CN103888887A - Method for cutting MEMS microphone chips - Google Patents

Method for cutting MEMS microphone chips Download PDF

Info

Publication number
CN103888887A
CN103888887A CN201410118106.1A CN201410118106A CN103888887A CN 103888887 A CN103888887 A CN 103888887A CN 201410118106 A CN201410118106 A CN 201410118106A CN 103888887 A CN103888887 A CN 103888887A
Authority
CN
China
Prior art keywords
mems microphone
film
microphone chip
cutting
diaphragm
Prior art date
Application number
CN201410118106.1A
Other languages
Chinese (zh)
Inventor
周育樑
王勇
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to CN201410118106.1A priority Critical patent/CN103888887A/en
Publication of CN103888887A publication Critical patent/CN103888887A/en

Links

Abstract

The invention discloses a method for cutting MEMS microphone chips. Each chip comprises a substrate with a through hole and a plane-parallel capacitor, wherein each plane-parallel capacitor is arranged above the corresponding through hole and is formed by a vibrating membrane and a back electrode. The method for cutting the MEMS microphone chips comprises the steps that lower lay membranes are attached to the lower portions of the substrates, upper layer membranes are arranged above the vibrating membranes at certain intervals, and the upper layer membranes are UV membranes; an MEMS microphone wafer is cut through a water jet scalpel to form the MEMS microphone chips in a separation mode; the upper layer membranes are removed through ultraviolet irradiation. The MEMS microphone chips can be prevented from being polluted in the cutting process through the method.

Description

一种MEMS麦克风芯片切割方法 The method of one kind of MEMS microphone chip dicing

技术领域 FIELD

[0001] 本发明涉及MEMS麦克风封装技术领域,特别涉及一种MEMS麦克风切割方法。 [0001] The present invention relates to a MEMS microphone packaging technology, and more particularly, to a MEMS microphone cutting method.

背景技术 Background technique

[0002] 随着社会的进步和技术的发展,利用MEMS (微机电系统)工艺集成的MEMS麦克风开始被批量应用到手机、笔记本等电子产品中。 [0002] With the development of society and technology, the use of MEMS (microelectromechanical systems) technology began to be integrated MEMS microphone volume applications to mobile phones, laptops and other electronic products. 这种MEMS麦克风和传统的EMC(驻集体)麦克风相比,体积更小,密封性能更好,可靠性更高。 Such conventional MEMS microphone and EMC (in collective) compared microphone, smaller and better sealing performance, higher reliability. 随着智能移动设备的体积不断减小且性能和一致性提高,对MEMS麦克风的封装要求也越来越严密。 As the volume of smart mobile devices continue to decrease and increase the performance and consistency, the MEMS microphone packaging requirements of increasingly strict.

[0003] MEMS麦克风的一个核心器件是MEMS麦克风芯片,此芯片可以完成物理声音和电信号频率之间的转换。 A core device [0003] MEMS microphone is a MEMS microphone chip, this chip can complete the conversion between the electrical signal and the physical sound frequency. 附图1是一种常规的麦克风芯片结构,它包括硅衬底101、衬底101中形成有上下贯通的贯穿孔(cavity) 102 ;衬底101上方设置一个由背电极103、振动膜104构成的平行板电容器,振动膜受外界声音频率影响发生振动,使平行板电容值发生变化,产生电信号,实现声电转换功能;在衬底101上方,还具有一层氮化硅材料105,以起到固定、保护振动膜103的作用。 Figure 1 is a conventional microphone chip structure, comprising a silicon substrate 101, the through-hole (cavity) 102 has a vertically penetrating the substrate 101 is formed; provided over a substrate 101 103, the diaphragm 104 is made of the back electrode parallel plate capacitor, the frequency of the diaphragm by the external impact sound vibrates the parallel plate capacitance value changes, generates an electric signal, to achieve acoustic-electric conversion; over the substrate 101, further comprising a layer of silicon nitride material 105 to play a fixed, the diaphragm 103 of the protective effect.

