CN103911439A - 系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用 - Google Patents

系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用 Download PDF

Info

Publication number
CN103911439A
CN103911439A CN201410093633.1A CN201410093633A CN103911439A CN 103911439 A CN103911439 A CN 103911439A CN 201410093633 A CN201410093633 A CN 201410093633A CN 103911439 A CN103911439 A CN 103911439A
Authority
CN
China
Prior art keywords
dna fragmentation
dna
methylolation
chip
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410093633.1A
Other languages
English (en)
Inventor
眭维国
戴勇
谭秋培
薛雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410093633.1A priority Critical patent/CN103911439A/zh
Publication of CN103911439A publication Critical patent/CN103911439A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,其通过使用hMeDIP-Chip技术得到系统性红斑狼疮羟甲基化状态的差异表达基因,深入研究这些差异表达基因将有助于进一步阐明系统性红斑狼疮的发病机理,为系统性红斑狼疮的诊断和治疗提供新途径。上述系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法设计合理可行,能够有效地协助建立一种系统性红斑狼疮差异表达基因的图谱模型,获取作为中间结果的系统性红斑狼疮的相关信息。

Description

系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用
技术领域
本发明涉及表观遗传学研究领域,尤其是涉及一种系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用。
背景技术
系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种典型的系统性自身免疫介导的,以免疫性炎症为突出表现的弥漫性结缔组织病,其发病机制复杂,涉及遗传、免疫及环境等多种因素的复杂作用。SLE牵涉到全身多系统和器官,如肾脏、皮肤、关节、神经系统和造血器官等,其中以肾脏受累最为常见。
表观遗传学是研究DNA序列没有发生改变的情况下而基因表达和表型却发生可遗传改变的学科。这种变化涉及DNA甲基化和组蛋白修饰。CpG二核苷酸中胞嘧啶的甲基化形式5-甲基胞嘧啶(5-methylcytosine,5mC)在哺乳动物中是一种常见的表观遗传修饰,在基因表达调控、发育调节、基因组印迹等方面发挥重要作用。近些年来研究发现,除了5mC外,胞嘧啶碱基的另一种修饰—5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)在哺乳动物的多种组织中有着丰富的表达,其可能与5mC有着不同的生物学功能。因此研究SLE环境下是否有5hmC的异常是非常重要的。这或许能为SLE的治疗提供新的思路以及更深入理解SLE的发病机制提供重要线索。
发明内容
基于此,有必要提供一种系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用。
一种系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,包括如下步骤:
分别采集系统性红斑狼疮患者和健康人的血液样本,并
从所述血液样本中提取DNA;
将所述DNA消化成200~1000bp的DNA片段,并加入76mer完全羟甲基化的寡核苷酸链作为阳性对照;
将含有所述阳性对照的所述DNA片段加热变性,再将得到的单链DNA样本分成两份,其中一份作为实验组加入抗5’-羟甲基化胞嘧啶核苷抗体得到DNA片段抗体复合物,另一份作为对照组,记为Input,其中,实验组用免疫磁珠法分离所述DNA片段抗体复合物,共沉淀后非羟甲基化的DNA片段被清洗除去,得到纯化的DNA片段抗体复合物,记为hMeDIP;
对上述实验组纯化的DNA片段抗体复合物和对照组的DNA片段进行扩增;
对扩增后的实验组DNA片段抗体复合物和对照组DNA片段分别使用Cy5和Cy3染料标记;
