CN103901563B - A grating coupler with adjustable refractive index and its manufacturing method - Google Patents
A grating coupler with adjustable refractive index and its manufacturing method Download PDFInfo
- Publication number
- CN103901563B CN103901563B CN201410127079.4A CN201410127079A CN103901563B CN 103901563 B CN103901563 B CN 103901563B CN 201410127079 A CN201410127079 A CN 201410127079A CN 103901563 B CN103901563 B CN 103901563B
- Authority
- CN
- China
- Prior art keywords
- grating
- waveguide
- distribution
- different
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000009826 distribution Methods 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000835 fiber Substances 0.000 claims description 11
- 238000004088 simulation Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 abstract description 17
- 230000008878 coupling Effects 0.000 abstract description 15
- 238000010168 coupling process Methods 0.000 abstract description 15
- 238000005859 coupling reaction Methods 0.000 abstract description 15
- 239000012792 core layer Substances 0.000 description 39
- 239000010410 layer Substances 0.000 description 36
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 28
- 229910052710 silicon Inorganic materials 0.000 description 28
- 239000010703 silicon Substances 0.000 description 28
- 238000005530 etching Methods 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 13
- 229920002120 photoresistant polymer Polymers 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000009616 inductively coupled plasma Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009828 non-uniform distribution Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
本发明涉及光子器件技术领域,具体是一种折射率可调的光栅耦合器的制作方法,其特征在于:光栅槽为不同横向占空比的亚波长结构,光栅为在纵向即x方向不同的x位置具有不同的横向即y方向占空比fy的光栅;光栅在纵向的占空比fx取值是在(0,1)之间的一个定值;构成纵向上不同x位置光栅槽的亚波长结构,其横向占空比fy的取值由输出高斯型场分布G(x)所需要的泄漏因子分布α(x)决定。该结构的光栅耦合器可以有效降低光纤和波导耦合时的耦合损耗。
The invention relates to the technical field of photonic devices, in particular to a method for manufacturing a grating coupler with adjustable refractive index, which is characterized in that: the grating grooves are sub-wavelength structures with different transverse duty ratios, and the gratings are different in the longitudinal direction, that is, in the x direction. The x position has a grating with different transverse or y-direction duty ratios f y ; the vertical duty ratio f x of the grating is a fixed value between (0, 1); it constitutes a grating slot with different x positions in the longitudinal direction The subwavelength structure of , the value of its lateral duty cycle f y is determined by the leakage factor distribution α(x) required for the output Gaussian field distribution G(x). The grating coupler with this structure can effectively reduce the coupling loss when optical fiber and waveguide are coupled.
Description
技术领域technical field
本发明涉及光通信和光互连领域,特别是涉及一种折射率可调的光波导耦合结构的设计和制备。该结构的光栅耦合器可以有效降低光纤和波导耦合时的耦合损耗。The invention relates to the fields of optical communication and optical interconnection, in particular to the design and preparation of an optical waveguide coupling structure with adjustable refractive index. The grating coupler with this structure can effectively reduce the coupling loss when optical fiber and waveguide are coupled.
背景技术Background technique
硅光子技术在低成本和低功耗的驱动下,基于SOI(silicon-on-insulator)平台,迄今为止已制备出多种硅光子器件并实现了光子集成,硅光子技术被认为是解决目前集成电路中功耗和带宽问题的最有潜力技术。目前硅光子技术面临的一项重要挑战就是如何将激光光源引入和导出光子集成回路,光栅耦合器由于其高的耦合效率高,成本低且与CMOS工艺兼容、无需芯片端面抛光、可在芯片表面任何地方实现光信号输入输出等优点,成为硅光子集成回路中最有效的激光光源耦合方案。Driven by low cost and low power consumption, silicon photonics technology is based on the SOI (silicon-on-insulator) platform. So far, a variety of silicon photonic devices have been prepared and photonic integration has been realized. Silicon photonics technology is considered to be the solution to the current integration problems. The most promising technique for power consumption and bandwidth issues in circuits. An important challenge facing silicon photonics technology at present is how to introduce laser light sources into and out of the photonic integrated circuit. Due to its high coupling efficiency, the grating coupler is low in cost and compatible with the CMOS process. It does not require chip end polishing and can be placed on the chip surface. The advantages of realizing optical signal input and output anywhere have become the most effective laser light source coupling scheme in silicon photonic integrated circuits.