[0004] 一般的麦克风芯片制作在硅晶圆上,一张硅晶圆有上千颗甚至上万颗芯片,需要通过划片把麦克风芯片分开成独立麦克风芯片。 [0004] Usually the microphone chip fabricated on a silicon wafer, a silicon wafer with thousands of chips or even thousands teeth, need to separate the microphone chip dicing into individual microphone chip. 由于制造工艺的局限性,现有的MEMS麦克晶圆的划片普遍采用镭射切割方式。 Due to manufacturing limitations, the conventional wafer dicing MEMS microphone commonly used laser cutting methods. 图2是一张常规的加工后的MEMS麦克风芯片的晶圆,需要沿切割道(虚线)201划片从而将这些麦克风芯片202分离开来。 FIG 2 is a conventional processing after the MEMS microphone chip wafer along scribe required (broken line) so that these dicing 201 chips 202 separated microphones. 镭射切割采用激光熔透技术,平均每15-20um深会产生一个熔透层,对于一张厚度为500um的晶圆,则需要产生约30层熔透层。 Laser cutting technology using laser penetration, average 15-20um deep penetration will produce a layer having a thickness of a wafer to 500um, it is necessary to generate about 30 layers of penetration layer. 这个过程较为费时,相当于扫描了一张晶圆30次,效率很低。 This process is more time-consuming, the equivalent of a wafer scanned 30 times, inefficient. 而且由于镭射切割对金属反射的光线很灵敏,因此晶圆中用于芯片电路和性能测试的PCM(脉冲编码调制)结构203只能制造在各个芯片单元内,占用了一部分原本放置MEMS麦克风芯片的位置。 And because the laser cutting of metal reflection light is very sensitive, so PCM circuit chips and wafers for the performance tests (pulse code modulation) produced only structure 203 in each chip unit, it occupies a portion of the MEMS microphone chip originally placed position. 另外,切割道上无法放置任何结构。 In addition, the scribe can not place any structure.

[0005] 另一种常用的划片方式为水刀划片,该方法成本低廉,被利用在大部分的芯片划片上,但是该方法在切割晶圆的同时需要用大压力的水进行冲洗,对于常规的MEMS麦克风芯片,振动膜极其脆弱易被损坏,且易被污染。 [0005] Another common way waterjet dicing dicing, the process cost, and is used in most of the dicing die, but at the same time this method requires cutting a wafer with a large flushing water under pressure , for a conventional microphone chip, MEMS diaphragm easily damaged extremely fragile, and easily contaminated.

发明内容 SUMMARY

[0006] 本发明的目的在于提供一种能够实现水刀划片,且保证振动膜在切割过程中不易损坏或污染的麦克风芯片切割方法。 [0006] The object of the present invention is to provide a water jet scribing can be achieved, and to ensure that the diaphragm is not easily damaged or contaminated microphone chip cutting process during cutting.

[0007] 为达成上述目的,本发明提供一种MEMS麦克风芯片的切割方法。 [0007] To achieve the above object, the present invention provides a method for dicing a MEMS microphone chip. 所述芯片包括具有贯穿孔的衬底以及设置在所述贯穿孔上方、由振动膜和背电极构成的平行板电容器,所述切割方法包括: The chip includes a substrate having a through hole and disposed above the through hole, a parallel plate capacitor consisting of a diaphragm and a back electrode, the cutting method comprising:

[0008] 步骤SI,在所述衬底下方贴附下层膜; [0008] Step SI, attaching underlayer film below said substrate;

[0009] 步骤S2,在所述振动膜上方以一定间隔设置上层膜,所述上层膜为UV膜; [0009] In step S2, the top of the diaphragm top film at regular intervals, the upper film is a UV film;

[0010] 步骤S3,通过水刀切割MEMS麦克风晶圆以分离多个所述MEMS麦克风芯片;以及[0011] 步骤S4,通过紫外线照射去除所述上层膜。 [0010] Step S3, the MEMS microphone waterjet cutting through the wafer to separate the plurality of MEMS microphone chip; and [0011] step S4, the upper film is removed by ultraviolet irradiation.