将染料标记后的实验组DNA片段抗体复合物与对照组DNA片段混合后与羟甲基化微阵列检测芯片杂交,使用hMeDIP-Chip技术对比分析系统性系统性红斑狼疮患者和健康人的芯片杂交结果,得到系统性红斑狼疮羟甲基化状态的差异表达基因。
在其中一个实施例中,在将所述DNA消化成200~1000bp的DNA片段之前,所述分析方法还包括对提取的DNA使用NanoDrop ND-100分析仪测定所述DNA的数量和质量以及用琼脂糖凝胶电泳检测DNA完整性的步骤。
在其中一个实施例中,在对上述实验组纯化的DNA片段和对照组的DNA片段进行扩增之前,所述分析方法还包括对免疫磁珠法分离得到的DNA片段抗体复合物的富集效率进行评估的步骤。
在其中一个实施例中,所述使用hMeDIP-Chip技术对比分析系统性系统性红斑狼疮患者和健康人的芯片杂交结果包括如下步骤:
使用高解析度芯片扫描仪分别检测系统性红斑狼疮患者组与健康人的芯片杂交信号,获取Cy3及Cy5的荧光扫描图像;
使用Bioconductor packages Ringo、limma及MEDME对杂交结果进行数据提取、标准化和峰值分析;
经过校正得到所述羟甲基化微阵列检测芯片上每个检测探针的log2(hMeDIP/input)值以及p-value值,log2(hMeDIP/input)值代表每个探针在实验组纯化的DNA片段抗体复合物和对照组的DNA片段中的相对富集强度,p-value表示探针红绿信号差异是由非生物因素造成的概率,p-value由修正的KS检验算法计算。
在其中一个实施例中,所述分析方法还包括在筛选得到所述系统性红斑狼疮羟甲基化状态的差异表达基因之后针对筛选得到的差异表达基因使用实时荧光定量PCR对hMeDIP-Chip分析结果进行验证的步骤。
上述系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法通过使用hMeDIP-Chip技术来分析系统性红斑狼疮羟甲基化状态的改变,得到系统性红斑狼疮羟甲基化状态的差异表达基因,深入研究这些差异表达基因将有助于进一步阐明系统性红斑狼疮的发病机理,为系统性红斑狼疮的诊断和治疗提供新途径。上述系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法设计合理可行,能够有效地协助建立一种系统性红斑狼疮差异表达基因的图谱模型,获取作为中间结果的系统性红斑狼疮的相关疾病信息。
一种基因检测芯片,所述基因检测芯片上固定有上述任一实施例所述的方法得到的系统性红斑狼疮羟甲基化状态的差异表达基因。
在其中一个实施例中,所述差异表达基因为TREX1、CDKN1A及CDKN1B中的至少一种。
通过上述基因检测芯片,可以为初步诊断系统性红斑狼疮提供中间结果信息,检测过程方便,不需要使用传统的繁杂的检测步骤,但由于系统性红斑狼疮往往是一种综合病征,获取这些中间结果之后还需要结合其他检测数据才能诊断为是否是系统性红斑狼疮疾病。
附图说明
图1为hMeDIP-Chip技术在全基因组范围内分析SLE患者5-hmC状态技术路线图;
图2为SLE患者和健康人的总DNA琼脂糖凝胶电泳检测结果图;
图3为SLE组的芯片杂交结果图;
图4为健康对照组的芯片杂交结果图;
图5为19号染色体上(Chr19)存在5-hmC水平差异的位点分析;
图6为在启动子(promoter,下同)区(-800bp的~+200bp),5-hmC基因在HCP、ICP、LCP分布情况,其中纵坐标Enrichment peaks表示扫描图像中的富集峰值,黑色表示SLE组的羟甲基化,灰色表示健康对照组的羟甲基化,ALL代表所有DNA片段,Hydroxymethylated表示羟甲基化,Unhydroxymethylated表示未羟甲基化,下同;
图7为CpG岛上5-hmC、un5-hmC基因的分布情况,其中两个intergenic表示CpG岛上5-hmC、un5-hmC基因;
图8为5-hmC、un5-hmC基因在HCP、ICP、LCP分布;
图9为HCP、ICP、LCP的羟甲基化状态;
图10为HCP、ICP、LCP中羟甲基化基因所占总数比例;
图11为启动子区表达上调基因在各染色体上的分布(顺时针从1号染色体X和Y性染色体);
图12为CpG岛表达上调基因在各染色体上的分布(顺时针从1号染色体X和Y性染色体)。
具体实施方式
下面主要结合附图及具体实施例对系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用作进一步详细的说明。
一实施方式系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,其包括如下步骤:
步骤S110:分别采集系统性红斑狼疮患者和健康人的血液样本。
血液样本可以直接采集自患者或者健康人,也可以取自医院或研究机构的血液样本库。
步骤S120:从血液样本中提取DNA。
优选的,在本步骤提取DNA之后还包括使用NanoDrop ND-100分析仪测定提取的DNA的数量和质量以及使用琼脂糖凝胶电泳对提取的DNA的完整性进行评估的步骤。
