CN103877995B - 蒙脱土负载纳米Pd/Cu催化剂及其原位一锅法制备和应用 - Google Patents
蒙脱土负载纳米Pd/Cu催化剂及其原位一锅法制备和应用 Download PDFInfo
- Publication number
- CN103877995B CN103877995B CN201410128789.9A CN201410128789A CN103877995B CN 103877995 B CN103877995 B CN 103877995B CN 201410128789 A CN201410128789 A CN 201410128789A CN 103877995 B CN103877995 B CN 103877995B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- montmorillonite
- original position
- loading nano
- kettle way
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种蒙脱土负载纳米Pd/Cu催化剂及其原位一锅法制备和应用,该催化剂是以蒙脱土为载体、以无水乙醇为溶剂和还原剂,在溶剂热条件下“原位一锅法”一步制备而成,催化剂的制备以及后处理步骤简洁,无需添加任何表面活性剂,反应体系绿色环保,解决了溶液体系内难以直接得到双金属纳米微粒的问题,实现了催化剂形貌、尺寸和金属比例的有效控制。本发明所制备的催化剂可用于温和条件下高效催化碘代芳烃与芳基端炔或烷基端炔的Sonogashira交叉偶联反应,催化剂用量少,目标产物收率高,可应用于Csp-Csp2键结构的构筑。
Description
技术领域
本发明属于催化剂技术领域,具体涉及一种蒙脱土负载纳米微粒的原位制备方法,并涉及该方法所得催化剂在催化Sonogashira交叉偶联反应中的应用。
背景技术
双金属纳米粒子在催化、电学、磁学、光学领域的广泛应用引起了人们的极大兴趣。其中含Pd双金属纳米粒子以其优良的催化性能在催化有机反应方面得到了广泛的关注。从上世纪90年代各种含Pd双金属纳米粒子相继出现并应用在催化反应的多个领域。然而,尽管各种研究表明尺寸、形状和组成可控的双金属纳米粒子在催化活性方面有更大的优势,但是制备具有以上各类特征的纳米粒子尤其是Pd基双金属纳米粒子对于研究者而言依然具有挑战。目前常用的水热法、溶剂热法以及各种模板法为控制形貌、尺寸或金属比例多需要加入各种表面活性剂以及各种强还原剂,若想使用简单体系一步得到组成可控的双金属纳米微粒并使其具有较为均匀的粒径分布和较好的催化效果仍然存在困难。
发明内容
本发明所要解决的技术问题在于提供一种蒙脱土负载纳米Pd/Cu催化剂,以及采用“原位一锅法”一步制备该催化剂的方法,并为该催化剂提供一种新的用途。
解决上述技术问题所采用的技术方案是:将蒙脱土、醋酸钯、硝酸铜、无水乙醇加入水热釜中,其中醋酸钯与无水乙醇、蒙脱土的质量比为0.01~0.03:8~15:1,醋酸钯与硝酸铜的摩尔比为1:1,搅拌均匀,超声1~2小时,密封水热釜,150~170℃反应16~24小时,冷却至常温,分离产物,常温真空干燥,得到蒙脱土负载纳米Pd/Cu催化剂。
上述的蒙脱土为钠基蒙脱土或钙基蒙脱土。
上述制备方法得到的蒙脱土负载纳米Pd/Cu催化剂。
上述的蒙脱土负载纳米Pd/Cu催化剂在催化碘代芳烃与端炔的Sonogashira交叉偶联反应中的用途,具体使用方法为:将1mmol碘代芳烃、1mmol端炔加入5mL无水乙醇中,然后加入0.0018g蒙脱土负载纳米Pd/Cu催化剂、0.1380gK2CO3、0.0080g三苯基膦,在氮气保护下,65℃回流反应16小时,反应结束后减压除去无水乙醇,用硅胶柱色谱分离产物。
本发明以蒙脱土为载体,以无水乙醇为溶剂和还原剂,利用蒙脱土特有的离子交换能力,无需添加任何表面活性剂,在溶剂热条件下“原位一锅法”一步可控得到Pd与Cu的摩尔比为1:1的蒙脱土负载双金属纳米催化剂,解决了溶液体系内难以直接得到双金属纳米微粒的问题,并实现了催化剂形貌、尺寸和金属比例的可控合成。本发明催化剂的制备以及后处理步骤简洁,反应体系绿色环保,所制备的催化剂可用于温和条件下高效催化碘代芳烃与芳基端炔或烷基端炔的Sonogashira交叉偶联反应,且催化剂用量少,目标产物收率高,可有效应用于Csp-Csp2键结构的构筑。
附图说明
图1是实施例1制备的蒙脱土负载纳米Pd/Cu催化剂的EDS图。
图2是实施例1制备的蒙脱土负载纳米Pd/Cu催化剂的SEM图。
图3是实施例1制备的蒙脱土负载纳米Pd/Cu催化剂的TEM图。
图4是实施例1制备的蒙脱土负载纳米Pd/Cu催化剂的XRD图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将1.0g钙基蒙脱土0.0170g(0.07mmol)醋酸钯和0.0136g(0.07mmol)硝酸铜、9.6g(12mL)无水乙醇加入30mL水热釜中,搅拌均匀后超声1小时,密封水热釜,加热至170℃保持16小时,然后自然冷却至常温,用无水乙醇洗涤,离心分离,所得固体常温真空干燥,得到蒙脱土负载纳米Pd/Cu催化剂。
所得催化剂采用环境扫描电子显微镜、透射电子显微镜、X射线粉末衍射分别进行表征,结果见图1~4。由图可见,Pd/Cu双金属成功负载在蒙脱土上,并形成了纳米微粒,且蒙脱土层状结构保持完好。
实施例2
将1.0g钙基蒙脱土0.0233g(0.1mmol)醋酸钯和0.0192g(0.1mmol)硝酸铜、11.3g(15mL)无水乙醇加入30mL水热釜中,搅拌均匀后超声2小时,密封水热釜,加热至150℃保持24小时,然后自然冷却至常温,用无水乙醇洗涤,离心分离,所得固体常温真空干燥,得到蒙脱土负载纳米Pd/Cu催化剂。
实施例3
实施例1制备的蒙脱土负载纳米Pd/Cu催化剂在催化碘代芳烃与端炔的Sonogashira交叉偶联反应中的用途,具体方法如下:
将1mmol碘代芳烃、1mmol端炔加入5mL无水乙醇中,然后加入0.0018g蒙脱土负载纳米Pd/Cu催化剂、0.1380gK2CO3、0.0080g三苯基膦,在氮气保护下,65℃回流反应16小时,反应结束后减压除去无水乙醇,用硅胶柱色谱分离产物,具体试验及试验结果见表1。
表1催化反应结果