[0012] 优选地,所述振动膜通过隔离层固定于所述背电极上方,且至少部分所述隔离层覆盖于所述振动膜上;步骤S2中通过将所述上层膜贴附于所述隔离层覆盖所述振动膜的部分,以使所述上层膜间隔地设置于所述振动膜上方。 [0012] Preferably, the diaphragm by a spacer layer fixed to the back upper electrode, and at least a portion of the spacer layer covers the vibrating film; the step of the upper layer film by attaching to the S2, spacer layer covers part of the diaphragm, so that the upper film is provided spaced above said membrane vibration.

[0013] 优选地,步骤S4包括:从所述MEMS麦克风芯片的振动膜一侧进行紫外线灯照射以降低所述上层膜的粘附性;以及倒置所述MEMS麦克风晶圆,以使所述上层膜脱落。 [0013] Preferably, step S4 comprising: a ultraviolet light is irradiated from one side of the diaphragm of the MEMS microphone chip to reduce the adhesion of the upper layer film; and the MEMS microphone inverted wafer, so that the upper layer film off.

[0014] 优选地,所述紫外线灯的功率大于等于750瓦,照射时间为20-30秒。 [0014] Preferably, the power of the UV lamp is greater than equal to 750 watts, irradiation time of 20-30 seconds.

[0015] 优选地,所述下层膜的粘附性大于所述上层膜的粘附性。 [0015] Preferably, the adhesion of the underlayer film is greater than the adhesion of the upper layer film.

[0016] 优选地,所述上层膜的厚度为20〜30 μ m。 [0016] Preferably, the thickness of the upper layer film is 20~30 μ m.

[0017] 优选地,所述下层膜为UV膜,其厚度大于所述上层膜的厚度。 [0017] Preferably, the UV underlayer film is a film having a thickness greater than the thickness of the upper layer film.

[0018] 优选地,所述隔尚层覆盖所述振动膜的部分的厚度为30〜50μηι。 Thickness of the portion of the [0018] Preferably, the barrier layer still covers the diaphragm is 30~50μηι.

[0019] 优选地,所述隔离层的材料为氮化硅。 [0019] Preferably, the separation layer material is silicon nitride.

[0020] 优选地,所述MEMS麦克风晶圆上具有切割道,当实施水刀切割时水刀沿着所述切割道行进以分离多个所述MEMS麦克风芯片;所述切割道上设置有脉冲编码调制器。 [0020] Preferably, the wafer having the MEMS microphone scribe, when implemented Waterjet Cutting waterjet traveling along the scribe lines to separate the plurality of the MEMS microphone chip; the scribe line is provided with a pulse encoder Modulator.

[0021 ] 本发明的优点在于,通过在MEMS麦克芯片的振动膜上方悬空设置一层UV膜,可避免MEMS麦克风芯片在切割过程中受到污染,且采用水刀切割的方式可有效降低成本。 [0021] The advantage of the present invention is that, by setting a layer of UV suspended film over the vibrating membrane MEMS microphone chip, MEMS microphone chip avoid contamination during the cutting process, and the use of waterjet embodiment can effectively reduce the cost. 另一方面在切割完成后UV膜可通过紫外线照射去除,MEMS麦克芯片的性能并未受到影响。 On the other hand UV film may be removed by UV irradiation after completion of the cutting, MEMS microphone chip performance is not affected.