步骤S130:将DNA消化成200~1000bp的DNA片段,并加入76mer完全羟甲基化的寡核苷酸链作为阳性对照。
在本实施方式中,使用Mse I限制性内切酶将DNA消化成小DNA片段。76mer完全羟甲基化的寡核苷酸链可选用市售的通用完全羟甲基化的寡核苷酸链。
步骤S140:将含有阳性对照的DNA片段加热变性,再将得到的单链DNA样本分成两份,其中一份作为实验组加入抗5’-羟甲基化胞嘧啶核苷抗体得到DNA片段抗体复合物,另一份作为对照组,记为Input,其中,实验组用免疫磁珠法分离DNA片段抗体复合物,共沉淀后非羟甲基化的DNA片段被清洗除去,得到纯化的DNA片段抗体复合物,记为hMeDIP。
因目前在人类基因组中发生羟甲基化的特定基因未明确,发生羟甲基化水平也未知,而将基因片段上芯片与芯片上探针杂交,需要对羟甲基化水平有一定的要求,因此,在本实施方式中,当得到纯化的DNA片段抗体复合物之后,该分析方法还包括使用NanoDrop ND-1000光谱分析仪对该DNA片段抗体复合物的富集效率进行评估的步骤。
步骤S150:对上述实验组纯化的DNA片段抗体复合物和对照组的DNA片段进行扩增。
步骤S160:对扩增后的实验组DNA片段抗体复合物和对照组DNA片段分别使用Cy5和Cy3染料标记。
步骤S170:将染料标记后的实验组DNA片段抗体复合物与对照组DNA片段混合后与羟甲基化微阵列检测芯片(如CpG岛启动子区检测芯片等)杂交,使用hMeDIP-Chip技术对比分析系统性系统性红斑狼疮患者和健康人的芯片杂交结果,得到系统性红斑狼疮羟甲基化状态的差异表达基因。
在本实施方式中,所述使用hMeDIP-Chip技术对比分析系统性系统性红斑狼疮患者和健康人的芯片杂交结果包括如下步骤:
使用高解析度芯片扫描仪分别检测系统性红斑狼疮患者组与健康人的芯片杂交信号,获取Cy3及Cy5的荧光扫描图像;
使用Bioconductor packages Ringo、limma及MEDME对杂交结果进行数据提取、标准化和峰值分析;
经过校正得到羟甲基化微阵列检测芯片上每个检测探针的log2(hMeDIP/Input)值以及p-value值,log2(hMeDIP/Input)值代表每个探针在实验组纯化的DNA片段抗体复合物和对照组的DNA片段中的相对富集强度,p-value表示探针红绿信号差异是由非生物因素造成的概率,p-value由修正的KS检验算法计算。
进一步,在筛选得到系统性红斑狼疮羟甲基化状态的差异表达基因之后,本实施方式的分析方法还包括针对筛选得到的差异表达基因使用实时荧光定量PCR对hMeDIP-Chip分析结果进行验证的步骤。
具体在本实施方式中得到3个较大差异表达的基因,分别是一个表达上调的TREX1,以及两个表达下调的CDKN1A和CDKN1B。
上述系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法通过使用hMeDIP-Chip技术来分析系统性红斑狼疮羟甲基化状态的改变,得到系统性红斑狼疮羟甲基化状态的差异表达基因,深入研究这些差异表达基因将有助于进一步阐明系统性红斑狼疮的发病机理,为系统性红斑狼疮的诊断和治疗提供新途径。上述系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法设计合理可行,能够有效地协助建立一种系统性红斑狼疮差异表达基因的图谱模型,获取作为中间结果的系统性红斑狼疮的相关疾病信息。
此外,本实施方式还提供了一种基因检测芯片,在该基因检测芯片上固定有上述方法得到的系统性红斑狼疮羟甲基化状态的差异表达基因作为检测探针。
一种基因检测芯片,基因检测芯片上固定有由上述方法得到的系统性红斑狼疮羟甲基化状态的差异表达基因。
在其中一个实施例中,差异表达基因为TREX1、CDKN1A及CDKN1B中的至少一种。
通过上述基因检测芯片,可以初步检测待测患者血液内上述三种差异表达基因的表达情况,为初步诊断系统性红斑狼疮提供中间结果信息,检测过程方便,不需要使用传统的繁杂的检测步骤,但由于系统性红斑狼疮往往是一种综合病征,获取这些中间结果之后还需要结合其他检测数据才能诊断为是否是系统性红斑狼疮疾病。
以下为具体实施例部分:
图1所示为本实施例的流程图,具体如下:
1.实验对象
本实施例中共有30个样本,疾病组15人,健康对照组15人。
15例SLE患者,年龄18~49岁(平均32岁),来源于桂林市第181医院肾脏科,检测ds-DNA、ANA、外周血淋巴细胞凋亡和24小时尿蛋白等临床指标。分类依据为美国风湿病分类标准。通过测定抗双链DNA抗体的血清水平和利用SLE疾病活动指数2000的评分,评定疾病的活动度。
15例选自体检正常人群,性别年龄等基本条件与选取的SLE患者相匹配,各组性别和年龄差异无统计学意义。
确诊SLE的患者,检测ds-DNA、ANA、外周血淋巴细胞凋亡和24小时尿蛋白等临床指标。各组均无感染、肿瘤等伴发病。各组间的性别、年龄、病情差异无统计学意义,具可比性。本研究征得了桂林市第181医院伦理委员会的同意。
2.实验仪器与试剂
2.1实验主要仪器如表1所示:
表1实验主要仪器
仪器名称 生产商 产地
电泳槽 Bio-Rad 美国