碘代芳烃 | 端炔 | 产物 | 收率 |
1-碘苯 | 苯乙炔 | 二苯基炔 | 90% |
对甲氧基碘苯 | 1-己炔 | 4-甲氧基苯基-1-己炔 | 66% |
3-甲基碘苯 | 苯乙炔 | 3-甲基二苯基乙炔 | 80% |
2-三氟甲基碘苯 | 4-戊基苯乙炔 | 2-三氟甲基4-戊基二苯乙炔 | 86% |
3-硝基碘苯 | 4-甲基苯乙炔 | 3-硝基4-甲基二苯乙炔 | 93% |
4-硝基碘苯 | 4-乙基苯乙炔 | 4-硝基4-乙基二苯乙炔 | 90% |
由1可见,本发明制备的蒙脱土负载纳米Pd/Cu催化剂用于催化碘代芳烃与端炔的Sonogashira交叉偶联反应,催化剂用量少,目标产物收率高。
以上所述具体实施例仅用于说明本发明而不用于限制本发明的保护范围。应当指出的是,本领域的普通技术人员根据本发明公开的内容直接导出或联想到的所有变形均在本发明的保护范围内。
Claims (2)
1.一种原位一锅法制备蒙脱土负载纳米Pd/Cu催化剂的方法,其特征在于:将蒙脱土、醋酸钯、硝酸铜、无水乙醇加入水热釜中,其中醋酸钯与无水乙醇、蒙脱土的质量比为0.01~0.03:8~15:1,醋酸钯与硝酸铜的摩尔比为1:1,搅拌均匀,超声1~2小时,密封水热釜,150~170℃反应16~24小时,冷却至常温,分离产物,常温真空干燥,得到蒙脱土负载纳米Pd/Cu催化剂。
2.根据权利要求1所述的原位一锅法制备蒙脱土负载纳米Pd/Cu催化剂的方法,其特征在于:所述的蒙脱土为钠基蒙脱土或钙基蒙脱土。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410128789.9A CN103877995B (zh) | 2014-03-31 | 2014-03-31 | 蒙脱土负载纳米Pd/Cu催化剂及其原位一锅法制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410128789.9A CN103877995B (zh) | 2014-03-31 | 2014-03-31 | 蒙脱土负载纳米Pd/Cu催化剂及其原位一锅法制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103877995A CN103877995A (zh) | 2014-06-25 |
CN103877995B true CN103877995B (zh) | 2016-02-17 |
Family
ID=50947315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410128789.9A Expired - Fee Related CN103877995B (zh) | 2014-03-31 | 2014-03-31 | 蒙脱土负载纳米Pd/Cu催化剂及其原位一锅法制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103877995B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104624204B (zh) * | 2015-02-06 | 2017-02-01 | 中国科学院上海高等研究院 | 用于co选择性加氢的催化剂及其制法和应用 |
CN104891514B (zh) * | 2015-05-05 | 2017-03-15 | 陕西科技大学 | 一种采用水热法制备硫化铋/蒙脱土复合材料的方法 |
CN106378192A (zh) * | 2016-08-12 | 2017-02-08 | 绍兴文理学院 | 用于有机偶联反应催化的改性蒙脱土负载钯、铜催化材料 |
CN106492836B (zh) * | 2016-10-24 | 2019-02-12 | 陕西师范大学 | 原位一锅制备活性炭负载纳米Pd/Cu催化剂的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101786012A (zh) * | 2010-03-10 | 2010-07-28 | 河北工业大学 | 一种复合载体多金属催化剂及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1289190C (zh) * | 2000-09-26 | 2006-12-13 | 拜尔公司 | 制备芳基化合物的方法 |
-
2014
- 2014-03-31 CN CN201410128789.9A patent/CN103877995B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101786012A (zh) * | 2010-03-10 | 2010-07-28 | 河北工业大学 | 一种复合载体多金属催化剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
"蒙脱土负载Pd/Cu 双金属纳米微粒催化Sonogashira 偶联反应";徐伟等;《有机化学》;20131231;第33卷;第820-826页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103877995A (zh) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103877995B (zh) | 蒙脱土负载纳米Pd/Cu催化剂及其原位一锅法制备和应用 | |
Liu et al. | Layered double hydroxide-derived Ni-Cu nanoalloy catalysts for semi-hydrogenation of alkynes: Improvement of selectivity and anti-coking ability via alloying of Ni and Cu | |
Li et al. | Ni–In intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation | |
Sun et al. | Highly-dispersed metallic Ru nanoparticles sputtered on H-beta zeolite for directly converting syngas to middle isoparaffins | |
Shen et al. | PdZn intermetallic on a CN@ ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols | |
Song et al. | FeMn@ HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation | |
Chen et al. | Elucidation of the active phase in PtSn/SAPO-11 for hydrodeoxygenation of methyl palmitate | |
Chen et al. | Synthesis and catalytic properties for phenylacetylene hydrogenation of silicide modified nickel catalysts | |
Tamura et al. | Volcano-curves for dehydrogenation of 2-propanol and hydrogenation of nitrobenzene by SiO2-supported metal nanoparticles catalysts as described in terms of a d-band model | |
Göksu et al. | CoPd alloy nanoparticles catalyzed tandem ammonia borane dehydrogenation and reduction of aromatic nitro, nitrile and carbonyl compounds | |
Zhang et al. | Selective tandem hydrogenation and rearrangement of furfural to cyclopentanone over CuNi bimetallic catalyst in water | |
CN104148060B (zh) | 一种负载于双氧化物复合载体的铂催化剂及其制备方法和应用 | |
Du et al. | Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas | |
Cao et al. | Heterogeneous Ni and MoOx co-loaded CeO2 catalyst for the hydrogenation of fatty acids to fatty alcohols under mild reaction conditions | |
Liu et al. | Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization | |
CN105618127B (zh) | 一种钼纳米颗粒高分散于分子筛结晶内部的催化剂及其制备方法与应用 | |
Sun et al. | Ethanol and Higher Alcohols Synthesis from Syngas over CuCoM (M= Fe, Cr, Ga and Al) Nanoplates Derived From Hydrotalcite‐Like Precursors | |
Fan et al. | Mild hydrogenation of quinoline to decahydroquinoline over rhodium nanoparticles entrapped in aluminum oxy-hydroxide | |
CN108339543A (zh) | 一种具有高负载量的单原子催化剂及其制备方法 | |
Liu et al. | Stabilization of copper catalysts for hydrogenation of dimethyl oxalate by deposition of Ag clusters on Cu nanoparticles | |
Kapkowski et al. | Nano silica and molybdenum supported Re, Rh, Ru or Ir nanoparticles for selective solvent-free glycerol conversion to cyclic acetals with propanone and butanone under mild conditions | |
Ashokraju et al. | Formic acid assisted hydrogenation of levulinic acid to\upgamma γ-valerolactone over ordered mesoporous Cu/Fe _ 2 O _ 3 Cu/Fe 2 O 3 catalyst prepared by hard template method | |
CN100434170C (zh) | 废润滑油加氢再生催化剂的制备方法 | |
Wang et al. | One-step encapsulation of bimetallic Pd–Co nanoparticles within UiO-66 for selective conversion of furfural to cyclopentanone | |
Yao et al. | Octadecanol production from methyl stearate by catalytic transfer hydrogenation over synergistic Co/HAP catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160217 Termination date: 20200331 |
|
CF01 | Termination of patent right due to non-payment of annual fee |