附图说明 BRIEF DESCRIPTION

[0022] 图1为现有技术的MEMS麦克风芯片结构的示意图; [0022] FIG. 1 is a schematic configuration of a MEMS microphone chip prior art;

[0023] 图2为现有技术的MEMS麦克风芯片晶圆镭射切割的示意图; [0023] FIG. 2 is a prior art MEMS microphone chip wafer of laser cutting schematic;

[0024] 图3为本发明一实施例的MEMS麦克风芯片切割方法的流程图; [0024] FIG. 3 is a flowchart of a cutting method of an embodiment of a MEMS microphone chip embodiment of the present invention;

[0025] 图4为本发明一实施例的MEMS麦克风芯片结构的示意图; [0025] FIG. 4 is a schematic structure of a MEMS microphone chip according to an embodiment of the present invention;

[0026] 图5a〜5d为本发明一实施例的MEMS麦克风芯片切割方法的剖视图; [0026] FIG 5a~5d sectional view of a cutting method of a MEMS microphone chip according to an embodiment of the invention;

[0027] 图6为本发明一实施例的MEMS麦克风芯片晶圆水刀切割的示意图。 [0027] FIG. 6 is a schematic MEMS microphone chip wafer of waterjet cutting to an embodiment of the embodiment of the present invention.

具体实施方式 Detailed ways

[0028] 为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。 [0028] To make the present invention more clearly understood, the following description in conjunction with the accompanying drawings, the present invention will be further described. 当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。 Of course, the present invention is not limited to this specific example embodiments, those skilled in the art generally known alternative also encompassed within the scope of the present invention.

[0029] 图3为本发明一实施例的MEMS麦克风芯片的结构示意图。 [0029] FIG. 3 is a schematic structure of the MEMS microphone chip according to an embodiment of the present invention. 本发明采用的MEMS麦克风芯片包括衬底301以及设置在衬底上的平行板电容器。 The present invention employs MEMS microphone chip includes a substrate 301 and a parallel plate capacitor is provided on the substrate. 衬底中具有贯通的贯穿孔302,平行板电容器由振动膜304和背电极303构成。 A substrate having a through-hole 302 through the parallel plate capacitor formed of the diaphragm 304 and the back electrode 303. 其中背电极303固定形成于衬底301上,且与衬底的贯穿孔302相对,振动膜304则悬空设置在背电极303上方。 Wherein a back electrode 303 formed on the fixed substrate 301, and the through hole 302 of the substrate opposite the diaphragm 304 is suspended above the back electrode 303. 本实施例中,振动膜304是通过隔离层305固定并悬空于背电极303的上方。 In this embodiment, the diaphragm 304 is secured by a spacer layer 305 and suspended above the back electrode 303. 隔离层的材料例如为氮化硅,且较佳的至少部分的隔离层305覆盖于振动膜304上,位置比振动膜304略高,高出部分约为30_50um。 Spacer layer material, for example silicon nitride, and preferably at least a portion of the barrier layer 305 covers the diaphragm 304, the diaphragm 304 is slightly higher than the position, about 30_50um comparing portion.

[0030] 图4为本发明一实施例的MEMS麦克风芯片切割方法的流程图,图5a〜5d为本发明一实施例的MEMS麦克风芯片切割方法的剖视图,下面将结合图4及图5a〜5d对本发明的MEMS麦克风芯片切割方法进行详细的说明。 [0030] FIG 4 is a flowchart of the method for cutting according to a MEMS microphone chip embodiment of the present invention, a cross-sectional view of a cutting method of FIG 5a~5d MEMS microphone chip according to an embodiment of the invention, the following in conjunction with FIG. 4 and FIG 5a~5d MEMS microphone chip cutting method of the present invention will be described in detail. MEMS麦克风芯片制作在晶圆上,通过本发明的切割方法可将一张晶圆上的多颗麦克风芯片分割成独立的芯片。 MEMS microphone chip fabricated on the wafer by dicing method of the present invention may be more stars microphone chip on a wafer is divided into individual chips. 该切割方法包括以下步骤: The cutting method comprising the steps of:

[0031] 步骤SI,在衬底下方贴附一层下层膜。 [0031] Step SI, attaching a layer of the substrate under the underlayer film. 如图5a所示,将MEMS麦克风芯片附着于下层膜506上,即芯片的背面一侧(衬底501下方)与下层膜506贴合。 As shown in FIG. 5a, the MEMS microphone chip is attached to the lower layer film 506, i.e., the back side of the chip (lower substrate 501) bonded to the lower layer film 506.