提高光栅耦合器耦合效率的方法有很多,如增加底部多层介质反射镜,倒装键合金属反射镜以及覆盖层等,这些方法或者增强方向性,或者减小光栅耦合器与光纤之间的反射损耗,但由于通常光栅耦合器上光栅是均匀分布的,而均匀分布的光栅耦合器向外衍射的光功率分布沿传播方向按照指数下降,即P=P0exp(-2αx),P0为入射光功率,2α为光栅的功率泄漏因子(常数),这种衰减的衍射模场与单模光纤的高斯模场之间存在模式不匹配,限制了光栅耦合器的耦合效率进一步提高。为了实现光栅向上的衍射模场与单模光纤高斯模场的匹配,可通过纵向的非均匀光栅实现泄漏因子的非均匀分布来获得高斯形状的输出场分布G(x),光栅的功率泄漏因子必须满足:There are many ways to improve the coupling efficiency of the grating coupler, such as adding a bottom multilayer dielectric mirror, flip-chip bonding metal mirror and cover layer, etc. These methods either enhance the directivity, or reduce the distance between the grating coupler and the fiber. Reflection loss, but because the grating on the grating coupler is usually uniformly distributed, and the optical power distribution of the uniformly distributed grating coupler diffracted outwards decreases exponentially along the propagation direction, that is, P=P 0 exp(-2αx), P 0 is the incident optical power, and 2α is the power leakage factor (constant) of the grating. There is a mode mismatch between the attenuated diffraction mode field and the Gaussian mode field of the single-mode fiber, which limits the further improvement of the coupling efficiency of the grating coupler. In order to match the upward diffraction mode field of the grating with the Gaussian mode field of the single-mode fiber, the non-uniform distribution of the leakage factor can be realized through the longitudinal non-uniform grating to obtain the Gaussian output field distribution G(x), the power leakage factor of the grating Must meet:
式中为归一化的高斯分布,其中w0=5.2μm,w0大小与单模光纤模场半径5.2μm对应,利用能量归一化条件可以得到 In the formula It is a normalized Gaussian distribution, where w 0 =5.2μm, and the size of w 0 corresponds to the mode field radius of a single-mode fiber of 5.2μm. Using the energy normalization condition, it can be obtained
目前的非均匀光栅是在SOI顶硅层进行浅刻蚀在纵向上生成非均匀占空比的光栅,或者利用感应耦合等离子体刻蚀工艺中的迟滞效应制备同时具有非均匀占空比和非均匀槽深的光栅,进而来实现泄漏因子的非均匀分布。目前方案的缺点在于材料的折射率固定;另外需要二次刻蚀,即在刻透SOI顶硅层生成硅波导之后还需在硅波导表面浅刻蚀生成线状光栅槽,工艺复杂,制备成本高;此外利用迟滞效应制备非均匀光栅存在工艺重复性差的问题。The current non-uniform grating is a grating with non-uniform duty ratio in the longitudinal direction by shallow etching on the top silicon layer of SOI, or it is fabricated by using the hysteresis effect in the inductively coupled plasma etching process to have non-uniform duty ratio and non-uniform grating at the same time. The grating with uniform groove depth can realize the non-uniform distribution of the leakage factor. The disadvantage of the current solution is that the refractive index of the material is fixed; in addition, secondary etching is required, that is, after the silicon waveguide is formed by etching through the top silicon layer of SOI, it is necessary to etch shallowly on the surface of the silicon waveguide to form linear grating grooves. The process is complicated and the preparation cost High; in addition, there is a problem of poor process repeatability in the preparation of non-uniform gratings by using the hysteresis effect.
本发明提出一种折射率可调的光栅耦合器及其制作方法。该耦合器在纵向不同光栅槽位置刻蚀不同横向占空比的亚波长矩形槽(或正方形、圆形等其他形状的槽)从而在纵向形成不同等效折射率的光栅槽分布,进而可以调节光栅的衍射特性,使得输出场分布为与光纤模式匹配的高斯分布。本发明中的非均匀光栅是对SOI顶硅层刻透生成亚波长结构的光栅槽,波导结构和亚波长结构只用一次刻蚀工艺即可生成。同时本发明中的方法克服了传统光学介质薄膜材料折射率不可调的缺点。The invention provides a grating coupler with adjustable refractive index and a manufacturing method thereof. The coupler etches sub-wavelength rectangular grooves (or square, circular and other shapes of grooves) with different transverse duty ratios at different grating groove positions in the longitudinal direction to form grating groove distributions with different equivalent refractive indices in the longitudinal direction, which can then be adjusted Due to the diffractive properties of the grating, the output field distribution is a Gaussian distribution that matches the fiber mode. The non-uniform grating in the present invention is a grating groove formed by engraving the top silicon layer of SOI to form a sub-wavelength structure, and the waveguide structure and the sub-wavelength structure can be produced by only one etching process. At the same time, the method in the invention overcomes the disadvantage that the refractive index of the traditional optical medium thin film material cannot be adjusted.
发明内容Contents of the invention
为了解决现有技术中存在的普通均匀光栅耦合器输出模场与单模光纤模场之间模式不匹配的问题,本发明的目的在于提供一种折射率可调的用于实现高效率宽带耦合的光栅耦合器及其制作方法,其可实现单模光纤与平面光波导之间的耦合。In order to solve the problem of mode mismatch between the output mode field of the ordinary uniform grating coupler and the mode field of the single-mode fiber existing in the prior art, the object of the present invention is to provide an adjustable refractive index for realizing high-efficiency broadband coupling A grating coupler and a manufacturing method thereof, which can realize coupling between a single-mode optical fiber and a planar optical waveguide.
为了得到与传播方向(纵向)x相关的α(x)来获得高斯形状的输出场分布G(x),采用x方向非均匀的光栅槽分布来实现。在纵向不同的x位置利用不同的横向(y方向)占空比fy来调节光栅槽等效折射率nL分布从而实现光栅向上的辐射为与光纤模式匹配的高斯光束。In order to obtain α(x) related to the propagation direction (longitudinal) x to obtain a Gaussian-shaped output field distribution G(x), it is realized by using a non-uniform grating groove distribution in the x direction. At different x positions in the longitudinal direction, different transverse (y direction) duty ratios f y are used to adjust the distribution of the equivalent refractive index n L of the grating groove, so that the upward radiation of the grating is a Gaussian beam that matches the fiber mode.
根据亚波长结构的等效介质理论,当光波通过亚波长结构时,亚波长结构可当作一等效的均匀介质,以TE偏振下非均匀光栅槽分布的情况为例,等效介质的折射率为:According to the equivalent medium theory of the subwavelength structure, when light waves pass through the subwavelength structure, the subwavelength structure can be regarded as an equivalent uniform medium. Taking the distribution of non-uniform grating grooves under TE polarization as an example, the refraction of the equivalent medium The rate is:
(2)式中,nair=1为波导刻蚀区域(空气)的折射率,n1为波导芯层未刻蚀区域的折射率。固定横向(y方向)的周期为亚波长量级,通过在不同的纵向(x方向)位置调节横向占空比fy(即:波导芯层在xoy平面内,在芯层表面不同x坐标位置对应的y轴方向刻蚀亚波长结构的占空比为fy,不同x坐标位置有不同的fy)可以在纵向得到不同等效折射率的光栅槽分布。In formula (2), n air =1 is the refractive index of the waveguide etched area (air), and n 1 is the refractive index of the unetched area of the waveguide core layer. The period of the fixed transverse direction (y direction) is sub-wavelength order, by adjusting the transverse duty cycle f y at different longitudinal (x direction) positions (that is, the waveguide core layer is in the xoy plane, and at different x coordinate positions on the core layer surface The corresponding duty cycle of etching the sub-wavelength structure in the y-axis direction is f y , and different x-coordinate positions have different f y ), so that grating groove distributions with different equivalent refractive indices can be obtained in the longitudinal direction.