电泳仪 Bio-Rad 美国
PCR仪 VWR 美国
NanoDrop ND-1000光谱分析仪 Thermo scientific 美国
Bioruptor超声波仪 Diagenode 比利时
摇床 Thermo Scientific 美国
Qiagen MinElute柱 Qiagen 美国
SpeedVac离心浓缩系统 Thermo Fisher Scientific 美国
芯片杂交仪 NimbleGen 美国
GenePix4000B芯片扫描仪 冷泉港生物科技股份有限公司 中国
Real-time PCR仪 Applied Bioscience 美国
NimbleChip Mixer NimbleGen 美国
NimbleScan软件 NimbleGen 美国
涡旋振荡器 VWR 美国
磁力搅拌器 VWR 美国
2.2实验主要试剂如表2所示:
表2实验主要试剂
3.实验步骤
3.1血样采集
从系统性红斑狼疮患者(N=15,取每个系统性红斑狼疮患者血液标本5μl汇集成一个血液样本)和健康对照(N=15,取每个健康志愿者血液标本5μl汇集成一个血液样本)取得血液样本后,使用试剂盒Tissue Kit(Qiagen,Fremont,CA)分别提取疾病组和健康对照组的基因组DNA并纯化。
3.2全基因组DNA的提取:
1)取50-100μl的抗凝血至2ml离心管中,加20μl蛋白酶K,用PBS补加至220μl;
2)加入200μl缓冲液AL,涡旋震荡充分混匀,56℃孵育10min;
3)加入200μl的(96%-100%)乙醇,涡旋震荡充分混匀;
4)移取步骤3的混合液至离心柱上,离心柱放在2ml收集管上。≧6000g(8000rpm)离心1分钟;
5)离心柱放至新的2ml收集管上,加500μl的缓冲液AW1,≧6000g(8000rpm)离心1分钟;
6)离心柱放至新的2ml收集管上,加500μl的缓冲液AW2,20000g(14000rpm)离心3分钟;
7)将离心柱放在一个新的2ml收集管上,吸200μl的缓冲液AE在吸附膜上,室温1分钟,≧6000g(8000rpm)离心1分钟;
8)为增大DNA产量,重复步骤7(从离心管中吸取液体反复洗脱)。
对纯化后得的基因组DNA进行量化,DNA的数量和质量的用NanoDropND-1000测定,DNA完整性用琼脂糖凝胶电泳进行评估。
3.3超声打断基因组:
通过Bioruptor超声波仪(Diagenode)将基因组DNA超声打断成200bp-1000bpDNA片段(“Low”模式,10个循环,30秒“ON”,30秒“关”)。将剪切得到的DNA片段进行琼脂糖凝胶电泳进行分析。加入76mer完全羟甲基化的寡核苷酸链用作阳性对照,作为检测富集率的一个参照。
3.4DNA免疫共沉淀
1)加热变性(94℃,10min),迅速在冰上冷却,加1μl免疫沉淀的初级抗体、400μl的免疫沉淀缓冲液(PBS:0.5%BSA),摇床培养过夜(4℃),并将得到的单链DNA样品分成两份;
2)其中一份作为实验组加入抗5’-羟甲基化胞嘧啶核苷抗体(Diagenode,200μl、4℃摇床培养2h),另一份作为对照组(input),不做任何处理;
3)用免疫磁珠法分离实验组中5’羟甲基化DNA片段的抗体复合物,样品中其余的非羟甲基化DNA片段被清洗掉(此过程即富集的过程:5hmC抗体复合物通过亲和固相得以捕获,其他任何未被捕获的片段直接被洗脱掉)。得到的5hmC抗体复合物重新悬浮于TE缓冲液(添加0.25%SDS、0.25mg/mL蛋白酶K)中,65℃,2h,然后使其冷却至室温;
4)用Qiagen MinElute柱(Qiagen)对免疫共沉淀的hMeDIP DNA片段进行纯化;
5)通过NanoDrop ND-1000测定评估免疫共沉淀的富集效率;
6)扩增:使用Sigma WGA kit对上述纯化得到的免疫沉淀DNA片段(hMeDIP与Input)进行必要的扩增。
3.5荧光标记与芯片杂交
1)通过NimbleGen Dual-Color DNA标记试剂盒(Nimblegen Systems,Inc.,Madison,WI,USA)对纯化得到的hMeDIP DNA片段(Cy5)、Input(Cy3)分别进行荧光标记,1μg hMeDIP DNA样品(或Input样品)加1OD的Cy5-9merprimer(或Cy3-9mer primer)。将标记后的hMeDIP与Input样品混合、变性(10min,98℃);
2)转移到37℃培养箱,加入100pmol脱氧核苷三磷酸、100U的Klenow片段(New England Biolabs,USA),继续培养2h;
3)加入0.1倍体积的0.5M的EDTA来终止反应,用异丙醇/乙醇沉淀对标记的DNA进行纯化;
4)在芯片杂交仪(Hybridization System-Nimblegen Systems,Inc.,Madison,WI,USA)(NimbleGen杂交缓冲液、hMeDIP DNA片段(Cy5)与Inputt(Cy3)混合物)进行微阵列杂交,42℃,16-20h;