[0032] 步骤S2,在振动膜上方以一定间隔设置UV上层膜。 [0032] step S2, above the diaphragm arranged at intervals UV upper film. 请参考图5b,UV上层膜507倒扣在振动膜504上,以与振动膜504之间具有间隙的方式覆盖振动膜504。 Referring to FIG 5b, UV upper layer film 507 upside down on the diaphragm 504, such that a gap between the diaphragm cover 504 and the diaphragm 504. 在本实施例中,由于隔离层505至少有部分高于振动膜504,因此UV上层膜507可直接贴附在隔离层505覆盖振动膜的该部分上,也可避免与振动膜发生粘连。 In the present embodiment, since the spacer layer 505 at least partially above the vibrating film 504, the upper layer film 507 so UV can be directly attached to the spacer layer 505 covers the portion of the diaphragm, but also to avoid the occurrence of adhesion to the diaphragm.

[0033] 步骤S3,通过水刀切割MEMS麦克风晶圆以分离多个MEMS麦克风芯片。 [0033] Step S3, the MEMS microphone dicing the wafer to separate the plurality of water jet through the MEMS microphone chip. 如图5c所示,同一张麦克风晶圆具有多个麦克风芯片52,当实施水刀切割时水刀沿着晶圆的切割道51行进,将晶圆整体切割为独立的多个麦克风芯片。 As shown in FIG. 5C, with a wafer having a plurality of microphones microphone chip 52, the water knife along the wafer 51 travels when the scribe embodiment waterjet cutting, dicing the wafer to separate the plurality of the whole microphone chip. 由于在切割过程中,UV上层膜507始终覆盖在振动膜上,可对振动膜提供保护,避免其遭受水刀污染及破坏。 Since the cutting process, UV 507 always covers the upper film on the vibrating membrane, may provide protection for the diaphragm, which avoid pollution and damage suffered waterjet. 图6所示为本发明一实施例麦克风芯片水刀切割的示意图,如图所示,采用水刀切割的方式,晶圆中用于芯片电路和性能测试的脉冲编码调制(PCM)器63 (如为氧化铝材质)可设置在切割道61上,因此无需占用各个芯片62内的空间。 FIG 6 is a schematic diagram of the microphone chip a waterjet embodiment of the present invention, as shown, by way of water jet cutting, wafer pulse code modulation (PCM) and a chip performance test circuit 63 ( the alumina material) may be provided on the cutting channel 61, so no space in the respective chip 62.

[0034] 步骤S4,通过紫外线照射去除上层膜。 [0034] Step S4, the upper film is removed by ultraviolet irradiation. 请参考图5d,在完成水刀切割后,从MEMS麦克风芯片的振动膜504 —侧进行紫外线灯照射,直至UV上层膜507的粘附性下降。 Referring to FIG. 5D, after completion of waterjet cutting, the diaphragm 504 MEMS microphone chip - ultraviolet light irradiation side, the upper layer film 507 until the UV adhesion decreases. 之后,倒置MEMS麦克风晶圆,由于UV上层膜507的粘附性较弱,很容易就能从麦克风芯片上脱落下来。 Thereafter, the MEMS microphone inverted wafer 507 due to the adhesion of the top film UV weak, can easily fall off from the microphone chip. 较佳的,紫外线灯的功率大于等于750瓦,照射时间为20-30秒。 Preferably, the UV lamp is greater than the power equal to 750 watts, irradiation time of 20-30 seconds. 为了避免下层膜506在切割后发生脱落的情况,下层膜506的粘附性优选为大于UV上层膜的粘附性。 In order to avoid falling off of the lower layer film 506 occurs after the cutting, the adhesion of the lower layer film 506 is preferably greater than the upper layer UV adhesive film. 下层膜506也可以是UV膜,当其为UV膜时,在紫外线照射下同样会逐渐丧失粘附性,因此下层膜506的厚度应大于UV上层膜507的厚度。 Underlayer film 506 may be a UV film, when it is a UV film will also gradually lose adhesion under UV irradiation, the thickness of the lower layer film 506 should be larger than the film thickness of the upper layer UV 507. 其中,UV上层膜的厚度可以为20〜30um,UV下层膜506的厚度可以为50um左右。 Wherein the thickness of the upper layer film may be UV 20~30um, UV thickness of the lower layer film 506 may be about 50um. 在本发明的其他实施例中,下层膜506也可以是蓝膜或其他材料,只要在紫外线照射下能够保持比UV上层膜更强的粘附性即可。 In other embodiments of the present invention, the underlayer film 506 may be a blue film or other material, as long as the UV light UV can be held stronger than the adhesion to the upper layer film.