根据光栅槽与光栅齿的体积分数,可计算出光栅层的等效折射率:According to the volume fraction of grating grooves and grating teeth, the equivalent refractive index of the grating layer can be calculated:
neq=(1-fx)nsub+fxn1(3)n eq =(1-f x )n sub +f x n 1 (3)
(3)式中fx为光栅的纵向(x方向)占空比,fx的取值在(0,1)之间。(3) In the formula, f x is the longitudinal (x direction) duty cycle of the grating, and the value of f x is between (0, 1).
根据平面波导的TE模式本征方程:According to the eigenequation of the TE mode of the planar waveguide:
其中H为波导芯层的厚度,n2为波导下限制层的折射率,n3为波导上面添加的折射率匹配液的折射率(为了降低光栅向上衍射光在光纤端面的反射进而提高向上衍射光与光纤之间的耦合效率,实验测试中需要在光栅表面添加折射率匹配液,光纤端面浸入匹配液中),neff为带亚波长结构的光栅波导的有效折射率,m=0为模阶数。当λ为入射光在真空中的波长,根据方程(4)可计算出TE模式光栅波导的有效折射率neff。Where H is the thickness of the core layer of the waveguide, n 2 is the refractive index of the lower confinement layer of the waveguide, n 3 is the refractive index of the refractive index matching liquid added above the waveguide (in order to reduce the reflection of the grating upward diffracted light on the fiber end face and improve the upward diffraction The coupling efficiency between the light and the fiber, in the experimental test, it is necessary to add a refractive index matching liquid on the surface of the grating, and the end face of the fiber is immersed in the matching liquid), n eff is the effective refractive index of the grating waveguide with a subwavelength structure, m=0 is the mode Order. When λ is the wavelength of the incident light in vacuum, the effective refractive index n eff of the TE mode grating waveguide can be calculated according to equation (4).
光栅周期可根据下面的光栅衍射布拉格条件得出,The grating period can be obtained from the following grating diffraction Bragg condition,
qλ=Λx[neff-n1sin(θ)](5)qλ=Λ x [n eff -n 1 sin(θ)](5)
其中q=-1为衍射级次,Λx为光栅在传播方向x的周期,θ为光纤偏离垂直方向的角度。Where q=-1 is the diffraction order, Λ x is the period of the grating in the propagation direction x, and θ is the angle of the optical fiber from the vertical direction.
光栅耦合器的泄漏因子表达式为:The leakage factor expression of the grating coupler is:
2α=(Pup+Pdown)/Pin(6)2α=(P up +P down )/P in (6)
(6)式中Pin为输入光波导的光功率,Pup和Pdown分别为向上和向下衍射的光功率,在对光栅耦合器的模拟仿真中,Pin归一化等于1,Pup和Pdown可以通过仿真计算出来。通过对不同光栅槽折射率下的均匀光栅耦合器对一定波长光向外的泄漏功率Pup和Pdown可计算α。(6) In the formula, P in is the optical power of the input optical waveguide, P up and P down are the optical power of upward and downward diffraction respectively, in the simulation of the grating coupler, the normalization of P in is equal to 1, and P up and P down can be calculated by simulation. α can be calculated through the outward leakage power P up and P down of a certain wavelength light of a uniform grating coupler under different grating groove refractive indices.
根据公式(6)在光栅耦合器其他结构参数固定的前提下,变化不同的横向占空比fy和纵向周期Λx的参数组合可以通过仿真软件计算得到不同α值,即可调节光栅的功率泄漏因子α,而Λx参数取值随公式(5)中neff的变化而变化,neff又随公式(4)中neq的变化而变化,neq又随公式(3)中nsub的变化而变化,nsub又随公式(2)中fy的变化而变化。故根据这一连串的变化关系可倒推得到:通过调节fy(固定亚波长结构在y方向的周期为亚波长量级的任一值)来调节泄漏因子分布α(x)进而实现衍射输出的场分布为高斯型场分布G(x)。According to the formula (6), on the premise that other structural parameters of the grating coupler are fixed, changing the parameter combination of different transverse duty ratio f y and longitudinal period Λ x can be calculated by simulation software to obtain different α values, and the power of the grating can be adjusted Leakage factor α, while the value of Λ x parameter changes with the change of n eff in formula (5), n eff changes with the change of n eq in formula (4), and n eq changes with n sub in formula (3) , and nsub changes with the change of f y in formula (2). Therefore, according to this series of change relations, it can be deduced backwards: by adjusting f y (the period of the subwavelength structure in the y direction is fixed to any value of the subwavelength order), the leakage factor distribution α(x) is adjusted to realize the diffraction output. The field distribution is a Gaussian type field distribution G(x).
根据不同光栅槽折射率下的均匀光栅耦合器对应的α分布,结合不同横向占空比fy对应的光栅槽等效折射率的分布以及为了获得高斯形状的输出场分布G(x)所必须的光栅功率泄漏因子α分布,即可得到利用不同横向占空比fy调节光栅槽折射率来实现高斯形状的输出场分布。According to the α distribution corresponding to the uniform grating coupler under different grating groove refractive indices, combined with the distribution of the grating groove equivalent refractive index corresponding to different lateral duty ratios f y and in order to obtain the Gaussian shape of the output field distribution G(x) necessary The power leakage factor α distribution of the grating can be obtained by adjusting the refractive index of the grating grooves with different lateral duty ratios f y to achieve a Gaussian output field distribution.