5)杂交后,使用NimbleGen的洗涤缓冲液试剂盒(Nimblegen Systems,Inc.,Madison,WI,USA)进行洗涤。
3.6图像采集和数据分析
1)用高解析度芯片扫描仪检测分别检测SLE患者组与正常对照组的芯片杂交信号,获取Cy3、Cy5的荧光扫描图像;
2)使用Bioconductor packages Ringo、limma、MEDME对杂交结果进行数据提取、标准化、峰值分析;
3)经过校正得到羟甲基化微阵列检测芯片上每个探针的log2(hMeDIP/input)值以及p-value值,log2(hMeDIP/input)值代表每个探针在hMeDIP DNA和inputDNA中的相对富集强度,p-value表示探针红绿信号差异是由非生物因素造成的概率;p-value越低,表示该探针越有可能代表一个甲基化事件,p-value由修正的KS检验算法计算。
3.7实时荧光定量PCR
参照hmeDIP-chip结果中筛选的3个5-hmC特异表达的候选基因,根据每个基因序列设计特异性引物(表3),进行实时荧光定量PCR,对hmeDIP-chip结果进行验证。
引物通过引物设计软件Primer5.0,ViiA7Real-time PCR System(AppliedBiosystems)设计。Realtime PCR反应体系:
RT-PCR热循环程序95℃,10min;40个PCR循环(95℃,10秒;60℃,60秒(收集荧光))。为了建立PCR产物的熔解曲线,扩增反应结束后,按(95℃,10秒;60℃,60秒;95℃,15秒);并从60℃缓慢加热到99℃。数据采用2-△ △CT法进行分析
表3反转录与RT PCR引物
3.8Signalmap软件的使用
在进行羟甲基化芯片数据分析时,需要使用NimbleGen提供的专门软件SignalMap软件将芯片分析得到的GFF文件(P-value Data、Peaks Data、Scaledlog2-ratio Data)导入,导入后就可以比较直观的观察到实验组与正常对照组存在的羟甲基化水平差异现象,然后进行下一步的分析。
1)选择要导入的GFF文件。
2)点击File下拉菜单的Import按钮,导入实验数据文件,可以同时导入多个实验数据GFF文件进行样本间的比对,其中实验数据导入列的Y轴刻度代表探针或峰的数值。
2结果
2.1总DNA质量检测结果
使用NanoDrop ND-1000分析仪对DNA的数量和质量进行了测定,结果如表4所示,并使用琼脂糖凝胶电泳对DNA的完整性进行评估,结果如图2所示,其中,泳道2表示健康人的总DNA,泳道3表示SLE疾病组的总DNA。SLE组O.D.A260/A280比值为1.63,O.D.A260/A230比值为1.89,浓度为32.38ng/μl,总量3238ng;正常对照组O.D.A260/A280比值为1.81,O.D.A260/A230比值为2.05,浓度为41.60ng/μl,总量4160ng。总DNA质量检测结果表明所提样本总DNA质量良好。
表4DNA定性和定量
2.2 5羟基甲基化(5-hmC)差异基因在全基因组的分布
将Input(Cy5)与hMeDIP(Cy3)样品分别进行荧光标记后,将hMeDIP与Input样品混合、变性,与DNA微阵列芯片杂交。芯片扫描结果如图2和图3所示,从图2和图3可以看出芯片完整,两种荧光信号分布均匀、清晰,表明芯片无污染;没有高信号、低信号的团块、划痕,芯片中央、四角及中线与四个边交点的十字架及平均分布的红点显示清楚完整,无边缘化效应,这说明芯片杂交、洗涤及扫描步骤良好。羟甲基化和非羟甲基化位点分别通过Cy3和Cy5标记扩增显示于芯片上。对于芯片某一位点的信号,若Cy3信号较强,该位点则显示绿色增强信号,提示该位点呈高羟甲基化趋势;若Cy5信号较强,该位点则显示红色增强信号,提示该位点呈低羟甲基化趋势;如果两种信号强度相似,该位点则显示显黄色增强信号,提示该点无明显甲基化,扫描后分析后得到可视化分析。
使用Signalmap软件对部分存在5-hmC水平差异的位点进行分析,比较直观的观察到SLE组、健康对照组存在5-hmC水平差异的现象。以Chr19为例,显示该染色体存在的羟甲基化差异,如图5所示。
本实施例研究了SLE患者与正常对照组5-hmC表达差异的基因在启动子区域的分布,如图8至图10所示,在差异的基因池中,发现其中65.95%的差异基因属于HCP簇,接近基因组平均(67.82%);在un5-hmC基因池,超过69.85%的差异基因被认为是HCP簇;由5-hmC差异的基因在全基因组的分布规律发现5-hmC差异的基因主要分布于HCP簇,75.21%HCP簇的基因提示5-hmC差异。相反,在ICP、LCP簇的基因约45%提示5-hmC差异,因此,可推测5-hmC差异的基因主要分布于启动子区域的HCP簇或者是CpG岛的HCP簇。
2.3疾病组和对照组5-hmC状态的对比