[0035] 综上所述,与现有技术相比,本发明所提供的MEMS麦克风切割方法采用水刀切割的方式可有效降低成本;此外,通过在MEMS麦克芯片的振动膜上方悬空设置一层UV膜,可避免MEMS麦克风芯片在水刀切割过程中受到污染。 [0035] In summary, compared with the prior art, the present invention provides a MEMS microphone cutting method using waterjet embodiment can effectively reduce the cost; in addition, through the diaphragm suspended over the MEMS microphone chip layer disposed UV film, MEMS microphone chip to avoid contamination of the water jet cutting process. 另一方面由于在切割完成后可通过紫外线照射去除设置在振动膜上的UV膜,MEMS麦克芯片的性能将不会受到影响。 After cutting the other hand, since the removal can be provided by an ultraviolet irradiation in the UV film vibrating membrane, the MEMS microphone chip performance will not be affected.

[0036] 虽然本发明已以较佳实施例揭示如上,然所述诸多实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。 [0036] While the present invention has been disclosed in the preferred embodiment as described above, then the many embodiments for illustrative purposes only and example only, not intended to limit the present invention, those skilled in the art without departing from the spirit and scope of the invention may be made under the premise of a number of alterations and modifications, the scope of the present invention as claimed in the claims should prevail.

Claims (10)