总结具体调节思路为:调节方程(2)中的fy来调节nsub,继而由nsub调节方程(3)中的neq,继而由neq调节方程(4)中的neff,继而由neff调节方程(5)中的Λx,由一组fy和Λx参数取值可得到一个α值,不同的fy和Λx参数组合可以得到不同α值,即可调节光栅的功率泄漏因子α,继而由方程(1)根据x方向特定的α(x)分布,可实现高斯形状的输出场分布G(x)。To sum up the specific adjustment ideas are as follows: adjust f y in equation (2) to adjust n sub , then adjust n eq in equation (3) by n sub , then adjust n eff in equation (4) by n eq , and then adjust n eff in equation (4) by n eq n eff adjusts Λ x in equation (5), and a value of α can be obtained from a set of f y and Λ x parameters. Different combinations of f y and Λ x parameters can obtain different α values, and the power of the grating can be adjusted The leakage factor α, which in turn is distributed by Equation (1) according to a specific α(x) in the x direction, results in a Gaussian-shaped output field distribution G(x).
为达到上述目的,本发明的技术解决方案是:For achieving the above object, technical solution of the present invention is:
一种折射率可调的光栅耦合器,其特征在于包括:A grating coupler with adjustable refractive index, characterized in that it comprises:
一衬底层;a base layer;
一下限制层,该下限制层在衬底层上面;a lower confinement layer, the lower confinement layer overlying the substrate layer;
一波导芯层,该波导芯层在下限值层的上面,包括一亚微米波导芯层、一锥形波导芯层、一条形波导芯层,与亚微米波导芯层连接处为锥形波导芯层的窄端,锥形波导芯层的宽端连接处为条形波导芯层,在该条形波导芯层的表面制作有非均匀光栅槽分布的光栅,光栅用于实现对来自条形波导芯层中的入射光的耦合输出;A waveguide core layer, the waveguide core layer is above the lower limit value layer, including a submicron waveguide core layer, a tapered waveguide core layer, and a strip-shaped waveguide core layer, and the connection between the submicron waveguide core layer is a tapered waveguide core The narrow end of the tapered waveguide core layer and the wide end of the tapered waveguide core layer are connected by a strip waveguide core layer, and a grating with non-uniform grating groove distribution is fabricated on the surface of the strip waveguide core layer. Outcoupling of incident light in the core layer;
一光纤,该光纤在光栅正上方,该光纤用于接收向上的衍射光。An optical fiber, the optical fiber is directly above the grating, and the optical fiber is used to receive upward diffracted light.
波导芯层(光栅层刻蚀在该芯层表面)、限制层、衬底层。波导结构由一条形波导、锥形波导和亚微米波导在水平方向上衔接而成。与条形波导连接的是锥形波导,与锥形波导连接的是亚微米波导,在光栅的上方有用于接收向上衍射光的光纤。The waveguide core layer (the grating layer is etched on the surface of the core layer), the confinement layer, and the substrate layer. The waveguide structure is formed by connecting a strip waveguide, a tapered waveguide and a submicron waveguide in the horizontal direction. A tapered waveguide is connected with the strip waveguide, a submicron waveguide is connected with the tapered waveguide, and there is an optical fiber above the grating for receiving upwardly diffracted light.
本发明利用光栅可以将通过波导芯层的光衍射出波导,衍射出的光被置于光栅上方的光纤接收。The invention utilizes the grating to diffract the light passing through the core layer of the waveguide out of the waveguide, and the diffracted light is received by the optical fiber placed above the grating.
一种折射率可调的光栅耦合器的制作方法,具体步骤为:A method for manufacturing a grating coupler with adjustable refractive index, the specific steps are:
步骤1:在衬底片上依次制作上限制层和波导芯层;Step 1: Fabricate an upper confinement layer and a waveguide core layer sequentially on the substrate;
步骤2:清洗步骤1中制作好的片子结构,烘干;Step 2: cleaning the sheet structure made in step 1, and drying;
步骤3:将烘干的片子放入匀胶机中,旋涂光刻胶层,烘干;Step 3: Put the dried sheet into the glue coater, spin coat the photoresist layer, and dry;
步骤4:采用电子束曝光工艺对波导芯层表面的光刻胶进行曝光,形成条形波导、锥形波导和亚微米波导的光刻胶掩膜图形;Step 4: Exposing the photoresist on the surface of the waveguide core layer by electron beam exposure technology to form photoresist mask patterns of strip waveguides, tapered waveguides and submicron waveguides;
步骤5:采用感应耦合等离子体刻蚀,形成条形波导、锥形波导和亚微米波导三者的芯层;Step 5: using inductively coupled plasma etching to form the core layers of the strip waveguide, the tapered waveguide and the submicron waveguide;
步骤6:将片子放入匀胶机中,在芯层表面旋涂光刻胶;Step 6: Put the film into the glue homogenizer, and spin-coat the photoresist on the surface of the core layer;
步骤7:采用电子束曝光工艺在条形波导芯层表面进行曝光,形成光栅的光刻胶掩膜图形;Step 7: Exposing the surface of the strip waveguide core layer by an electron beam exposure process to form a photoresist mask pattern of the grating;
步骤8:对曝光后的器件结构进行显影定影;Step 8: developing and fixing the exposed device structure;
步骤9:采用感应耦合等离子体刻蚀,形成光栅;Step 9: using inductively coupled plasma etching to form a grating;
步骤10:清洗已形成光栅的片子,烘干。Step 10: cleaning the film on which the grating has been formed, and drying.
其中所述光栅为横向周期是亚波长量级且在纵向(x方向)不同的x位置具有不同的横向(y方向)占空比fy的光栅。Wherein the grating is a grating whose lateral period is of sub-wavelength order and has different lateral (y direction) duty ratios f y at different x positions in the longitudinal direction (x direction).
附图说明Description of drawings
图1是本发明折射率可调的光栅耦合器的结构示意图。Fig. 1 is a schematic structural diagram of a grating coupler with adjustable refractive index according to the present invention.
图2是折射率可调的光栅耦合器结构的截面示意图。Fig. 2 is a schematic cross-sectional view of a grating coupler structure with adjustable refractive index.