通过上述对hMeDIP-Chip结果的分析并与健康对照组相比较,如图6所示,SLE患者在启动子区有1701个5-hmC差异基因,其中884个基因上调和817个基因下调;在CpG岛有3826基因显示显著5-hmC差异,其中2034个基因上调,1792个基因下调(图7)。图11显示SLE患者在基因启动子区5-hmC修饰上调的884个基因在染色体上的位置分布(顺时针从1号染色体到X和Y性染色体),在1号染色体上的上调基因所占百分比为10%。图12显示SLE患者在CpG岛5-hmC修饰上调的2034个基因在染色体上的位置分布(顺时针从1号染色体到X和Y性染色体),在19号染色体上的上调基因所占百分比为9%。从中挑选了15个差异较大的基因见表5,其中TREX1、CDKN1A、CDKN1B3个特异基因差异最为明显,可能与SLE疾病关系密切。
表5hMeDIP-Chip结果中挑选的15个在SLE患者5-hmC状态中表现较大差异的基因
PeakMValue反映基因羟甲基化水平。2.4实时荧光定量PCR验证结果
实时定量PCR时各样品加样量均为1μl并用Input DNA作为对照。表6-表8分别代表TREX1、CDKN1A及CDKN1B,其中:
*Ct↑,5-hmC表达长度↓(Ct>40或38,表示几乎无5-hmC的表达);
*NA表示无5-hmC的表达;%>0,表示有5-hmC的表达;
IP(Ct)差异(SLE与健康组间)>2,表示有5-hmC的表达差异;
Input校正列表:
%Input=2(CtInput-CtChIP)×Fd×100%
Fold Enrichment=[%(hMeDIP/Input)]/[%(Negative control/Input)]
表6
表7
表8
数据提示实时定量PCR验证本实施例结果与hMeDIP-Chip结果相符,证明了hMeDIP-Chip结果的可靠性。
本实施例主要分析了SLE患者和健康者的5-hmC状态差异表达基因,主要有三个TREX1、CDKN1A及CDKN1B。这些5-hmC状态显著差异的候选基因与免疫、细胞周期、细胞生长增殖、DNA损伤修复相关。
候选基因中,TREX1表达上调。TREX1位于3号染色体p21.31,也被称为CRV、AGS1、DRN3、HERNS。该基因编码的蛋白质具有3'核酸外切酶的活性,在DNA修复中发挥作用,并作为具有校正功能的DNA聚合酶。该基因的突变可导致Aicardi-Goutieres综合征,冻疮样狼疮,Cree脑炎和免疫系统的其他疾病。
TREX1蛋白功能就是分解或解开控制细胞内各种过程的遗传物质DNA。分解过程发生在细胞死亡和更新的自然程序中,如果DNA在细胞死亡的过程中不能更新或是解链,体内就会产生相应的抗体。如果TREX1蛋白不能将DNA解链,身体就会产生针对体内DNA的抗体,结果就是发生狼疮等疾病。
CDKN1A和CDKN1B为对SLE5-hmC状态表现下调的基因。细胞周期素依赖性蛋白激酶抑制剂1A(CDKN1A)与细胞周期、细胞生长增殖相关,也是与DNA损伤修复相关的一个重要基因。在SLE发病机制的研究中发现该基因的mRNA在SLE患者的JAK/STAT信号通路中表达水平上调,可作为SLE候选易感基因。CDKN1B也与SLE相关,在SLE发病中具有重要的作用。
通过系统评估SLE患者外周血5-hmC状态,获得了5-hmC和SLE之间的联系,研究结果表明,5-hmC涉及到SLE的非生理性环境,而且这些新的候选基因可能成为潜在的生物标志物或治疗靶点,并通过进一步研究,可以明确5-hmC候选基因在SLE的发病机制中的作用。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,其特征在于,包括如下步骤:
分别采集系统性红斑狼疮患者和健康人的血液样本,并从所述血液样本中提取DNA;
将所述DNA消化成200~1000bp的DNA片段,并加入76mer完全羟甲基化的寡核苷酸链作为阳性对照;
将含有所述阳性对照的所述DNA片段加热变性,再将得到的单链DNA样本分成两份,其中一份作为实验组加入抗5’-羟甲基化胞嘧啶核苷抗体得到DNA片段抗体复合物,另一份作为对照组,记为Input,其中,实验组用免疫磁珠法分离所述DNA片段抗体复合物,共沉淀后非羟甲基化的DNA片段被清洗除去,得到纯化的DNA片段抗体复合物,记为hMeDIP;
对上述实验组纯化的DNA片段抗体复合物和对照组的DNA片段进行扩增;
对扩增后的实验组DNA片段抗体复合物和对照组DNA片段分别使用Cy5和Cy3染料标记;
将染料标记后的实验组DNA片段抗体复合物与对照组DNA片段混合后与羟甲基化微阵列检测芯片杂交,使用hMeDIP-Chip技术对比分析系统性系统性红斑狼疮患者和健康人的芯片杂交结果,得到系统性红斑狼疮羟甲基化状态的差异表达基因。
2.如权利要求1所述的系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,其特征在于,在将所述DNA消化成200~1000bp的DNA片段之前,所述分析方法还包括对提取的DNA使用NanoDrop ND-100分析仪测定所述DNA的数量和质量以及用琼脂糖凝胶电泳检测DNA完整性的步骤。
3.如权利要求1所述的系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,其特征在于,在对上述实验组纯化的DNA片段和对照组的DNA片段进行扩增之前,所述分析方法还包括对免疫磁珠法分离得到的DNA片段抗体复合物的富集效率进行评估的步骤。