1.一种MEMS麦克风芯片的切割方法,所述芯片包括具有贯穿孔的衬底以及设置在所述贯穿孔上方、由振动膜和背电极构成的平行板电容器,其特征在于,所述切割方法包括: 步骤SI,在所述衬底下方贴附下层膜; 步骤S2,在所述振动膜上方以一定间隔设置上层膜,所述上层膜为UV膜; 步骤S3,通过水刀切割MEMS麦克风晶圆以分离多个所述MEMS麦克风芯片;以及步骤S4,通过紫外线照射去除所述上层膜。 1. A cutting method of a MEMS microphone chip, the chip comprises a substrate having a through hole and disposed above the through hole, a parallel plate capacitor consisting of the diaphragm and the back electrode, characterized in that the cutting method comprising: a step of the SI, the substrate attached under the underlayer film; step S2, the top film disposed at regular intervals over the diaphragm, the upper film is a UV film; step S3, the MEMS microphone through waterjet crystal a plurality of round to separate the MEMS microphone chip; and a step S4, by ultraviolet irradiation, removing the upper layer film.
2.如权利要求1所述的MEMS麦克风芯片的切割方法,其特征在于,所述振动膜通过隔离层固定于所述背电极上方,且至少部分所述隔离层覆盖于所述振动膜上;步骤S2中通过将所述上层膜贴附于所述隔离层覆盖所述振动膜的部分,以使所述上层膜间隔地设置于所述振动膜上方。 2. The cutting method according to claim 1 MEMS microphone chip of claim wherein the diaphragm by a spacer layer fixed to the back upper electrode, and at least a portion of the spacer layer covers the vibrating film; step S2 by the upper film is attached to a portion of the diaphragm covers the spacer layer, such that the upper film is provided spaced above said membrane vibration.
3.如权利要求2所述的MEMS麦克风芯片的切割方法,其特征在于,步骤S4包括:从所述MEMS麦克风芯片的振动膜一侧进行紫外线灯照射以降低所述上层膜的粘附性;以及倒置所述MEMS麦克风晶圆,以使所述上层膜脱落。 3. The method of claim 2 dicing MEMS microphone chip as claimed in claim wherein, the step S4 comprising: a ultraviolet light is irradiated from one side of the diaphragm of the MEMS microphone chip to reduce the adhesion of the upper layer film; Invert the MEMS microphone and the wafer, so that the upper film peeling.
4.如权利要求3所述的MEMS麦克风芯片的切割方法,其特征在于,所述紫外线灯的功率大于等于750瓦,照射时间为20-30秒。 The method of claim 3 cutting MEMS microphone chip as claimed in claim 4, wherein said ultraviolet lamp is greater than the power equal to 750 watts, irradiation time of 20-30 seconds.
5.如权利要求2所述的MEMS麦克风芯片的切割方法,其特征在于,所述下层膜的粘附性大于所述上层膜的粘附性。 5. The cutting method according to claim 2 MEMS microphone chip of claim wherein the adhesion of the lower layer film is greater than the adhesion of the upper layer film.
6.如权利要求5所述的MEMS麦克风芯片的切割方法,其特征在于,所述上层膜的厚度为20 〜30 μ m。 MEMS microphone chip cutting method as claimed in claim 5, wherein the thickness of the upper layer film is 20 ~30 μ m.
7.如权利要求5或6所述的MEMS麦克风芯片的切割方法,其特征在于,所述下层膜为UV膜,其厚度大于所述上层膜的厚度。 7. The cutting method of claim 5 or 6 MEMS microphone chip claim, wherein said underlayer film is a UV film having a thickness greater than the thickness of the upper layer film.
8.如权利要求2所述的MEMS麦克风芯片的切割方法,其特征在于,所述隔离层覆盖所述振动膜的部分的厚度为30〜50 μ m。 MEMS microphone chip cutting method as claimed in claim 2, wherein the thickness of said spacer layer overlying portion of the diaphragm is 30~50 μ m.
9.如权利要求8所述的MEMS麦克风芯片的切割方法,其特征在于,所述隔离层的材料为氮化硅。 MEMS microphone chip cutting method as claimed in claim 8, wherein the material of the isolation layer is silicon nitride.
10.如权利要求1所述的MEMS麦克风芯片的切割方法,其特征在于,所述MEMS麦克风晶圆上具有切割道,当实施水刀切割时水刀沿着所述切割道行进以分离多个所述MEMS麦克风芯片;所述切割道上设置有脉冲编码调制器。 10. The cutting method according MEMS microphone chip. 1 claim, wherein the MEMS microphone wafer having scribe lines, when the embodiment Waterjet Cutting waterjet traveling along the scribe lines to separate a plurality of the MEMS microphone chip; the scribe line is provided with a pulse code modulator.
CN201410118106.1A 2014-03-27 2014-03-27 Method for cutting MEMS microphone chips CN103888887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410118106.1A CN103888887A (en) 2014-03-27 2014-03-27 Method for cutting MEMS microphone chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410118106.1A CN103888887A (en) 2014-03-27 2014-03-27 Method for cutting MEMS microphone chips

Publications (1)

Publication Number Publication Date
CN103888887A true CN103888887A (en) 2014-06-25

Family

ID=50957573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410118106.1A CN103888887A (en) 2014-03-27 2014-03-27 Method for cutting MEMS microphone chips

Country Status (1)