图3(a)-图3(f)为折射率可调的光栅耦合器制备方法示意图。图3(a)是实施例步骤1中在硅衬底8上依次制作限制层6和硅波导芯层7,形成SOI片的图;图3(b)是实施例步骤6中将制作有条形波导、锥形波导和亚微米波导三者的芯层的SOI片放入匀胶机中,旋涂光刻胶层9后的图;图3(c)是实施例步骤7中采用电子束曝光工艺在条形波导3芯层表面进行曝光,形成光栅5图形后的图;图3(d)是实施例步骤8中曝光后的SOI片进行显影定影后的图;图3(e)是实施例步骤9中采用感应耦合等离子体刻蚀,在硅波导芯层7表面形成光栅4后的图;图3(f)是实施例步骤10中清洗已形成光栅4的SOI片表面的硅波导芯层7,烘干后的图。Figure 3(a)-Figure 3(f) are schematic diagrams of the preparation method of the grating coupler with tunable refractive index. Fig. 3(a) is a diagram of sequentially fabricating a confinement layer 6 and a silicon waveguide core layer 7 on a silicon substrate 8 in step 1 of the embodiment to form an SOI sheet; The SOI sheet of the core layer of the shaped waveguide, tapered waveguide and sub-micron waveguide is put into the coating machine, and the figure after the photoresist layer 9 is spin-coated; Figure 3 (c) is the electron beam used in step 7 of the embodiment The exposure process exposes the surface of the core layer of the strip waveguide 3 to form the figure of the grating 5; Figure 3 (d) is a figure after developing and fixing the exposed SOI sheet in step 8 of the embodiment; Figure 3 (e) is In step 9 of the embodiment, inductively coupled plasma etching is used to form the grating 4 on the surface of the silicon waveguide core layer 7; FIG. Core layer 7, after drying.
图4是归一化的高斯分布G(x)和使得光栅耦合器的输出场分布为G(x)所需要的光栅耦合器泄漏因子分布α(x)。Fig. 4 is the normalized Gaussian distribution G(x) and the grating coupler leakage factor distribution α(x) required to make the output field distribution of the grating coupler G(x).
图5是本发明中折射率可调的光栅耦合器以TE偏振下非均匀光栅槽分布的情况为例,光栅槽等效折射率nsub对应的横向占空比fy、纵向光栅周期Λx及泄漏因子α。根据图5中的曲线,对实现不同输出场分布(比如高斯型场分布)时,所需要的x方向泄漏因子分布α(x),可以找到相应的光栅耦合器参数取值情况,即与α(x)相应的非均匀光栅槽的横向占空比fy和纵向光栅周期Λx二者的取值分布情况。Figure 5 shows the grating coupler with adjustable refractive index in the present invention. Taking the distribution of non-uniform grating grooves under TE polarization as an example, the transverse duty cycle f y and longitudinal grating period Λ x corresponding to the equivalent refractive index n sub of the grating grooves and leakage factor α. According to the curve in Fig. 5, when realizing different output field distributions (such as Gaussian field distribution), the required x-direction leakage factor distribution α(x) can find the corresponding value of grating coupler parameters, that is, with α (x) The value distribution of the horizontal duty cycle f y and the vertical grating period Λ x of the corresponding non-uniform grating groove.
图6是本发明具体实施例中折射率可调的光栅耦合器的耦合效率与波长之间的关系示意图。Fig. 6 is a schematic diagram of the relationship between the coupling efficiency and the wavelength of the grating coupler with adjustable refractive index in a specific embodiment of the present invention.
图7是本发明具体实施例中折射率可调的光栅耦合器在入射光波长为1550nm时光栅耦合器各层中的电磁波电场分量的分布示意图。Fig. 7 is a schematic diagram of the distribution of electromagnetic wave electric field components in each layer of the grating coupler with adjustable refractive index in a specific embodiment of the present invention when the incident light wavelength is 1550 nm.
具体实施方式detailed description
下面结合附图和实施例对本发明的结构和特征作进一步的详细描述。如图1、图2所示,以基于SOI材料为例,一种折射率可调的光栅耦合器,包括:The structure and features of the present invention will be further described in detail below in conjunction with the drawings and embodiments. As shown in Figure 1 and Figure 2, taking SOI material as an example, a grating coupler with adjustable refractive index includes:
一衬底硅层8;A substrate silicon layer 8;
一硅波导的下限制层6,该限制层6为二氧化硅材料;A lower confinement layer 6 of a silicon waveguide, the confinement layer 6 is silicon dioxide material;
一硅波导芯层7,该波导芯层7制作在上限制层6下面;该波导芯层7包括:亚微米波导1、锥形波导2和条形波导3三者的芯层;亚微米波导1为长方体;锥形波导2的窄端与亚微米波导1连接,另一端与条形波导3连接;该锥形波导2的宽度介于亚微米波导1与条形波导3之间,用于降低亚微米波导1和条形波导3之间的传输损耗;在条形波导3的表面制作有光栅4;A silicon waveguide core layer 7, the waveguide core layer 7 is made under the upper confinement layer 6; the waveguide core layer 7 includes: the core layer of the submicron waveguide 1, the tapered waveguide 2 and the strip waveguide 3; the submicron waveguide 1 is a cuboid; the narrow end of the tapered waveguide 2 is connected to the submicron waveguide 1, and the other end is connected to the strip waveguide 3; the width of the tapered waveguide 2 is between the submicron waveguide 1 and the strip waveguide 3, for Reduce the transmission loss between the submicron waveguide 1 and the strip waveguide 3; a grating 4 is fabricated on the surface of the strip waveguide 3;
一光纤5,该光纤5用于接收光栅4的向上衍射光,光纤5的轴线偏离光栅4表面法线10°。An optical fiber 5, the optical fiber 5 is used to receive the upward diffracted light of the grating 4, and the axis of the optical fiber 5 deviates from the surface normal of the grating 4 by 10°.
本发明中所述光栅为横向周期是亚波长量级且在纵向(x方向)不同的x位置具有不同的横向(y方向)占空比fy的光栅。The grating described in the present invention is a grating whose transverse period is of sub-wavelength order and has different transverse (y direction) duty ratios f y at different x positions in the longitudinal direction (x direction).