4.如权利要求1所述的系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,其特征在于,所述使用hMeDIP-Chip技术对比分析系统性系统性红斑狼疮患者和健康人的芯片杂交结果包括如下步骤:
使用高解析度芯片扫描仪分别检测系统性红斑狼疮患者组与健康人的芯片杂交信号,获取Cy3及Cy5的荧光扫描图像;
使用Bioconductor packages Ringo、limma及MEDME对杂交结果进行数据提取、标准化和峰值分析;
经过校正得到所述羟甲基化微阵列检测芯片上每个检测探针的log2(hMeDIP/input)值以及p-value值,log2(hMeDIP/input)值代表每个探针在实验组纯化的DNA片段抗体复合物和对照组的DNA片段中的相对富集强度,p-value表示探针红绿信号差异是由非生物因素造成的概率,p-value由修正的KS检验算法计算。
5.如权利要求1所述的系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法,其特征在于,所述分析方法还包括在筛选得到所述系统性红斑狼疮羟甲基化状态的差异表达基因之后针对筛选得到的差异表达基因使用实时荧光定量PCR对hMeDIP-Chip分析结果进行验证的步骤。
6.一种基因检测芯片,其特征在于,所述基因检测芯片上固定有如权利要求1~5中任一项所述的方法得到的系统性红斑狼疮羟甲基化状态的差异表达基因。
7.如权利要求6所述的基因检测芯片,其特征在于,所述差异表达基因为TREX1、CDKN1A及CDKN1B中的至少一种。
CN201410093633.1A 2014-03-13 2014-03-13 系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用 Pending CN103911439A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410093633.1A CN103911439A (zh) 2014-03-13 2014-03-13 系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410093633.1A CN103911439A (zh) 2014-03-13 2014-03-13 系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用

Publications (1)

Publication Number Publication Date
CN103911439A true CN103911439A (zh) 2014-07-09

Family

ID=51037441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410093633.1A Pending CN103911439A (zh) 2014-03-13 2014-03-13 系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用

Country Status (1)

Country Link
CN (1) CN103911439A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040111A (zh) * 2015-05-28 2015-11-11 眭维国 系统性红斑狼疮图谱模型的构建方法
CN108611410A (zh) * 2018-04-28 2018-10-02 深圳市人民医院 N6-甲基腺嘌呤在自身免疫性疾病的用途
CN110333207A (zh) * 2019-06-25 2019-10-15 中国人民解放军陆军军医大学第一附属医院 CREB在Ang-2调节VEGFR2表达中分析方法
CN110412290A (zh) * 2019-07-29 2019-11-05 冯仕品 Sle总体疾病活动度和肾脏疾病活动度信息检测系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131754A (zh) * 2011-11-24 2013-06-05 深圳华大基因科技有限公司 一种检测核酸羟甲基化修饰的方法及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131754A (zh) * 2011-11-24 2013-06-05 深圳华大基因科技有限公司 一种检测核酸羟甲基化修饰的方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGFENG TANG ET AL: "abnormal activation of the Akt-Gsk3β signaling pathway in peripheral blood T cells from patients with systemic lupus erythematosus", 《CELL CYCLE》, 1 September 2009 (2009-09-01) *