Country Link
CN (1) CN103888887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565254A (en) * 2014-10-17 2016-05-11 中芯国际集成电路制造(上海)有限公司 MEMS (Micro-Electro-Mechanical System) device, manufacturing method thereof and electronic device
CN107298428A (en) * 2017-06-27 2017-10-27 北京航天控制仪器研究所 Method for separating SOG-MEMS (Silicon On Glass Micro Electro Mechanical System) chip unit
CN107827079A (en) * 2017-11-17 2018-03-23 烟台睿创微纳技术股份有限公司 Production method of MEMS (micro-electro-mechanical system) chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076848A1 (en) * 2000-12-05 2002-06-20 Spooner Timothy R. Method and device for protecting micro electromechanical systems structures during dicing of a wafer
CN102209287A (en) * 2010-03-29 2011-10-05 歌尔声学股份有限公司 MEMS (micro electro mechanical system) microphone chip and manufacture method thereof
US20120091544A1 (en) * 2009-06-03 2012-04-19 Frank Reichenbach Component having a micromechanical microphone structure, and method for its production
CN103347241A (en) * 2013-07-03 2013-10-09 上海集成电路研发中心有限公司 Capacitor type silicon microphone chip and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076848A1 (en) * 2000-12-05 2002-06-20 Spooner Timothy R. Method and device for protecting micro electromechanical systems structures during dicing of a wafer
US20120091544A1 (en) * 2009-06-03 2012-04-19 Frank Reichenbach Component having a micromechanical microphone structure, and method for its production
CN102209287A (en) * 2010-03-29 2011-10-05 歌尔声学股份有限公司 MEMS (micro electro mechanical system) microphone chip and manufacture method thereof
CN103347241A (en) * 2013-07-03 2013-10-09 上海集成电路研发中心有限公司 Capacitor type silicon microphone chip and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565254A (en) * 2014-10-17 2016-05-11 中芯国际集成电路制造(上海)有限公司 MEMS (Micro-Electro-Mechanical System) device, manufacturing method thereof and electronic device
CN105565254B (en) * 2014-10-17 2017-11-14 中芯国际集成电路制造(上海)有限公司 Mems device and method for preparing one kind of electronic device
CN107298428A (en) * 2017-06-27 2017-10-27 北京航天控制仪器研究所 Method for separating SOG-MEMS (Silicon On Glass Micro Electro Mechanical System) chip unit
CN107298428B (en) * 2017-06-27 2019-04-09 北京航天控制仪器研究所 A method of it is separated for SOG-MEMS chip unit
CN107827079A (en) * 2017-11-17 2018-03-23 烟台睿创微纳技术股份有限公司 Production method of MEMS (micro-electro-mechanical system) chip

Similar Documents

Publication Publication Date Title
US8934648B2 (en) Support apparatus for microphone diaphragm
US7885423B2 (en) Support apparatus for microphone diaphragm
US8643129B2 (en) MEMS device
JP4480728B2 (en) Mems method of manufacturing a microphone
US7859084B2 (en) Semiconductor substrate
CN103347808B (en) Mems silicon microphone comprising the microphone and packaging system
EP1993948B1 (en) Mems device
US20020076848A1 (en) Method and device for protecting micro electromechanical systems structures during dicing of a wafer
TWI236046B (en) Semiconductor device and manufacturing method thereof
US20150165479A1 (en) Piezoelectric ultrasonic transducer and process
CN102325294B (en) Acoustic sensor
TWI233170B (en) Ultra-thin wafer level stack packaging method and structure using thereof
SG149062A1 (en) Dicing die-bonding film
CN101815235A (en) Miniature MEMS condenser microphone packages and fabrication method thereof
CN1101458A (en) Wafer-like processing after sawing dmds
US6856014B1 (en) Method for fabricating a lid for a wafer level packaged optical MEMS device
TW200518354A (en) Device package and methods for the fabrication and testing thereof
EP1398298A3 (en) Process of making an all-silicon microphone
TW200739755A (en) Manufacturing method of semiconductor device
EP2816613A3 (en) Light emitting device having vertical structure, package thereof and method for manufacturing the same
TW200804172A (en) Semiconductor apparatus and method for manufacturing the same
US8659100B2 (en) MEMS component having a diaphragm structure
US20120028438A1 (en) Method for separating a layer system comprising a wafer
US20090047479A1 (en) Mems sensor and production method of mems sensor
JP2009283526A (en) Method of manufacturing gas cell, and gas cell

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
WD01