本发明中由于光栅4制作在硅波导层上,可以将光耦合出硅波导进入外部的光纤。亚微米波导1中的入射光经过锥形波导2进入条形波导3中的光栅区域,被光栅4衍射,衍射光分为:由负一阶衍射引起的向上衍射和向下衍射,其中向上的衍射光被光纤5接收,向下的衍射光有一部分经过埋氧化层与衬底界面反射后再向上出射被光纤5接收。通过上述措施,可以获得具有高耦合效率的光栅耦合器。In the present invention, since the grating 4 is fabricated on the silicon waveguide layer, the light can be coupled out of the silicon waveguide into an external optical fiber. The incident light in the submicron waveguide 1 enters the grating area in the strip waveguide 3 through the tapered waveguide 2, and is diffracted by the grating 4. The diffracted light is divided into: upward diffraction and downward diffraction caused by negative first-order diffraction, of which the upward The diffracted light is received by the optical fiber 5 , and a part of the downward diffracted light is reflected by the interface between the buried oxide layer and the substrate, and then goes upward and is received by the optical fiber 5 . Through the above measures, a grating coupler with high coupling efficiency can be obtained.
本发明提供一种折射率可调的光栅耦合器的制作方法,如图3所示,包括如下步骤:The present invention provides a method for manufacturing a grating coupler with adjustable refractive index, as shown in Figure 3, comprising the following steps:
步骤1:在硅衬底8上依次制作上限制层6和硅波导芯层7,形成SOI片,如图3(a)所示;Step 1: Fabricate an upper confinement layer 6 and a silicon waveguide core layer 7 sequentially on a silicon substrate 8 to form an SOI sheet, as shown in Figure 3(a);
步骤2:清洗SOI片表面的硅波导芯层7,烘干;Step 2: cleaning the silicon waveguide core layer 7 on the surface of the SOI sheet, and drying;
步骤3:将烘干的SOI片放入匀胶机中,旋涂光刻胶层,烘干;Step 3: Put the dried SOI sheet into a homogenizer, spin coat the photoresist layer, and dry;
步骤4:采用电子束曝光工艺对SOI片表面的光刻胶进行曝光,形成条形波导3、锥形波导2和亚微米波导1的光刻胶掩膜图形;Step 4: Exposing the photoresist on the surface of the SOI sheet by electron beam exposure technology to form the photoresist mask pattern of the strip waveguide 3, the tapered waveguide 2 and the submicron waveguide 1;
步骤5:采用感应耦合等离子体刻蚀,形成条形波导3、锥形波导2和亚微米波导1三者的芯层,如图1中所示;Step 5: using inductively coupled plasma etching to form the core layers of the strip waveguide 3, the tapered waveguide 2 and the submicron waveguide 1, as shown in FIG. 1;
步骤6:将制作有条形波导3、锥形波导2和亚微米波导1的SOI片放入匀胶机中,旋涂光刻胶层9,如图3(b)所示;Step 6: Put the SOI sheet with strip waveguide 3, tapered waveguide 2 and sub-micron waveguide 1 into the coater, and spin-coat the photoresist layer 9, as shown in Figure 3(b);
步骤7:采用电子束曝光工艺在条形波导3表面进行曝光,形成光栅4的图形,如图3(c)所示;其中所述光栅4为亚微米量级的二维非均匀光栅;Step 7: Exposing the surface of the strip waveguide 3 by using an electron beam exposure process to form a pattern of the grating 4, as shown in Figure 3(c); wherein the grating 4 is a two-dimensional non-uniform grating on the order of submicron;
步骤8:曝光后的SOI片进行显影定影,如图3(d)所示;Step 8: Develop and fix the exposed SOI sheet, as shown in Figure 3(d);
步骤9:采用感应耦合等离子体刻蚀,在硅波导层7表面形成光栅4,如图3(e)所示;Step 9: using inductively coupled plasma etching to form a grating 4 on the surface of the silicon waveguide layer 7, as shown in FIG. 3(e);
步骤10:清洗已形成光栅4的SOI片表面的硅波导层7,烘干,如图3(f)所示。Step 10: cleaning and drying the silicon waveguide layer 7 on the surface of the SOI sheet on which the grating 4 has been formed, as shown in FIG. 3( f ).
图4是归一化的高斯分布G(x)和使得光栅耦合器的输出场分布为G(x)所需要的光栅耦合器泄漏因子分布α(x)。图5是本发明中折射率可调的光栅耦合器以TE偏振下非均匀光栅槽分布的情况为例,光栅槽等效折射率nsub对应的横向占空比fy、纵向光栅周期Λx及泄漏因子α。利用图5可对光栅槽折射率可调的非均匀光栅耦合器在纵向进行0到0.5μm-1之间任意的泄漏因子分布设计,进而可利用图5实现图4中的泄漏因子分布α(x),即可得到图4中的高斯型输出场分布G(x)。图6是本发明折射率可调的光栅耦合器具体实施例耦合效率的仿真曲线。曲线横轴为波长,纵轴为耦合效率,也即是硅波导芯层7中输入光功率为1时耦合进入光纤5中的光功率,在波长为1550nm时,耦合效率最高为62%,3dB带宽87nm。图7是本发明折射率可调的光栅耦合器具体实施例在入射光波长为1550nm时光栅耦合器各层中的电磁波电场分量的分布,入射光从硅波导芯层7的左边入射,经过光栅4实现向上衍射,图7中可以看出大部分入射光都实现了向上耦合,且向上的衍射模场分布为高斯分布形式。图6和图7采用的仿真工具是基于本征模展开方法的全矢量开源软件Camfr,仿真中采用的具体结构参数为:衬底硅层8的折射率n1=3.476,厚度1μm(该层厚度对仿真结果无影响,仿真中取值比实际衬底硅层厚度小得多);二氧化硅层6的折射率n2=1.444,厚度2.2μm;硅波导芯层7的折射率n1=3.476,厚度220nm;波导芯层7上面的折射率匹配层(对应于实际的实验测试中为了降低光纤端面对向上衍射光的反射,要在光栅表面添加的折射率匹配液)折射率n3=1.46;光栅5的刻蚀深度为220nm,纵向占空比为fx=0.5,纵向周期依次为606nm、608nm、611nm、616nm、620nm、625nm、631nm、637nm、644nm、651nm、658nm、667nm、675nm、683nm、692nm、702nm、716nm、726nm、742nm、753nm、735nm、708nm、677nm、651nm、632nm、619nm、609nm、605nm;横向亚波长结构的周期为400nm,刻蚀深度为220nm,纵向光栅槽的等效折射率(相应的横向占空比fy)依次为3.4(0.95)、3.3824(0.94)、3.356(0.93)、3.3161(0.9)、3.2794(0.88)、3.24(0.86)、3.1916(0.83)、3.143(0.8)、3.0897(0.78)、3.0406(0.75)、2.9853(0.71)、2.9231(0.68)、2.8649(0.65)、2.8062(0.62)、2.7448(0.59)、2.6734(0.55)、2.5856(0.51)、2.5188(0.48)、2.4211(0.44)、2.3531(0.41)、2.4626(0.46)、2.6359(0.53)、2.8479(0.64)、3.0404(0.75)、3.1887(0.82)、3.2929(0.89)、3.371(0.94)、3.4112(0.96)。