张轶群: "系统性红斑狼疮CD4+T细胞全基因组DNA羟甲基化研究", 《中国博士学位论文全文数据库医药卫生科技辑》, 15 February 2014 (2014-02-15) *
李若洁等: "系统性红斑狼疮的全基因组关联研究进展", 《中华疾病控制杂志》, 31 July 2011 (2011-07-31), pages 616 - 2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040111A (zh) * 2015-05-28 2015-11-11 眭维国 系统性红斑狼疮图谱模型的构建方法
CN105040111B (zh) * 2015-05-28 2017-07-14 眭维国 系统性红斑狼疮图谱模型的构建方法
CN108611410A (zh) * 2018-04-28 2018-10-02 深圳市人民医院 N6-甲基腺嘌呤在自身免疫性疾病的用途
CN110333207A (zh) * 2019-06-25 2019-10-15 中国人民解放军陆军军医大学第一附属医院 CREB在Ang-2调节VEGFR2表达中分析方法
CN110412290A (zh) * 2019-07-29 2019-11-05 冯仕品 Sle总体疾病活动度和肾脏疾病活动度信息检测系统

Similar Documents

Publication Publication Date Title
CN105695567B (zh) 一种用于检测胎儿染色体非整倍体的试剂盒、引物和探针序列及检测方法
CN106399504A (zh) 基于靶向新一代测序的耳聋基因检测集合、试剂盒及检测方法
US11312999B2 (en) Set of genes for molecular classifying of medulloblastoma and use thereof
BRPI0709397A2 (pt) propagação de células primárias
CN104745679A (zh) 一种无创检测egfr基因突变的方法及试剂盒
CN105861724B (zh) 一种kras基因超低频突变检测试剂盒
CN108588230B (zh) 一种用于乳腺癌诊断的标记物及其筛选方法
CN112280865B (zh) 一种用于检测肝癌的试剂组合,试剂盒及其用途
CN112322736A (zh) 一种用于检测肝癌的试剂组合,试剂盒及其用途
JP2019537436A (ja) 進行性胃癌患者の手術後の予後または抗癌剤適合性予測システム
CN103911439A (zh) 系统性红斑狼疮羟甲基化状态的差异表达基因的分析方法和应用
CN103667269A (zh) 用于与bcr或abl基因杂交的dna探针库及采用其富集bcr-abl基因片段的方法
Chen et al. cDNA microarray analysis and immunohistochemistry reveal a distinct molecular phenotype in serous endometrial cancer compared to endometrioid endometrial cancer
CN103667267B (zh) 用于与kras基因杂交的dna探针库及采用其富集kras基因片段的方法
CN104178487A (zh) Atm基因突变体及其应用
AU2019270404A2 (en) Blood biomarkers of stroke
AU2022340811A1 (en) Assessment of melanoma therapy response
US20230014092A1 (en) Materials and methods for monitoring inflammation
KR20220154618A (ko) 대규모 코호트 유래 전장 유전체 연관 분석 및 dna 메틸화 분석을 이용한 간 섬유화 진단용 바이오마커 조성물
CN115011695A (zh) 基于游离环状dna基因的多癌种识别标志物、试剂盒及应用
CN103911438A (zh) 尿毒症羟甲基化状态的差异表达基因的分析方法和应用
CN108753959B (zh) 一种位于disc1fp1基因的与放疗引起的放射性脑损伤相关的snp标志物及其应用
CN112522415A (zh) 基于lgals3剪接变体诊断慢粒急变期的试剂及试剂盒
CN115807098A (zh) 一种用于检测分化型甲状腺癌基因突变的引物组合和试剂盒
CN107190073B (zh) hsa_circRNA_104907在唐氏综合征的诊断、治疗及预后中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140709