)反应
将步骤(1)所得冰醋酸溶液加热至50-60℃,边搅拌边加入步骤(2)所得钛酸丁酯-无水乙醇溶液,滴加完毕,再加入浓度为0.1mol/l的硝酸锆溶液,同时滴入乙二醇作溶液稳定剂,搅拌均匀,得淡黄色粘稠状溶胶;
(4)干燥,煅烧
将步骤(3)所得溶胶置于干燥箱内,在100-120℃下干燥5-8小时后,得凝胶,然后在500-600℃下煅烧3-5小时即可制得Zr掺杂的SrTiO3粉体,研磨后即得成品催化剂。
4.根据权利要求3所述的锆掺杂钙钛矿型光催化剂的制备方法,其特征在于,步骤(3)在加入硝酸锆溶液的同时滴加氨水调节溶液的PH值在6.5-7之间。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410178555.5A CN103920482A (zh) | 2014-04-30 | 2014-04-30 | 一种锆掺杂钙钛矿型光催化剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410178555.5A CN103920482A (zh) | 2014-04-30 | 2014-04-30 | 一种锆掺杂钙钛矿型光催化剂及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103920482A true CN103920482A (zh) | 2014-07-16 |
Family
ID=51139015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410178555.5A Pending CN103920482A (zh) | 2014-04-30 | 2014-04-30 | 一种锆掺杂钙钛矿型光催化剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103920482A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109371180A (zh) * | 2018-11-13 | 2019-02-22 | 陕西科技大学 | 锆掺杂钙钛矿型金属鞣剂及其制备方法 |
CN113274995A (zh) * | 2021-05-10 | 2021-08-20 | 天津大学 | 一种掺杂型钛酸锶半导体材料及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012148216A (ja) * | 2011-01-17 | 2012-08-09 | Panasonic Corp | 光励起半導体及びそれを用いたデバイス |
US20130266809A1 (en) * | 2012-04-10 | 2013-10-10 | Massachusetts Institute Of Technology | Biotemplated perovskite nanomaterials |
-
2014
- 2014-04-30 CN CN201410178555.5A patent/CN103920482A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012148216A (ja) * | 2011-01-17 | 2012-08-09 | Panasonic Corp | 光励起半導体及びそれを用いたデバイス |
US20130266809A1 (en) * | 2012-04-10 | 2013-10-10 | Massachusetts Institute Of Technology | Biotemplated perovskite nanomaterials |
Non-Patent Citations (1)
Title |
---|
颜竞: "钛酸锶的改性及光催化性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109371180A (zh) * | 2018-11-13 | 2019-02-22 | 陕西科技大学 | 锆掺杂钙钛矿型金属鞣剂及其制备方法 |
CN109371180B (zh) * | 2018-11-13 | 2021-08-31 | 陕西科技大学 | 锆掺杂钙钛矿型金属鞣剂及其制备方法 |
CN113274995A (zh) * | 2021-05-10 | 2021-08-20 | 天津大学 | 一种掺杂型钛酸锶半导体材料及其制备方法 |
CN113274995B (zh) * | 2021-05-10 | 2023-08-08 | 天津大学 | 一种掺杂型钛酸锶半导体材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | SiO2@ TiO2 core@ shell nanoparticles deposited on 2D-layered ZnIn2S4 to form a ternary heterostructure for simultaneous photocatalytic hydrogen production and organic pollutant degradation | |
Usman et al. | Bismuth-graphene nanohybrids: synthesis, reaction mechanisms, and photocatalytic applications—a review | |
Zhang et al. | Assembling n-Bi2MoO6 nanosheets on electrospun p-CuAl2O4 hollow nanofibers: enhanced photocatalytic activity based on highly efficient charge separation and transfer | |
Liu et al. | Removal of nitrate by photocatalytic denitrification using nonlinear optical material | |
Su et al. | Internal electric field assisted photocatalytic generation of hydrogen peroxide over BiOCl with HCOOH | |
Gionco et al. | Cerium-doped zirconium dioxide, a visible-light-sensitive photoactive material of third generation | |
Fu et al. | Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 | |
Li et al. | Visible light responsive NF-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol | |
Sadeghzadeh-Attar | Enhanced photocatalytic hydrogen evolution by novel Nb-doped SnO2/V2O5 heteronanostructures under visible light with simultaneous basic red 46 dye degradation | |
Li et al. | Visible-light photochemical activity of heterostructured core–shell materials composed of selected ternary titanates and ferrites coated by TiO2 | |
Narayanam et al. | Azole functionalized polyoxo-titanium clusters with sunlight-driven dye degradation applications: synthesis, structure, and photocatalytic studies | |
Kočí et al. | Photocatalytic decomposition of methanol over La/TiO 2 materials | |
CN101993043A (zh) | BiOBr微米球可见光光催化剂及其制备方法 | |
CN102086045B (zh) | TiO2二级纳米棒阵列及其制备方法与应用 | |
Huang et al. | Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation | |
Hu et al. | Solvent effects on photocatalytic anaerobic oxidation of benzyl alcohol over Pt-loaded defective SrTiO3 nanoparticles | |
Xie et al. | New Route to Synthesize Highly Active Nanocrystalline Sulfated Titania− Silica: Synergetic Effects between Sulfate Species and Silica in Enhancing the Photocatalysis Efficiency | |
Uzunova-Bujnova et al. | Lanthanide-doped titanium dioxide layers as photocatalysts | |
Yang et al. | Bismuth-doped g-C3N4/ZIF-8 heterojunction photocatalysts with enhanced photocatalytic performance under visible light illumination | |
Xia et al. | Visible-Light Photocatalytic Degradation Efficiency of Tetracycline and Rhodamine B Using a Double Z-Scheme Heterojunction Catalyst of UiO-66-NH2/BiOCl/Bi2S3 | |
CN105921153B (zh) | 一种复合光催化剂及其制备方法 | |
CN103920482A (zh) | 一种锆掺杂钙钛矿型光催化剂及其制备方法 | |
Kang et al. | Plasma engraved Bi2MoO6 for enhanced photocatalytic nitrate reduction reaction | |
Wei et al. | 2D heterojunction of C, N, S Co-doped TiO2/g-C3N4 nanosheet with high-speed charge transport toward highly efficient photocatalytic activity | |
Zhang et al. | Defect engineering in seaweed-like TiO2@ carbon nitride strengthening hydroxyl production for thorough elimination of antibiotics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140716 |