Fig. 4 is the normalized Gaussian distribution G(x) and the grating coupler leakage factor distribution α(x) required to make the output field distribution of the grating coupler G(x). Figure 5 shows the grating coupler with adjustable refractive index in the present invention. Taking the distribution of non-uniform grating grooves under TE polarization as an example, the transverse duty cycle f y and longitudinal grating period Λ x corresponding to the equivalent refractive index n sub of the grating grooves and leakage factor α. Using Figure 5, the non-uniform grating coupler with adjustable refractive index of the grating groove can be designed for any leakage factor distribution between 0 and 0.5 μm -1 in the longitudinal direction, and then the leakage factor distribution α( x), the Gaussian output field distribution G(x) in Figure 4 can be obtained. Fig. 6 is a simulation curve of the coupling efficiency of a specific embodiment of the grating coupler with adjustable refractive index according to the present invention. The horizontal axis of the curve is the wavelength, and the vertical axis is the coupling efficiency, that is, the optical power coupled into the optical fiber 5 when the input optical power in the silicon waveguide core layer 7 is 1. When the wavelength is 1550nm, the coupling efficiency is up to 62%, 3dB The bandwidth is 87nm. Fig. 7 is the distribution of the electric field components of the electromagnetic wave in each layer of the grating coupler when the incident light wavelength is 1550nm in the specific embodiment of the grating coupler with adjustable refractive index of the present invention. The incident light is incident from the left side of the silicon waveguide core layer 7 and passes through the grating 4 Realize upward diffraction. It can be seen from Figure 7 that most of the incident light is coupled upward, and the upward diffraction mode field distribution is in the form of Gaussian distribution. The simulation tool used in Fig. 6 and Fig. 7 is the full-vector open source software Camfr based on the eigenmode expansion method. The specific structural parameters used in the simulation are: the refractive index n 1 =3.476 of the substrate silicon layer 8, and the thickness is 1 μm (this layer The thickness has no effect on the simulation results, and the value in the simulation is much smaller than the thickness of the actual substrate silicon layer); the refractive index n 2 of the silicon dioxide layer 6 =1.444, and the thickness is 2.2 μm; the refractive index n 1 of the silicon waveguide core layer 7 =3.476, thickness 220nm; the refractive index matching layer on the waveguide core layer 7 (corresponding to the refractive index matching liquid to be added on the surface of the grating in order to reduce the reflection of the optical fiber end face to the upwardly diffracted light in the actual experimental test) refractive index n 3 =1.46; the etching depth of the grating 5 is 220nm, the vertical duty ratio is f x =0.5, and the vertical period is 606nm, 608nm, 611nm, 616nm, 620nm, 625nm, 631nm, 637nm, 644nm, 651nm, 658nm, 667nm , 675nm, 683nm, 692nm, 702nm, 716nm, 726nm, 742nm, 753nm, 735nm, 708nm, 677nm, 651nm, 632nm, 619nm, 609nm, 605nm; the period of the lateral subwavelength structure is 400nm, the etching depth is 220nm, and the longitudinal grating The equivalent refractive indices of the slots (the corresponding lateral duty cycle f y ) are 3.4 (0.95), 3.3824 (0.94), 3.356 (0.93), 3.3161 (0.9), 3.2794 (0.88), 3.24 (0.86), 3.1916 ( 0.83), 3.143(0.8), 3.0897(0.78), 3.0406(0.75), 2.9853(0.71), 2.9231(0.68), 2.8649(0.65), 2.8062(0.62), 2.7448(0.59), 2.6734(0.55), 2.585 0.51), 2.5188(0.48), 2.4211(0.44), 2.3531(0.41), 2.4626(0.46), 2.6359(0.53), 2.8479(0.64), 3.0404(0.75), 3.1887(0.82), 3.2929(0.891), 3.3 0.94), 3.4112 (0.96).
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, anyone familiar with the technology can also make some improvements and improvements without departing from the technical principles of the present invention. Modifications, these improvements and modifications should also be regarded as the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410127079.4A CN103901563B (en) | 2014-03-31 | 2014-03-31 | A grating coupler with adjustable refractive index and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410127079.4A CN103901563B (en) | 2014-03-31 | 2014-03-31 | A grating coupler with adjustable refractive index and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103901563A CN103901563A (en) | 2014-07-02 |
CN103901563B true CN103901563B (en) | 2016-07-13 |
Family
ID=50993002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410127079.4A Expired - Fee Related CN103901563B (en) | 2014-03-31 | 2014-03-31 | A grating coupler with adjustable refractive index and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103901563B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106154412B (en) * | 2015-03-30 | 2019-08-13 | 青岛海信宽带多媒体技术有限公司 | The chip of light waveguide of coupler and the application coupler |
CN107076932B (en) | 2015-06-11 | 2019-10-18 | 华为技术有限公司 | A kind of grating coupler and preparation method |
US20170153391A1 (en) * | 2015-11-30 | 2017-06-01 | Google Inc. | Photonic chip optical transceivers |
CN107046229A (en) * | 2016-02-05 | 2017-08-15 | 南京威宁锐克信息技术有限公司 | The preparation method and laser array of a kind of laser array |
CN105737879A (en) * | 2016-03-01 | 2016-07-06 | 中国电子科技集团公司第十三研究所 | Micron grade raster calibration sample wafer with step height |
CN107290824B (en) * | 2016-04-13 | 2020-01-10 | 华为技术有限公司 | Waveguide structure and preparation method |
CN107238974B (en) * | 2017-07-24 | 2021-03-02 | 京东方科技集团股份有限公司 | Backlight source and liquid crystal display module |
CN109270627B (en) * | 2018-11-29 | 2020-08-04 | 东南大学 | Polarization insensitive directional coupler based on multimode sub-wavelength grating |
CN109407231A (en) * | 2018-12-07 | 2019-03-01 | 青岛海信宽带多媒体技术有限公司 | Optical module |
US11287719B2 (en) * | 2020-07-07 | 2022-03-29 | Globalfoundries U.S. Inc. | Tunable grating couplers containing a material with a variable refractive index |
CN111751927B (en) * | 2020-07-23 | 2021-08-17 | 中国科学院上海微系统与信息技术研究所 | A tunable grating coupler |
US11474294B2 (en) * | 2021-01-29 | 2022-10-18 | Globalfoundries U.S. Inc. | Grating couplers with segments having sections of inverted curvature |
US11448828B2 (en) * | 2021-02-22 | 2022-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Optical device for coupling light |
CN113126204A (en) * | 2021-04-13 | 2021-07-16 | 中山大学 | Visible light waveband thin-film lithium niobate grating coupler and preparation method thereof |
CN113534342B (en) * | 2021-06-22 | 2024-03-15 | 北京工业大学 | High coupling efficiency segmented uniform grating coupler based on lithium niobate thin film waveguide |
CN115149398A (en) * | 2022-06-30 | 2022-10-04 | 西安立芯光电科技有限公司 | Edge-emitting semiconductor laser based on cavity surface film |
CN115343805A (en) * | 2022-08-31 | 2022-11-15 | 天津大学 | A Subwavelength Grating Coupler with High Fabrication Tolerance |
CN116299873A (en) * | 2022-11-30 | 2023-06-23 | 苏州微光电子融合技术研究院有限公司 | A Method of Improving Coupling Efficiency and Working Bandwidth of Grating Coupler |
CN118795601B (en) * | 2024-09-10 | 2024-12-10 | 中国科学院半导体研究所 | Asymmetric inhomogeneous grating coupler based on lead zirconate titanate film waveguide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101556356A (en) * | 2009-04-17 | 2009-10-14 | 北京大学 | Grating coupler and application thereof in polarization and wave length beam splitting |
CN102713706A (en) * | 2010-01-29 | 2012-10-03 | 惠普发展公司,有限责任合伙企业 | Grating-based optical fiber-to-waveguide interconnects |
-
2014
- 2014-03-31 CN CN201410127079.4A patent/CN103901563B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101556356A (en) * | 2009-04-17 | 2009-10-14 | 北京大学 | Grating coupler and application thereof in polarization and wave length beam splitting |
CN102713706A (en) * | 2010-01-29 | 2012-10-03 | 惠普发展公司,有限责任合伙企业 | Grating-based optical fiber-to-waveguide interconnects |
Also Published As
Publication number | Publication date |
---|---|
CN103901563A (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103901563B (en) | A grating coupler with adjustable refractive index and its manufacturing method | |
CN103197386B (en) | Vertical coupling grating coupler bonded by metal and manufacturing method thereof | |
US20160306117A1 (en) | Tapered polymer waveguide | |
CN101995609B (en) | Dispersion-decreasing ladder type waveguide grating coupler of silicon-on-insulator and manufacturing method thereof | |
US20100020400A1 (en) | Diffractive optical element, method for manufacturing diffractive optical element, and laser beam machining method | |
CN113933941B (en) | Vertical coupling grating coupler based on binary blazed sub-wavelength grating and preparation method | |
CN101793998A (en) | Waveguide grating coupler with distributed Bragg reflector and manufacturing method thereof | |
CN105026980B (en) | For the device for the phase for controlling optical wavefront | |
CN113253386B (en) | High-efficient broadband grating coupler | |
CN103364856B (en) | TE (Transverse Electric) polarized vertical-incidence negative-level-one high-efficiency inclined-transmission quartz grating | |
CN112285829A (en) | Silicon-based light spot mode field converter and manufacturing process thereof | |
WO2015096662A1 (en) | Manufacturing method for polymer waveguide grating | |
CN104597562A (en) | near-infrared broadband direction propagation and focusing surface Plasmon polariton (SPP) lens | |
CN213517647U (en) | Silicon-based light spot mode field converter | |
KR100471380B1 (en) | Method for Manufacturing Optical Waveguide Using Laser Direct Writing And Optical Waveguide Using the Same | |
CN116520499A (en) | Few-mode optical fiber and silicon-based multimode chip coupling structure and preparation method thereof | |
CN100430764C (en) | A photonic crystal beam splitter based on SOI and its manufacturing method | |
CN111273398A (en) | Design method of M-type waveguide grating coupler with high coupling efficiency | |
CN1322339C (en) | High diffraction efficiency quartz transmission grating with 532 nm wavelength | |
CN116990905B (en) | Subwavelength grating coupler with adjustable refractive index and its design method | |
CN114609722B (en) | Integrated light source based on light deflection modulation and preparation method thereof | |
CN114994813B (en) | On-chip transflective superlens, design method and 4f optical system with transflective dual channels | |
JP2005173162A (en) | Optical waveguide connection module and method for fabricating the same | |
CN108663822B (en) | Point diffraction light source based on nanowire waveguide | |
CN101149444A (en) | Fused Silica Transmission 1×2 Beamsplitter Grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160713 |