CN103874539A - 包含钴、镁和贵金属的费-托催化剂 - Google Patents

包含钴、镁和贵金属的费-托催化剂 Download PDF

Info

Publication number
CN103874539A
CN103874539A CN201280050291.4A CN201280050291A CN103874539A CN 103874539 A CN103874539 A CN 103874539A CN 201280050291 A CN201280050291 A CN 201280050291A CN 103874539 A CN103874539 A CN 103874539A
Authority
CN
China
Prior art keywords
catalyst
method described
cobalt
compound
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280050291.4A
Other languages
English (en)
Inventor
G·B·库姆斯
J·B·克拉里奇
J·R·伽拉赫尔
M·J·罗塞斯基
P·博尔德林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of CN103874539A publication Critical patent/CN103874539A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

描述了一种用于制备适用于烃的费-托合成的催化剂前体的方法,该催化剂前体包含10-40wt%的氧化钴微晶和0.0-0.5wt%的贵金属助催化剂,其分散在多孔过渡型氧化铝的表面上,其中该过渡型氧化铝的表面已经通过纳入0.25-3.5wt%的镁来改性,该方法包括步骤:(a)如下来形成经改性的催化剂载体:用镁化合物浸渍过渡型氧化铝,在第一煅烧中在≤600℃的温度干燥和煅烧经浸渍的氧化铝,以将镁化合物转化成氧化形式,和(b)如下来形成催化剂前体:用钴化合物和贵金属助催化剂化合物浸渍经改性的催化剂载体,在第二煅烧中干燥和煅烧经浸渍的催化剂载体,以将钴化合物转化成氧化钴。

Description

包含钴、镁和贵金属的费-托催化剂
本发明涉及钴催化剂和特别是负载在改性的过渡型氧化铝上的贵金属助催化的钴催化剂,其适用于在高温的烃的费-托合成。
负载在二氧化钛、氧化铝或二氧化硅上的贵金属助催化的钴费-托催化剂是已知的。US4088671公开了一种烃合成方法,其使用在不同载体上的Ru助催化的Co催化剂。US4493905公开了适于费-托反应的流化床催化剂,其如下来制备:将细碎的氧化铝与钴盐的含水浸渍溶液接触,干燥经浸渍的载体,其后将该载体与钌和IIIB族或者IVB族金属的非含水的有机浸渍溶液接触。US4822824公开了在二氧化钛上的Ru助催化的Co催化剂。
US5302622公开了一种合成烃的方法,其使用了包含在二氧化硅或者氧化铝上的钴、铜和钌的催化剂。该催化剂可以作为氧化前体提供并在费-托反应器中原位还原到它们的活性形式,或者可以向反应器提供预还原的催化剂,其具有钝化的或者包封在蜡中的单质钴。
使用这些催化剂经常出现的问题是使用中在高温的快速失活,特别是在≥230℃的温度操作时更是如此。
WO2005/072866描述一种生产氧化铝负载的催化剂的方法,其包括以下步骤:第一浸渍步骤,在其中将初始的氧化铝载体材料用能够与氧化铝形成尖晶石化合物的2价金属的源浸渍;第一煅烧步骤,在其中经浸渍的氧化铝载体材料在至少550℃的温度煅烧以产生改性的氧化铝载体材料;第二浸渍步骤,在其中将经改性的氧化铝载体材料用催化活性金属的源浸渍;和第二煅烧步骤,在其中将经浸渍的改性的载体材料在至少150℃的温度煅烧。该催化活性金属可以是钴;2价金属的源可以包括钴、锌、镁、锰、镍或铁的源,和可以存在包括铂、铱、钌或铼的助催化剂。但是,这个公开文献关注的是改进耐磨耗性,并且所测试的含镁材料包含5或10%的镁,并且在镁反应形成铝酸镁的温度煅烧。全部的含镁催化剂表现出差的相对活性。
类似地,US7071239公开了费-托方法和催化剂,其使用了已经在高温煅烧的基于勃姆石的稳定化的载体。优选的结构稳定剂可以包括元素例如钴、镁、锆、硼、铝、钡、硅、镧、其氧化物或者其组合,或者可以包括沉淀氧化物例如共沉淀的二氧化硅-氧化铝。
我们已经发现使用贵金属助催化剂和镁改性的氧化铝载体的组合(其中镁以低水平存在,并且在较低的温度制备),所形成的钴费-托催化剂在费-托反应中具有提高的活性和稳定性,特别是在高温更是如此。
因此本发明提供一种用于制备适用于烃的费-托合成的催化剂前体的方法,该催化剂前体包含10-40wt%的氧化钴微晶和0.05-0.5wt%的贵金属助催化剂,其分散在多孔过渡型氧化铝的表面上,其中该过渡型氧化铝的表面已经通过纳入0.25-3.5wt%的镁来改性,该方法包括以下步骤:
(a)如下来形成经改性的催化剂载体:用镁化合物浸渍过渡型氧化铝,在第一煅烧中在≤600℃的温度干燥和煅烧经浸渍的氧化铝,以将镁化合物转化成氧化形式,和
(b)如下来形成催化剂前体:用钴化合物和贵金属助催化剂化合物浸渍经改性的催化剂载体,在第二煅烧中干燥和煅烧经浸渍的催化剂载体,以将钴化合物转化成氧化钴。
本发明进一步提供一种制备催化剂的方法,其包括还原催化剂前体的步骤。
因此本发明包括通过这些方法可以获得的催化剂和催化剂前体。
本发明进一步提供一种用于烃的费-托合成的方法,其包括将包含氢和一氧化碳的合成气混合物与该催化剂在费-托反应器中接触的步骤。
催化剂前体的镁含量是0.25-3.5wt%,优选约1.0-3.0wt%,最优选约1.5-2.5wt%。已经发现更高的水平例如约4wt%对于所形成的催化剂的活性具有严重的失活效应。因为所用的煅烧温度相对低,催化剂前体中的至少部分镁作为氧化镁MgO存在。Mg改性的氧化铝的XRD分析显示不存在铝酸镁。由于用于改性氧化铝的镁的量相对低,因此仅氧化铝的表面被改性,这样氧化铝的体相性能很大程度上保持不变。镁可以存在于过渡型氧化铝的孔内和外表面上。
催化剂前体的钴含量可以是10-40wt%,优选15-30wt%,以在制造过程中抑制浸渍的数目。助催化剂金属可以选自Pt、Pd、Re、Ru、Ir或Au中的一种或多种,但是Ru是特别优选的。而助催化剂的存在量可以是0.05-0.5wt%,已经发现助催化剂的最佳量是0.05-0.25wt%,优选0.05-0.20wt%,其明显低于前面测试的许多催化剂中的量。较低的助催化剂水平明显具有有益的处理和成本含义。
钴、贵金属助催化剂和镁在催化剂前体中的量可以使用已知的方法容易地确定,例如ICP-原子发射光谱法(ICP-AES)或者X射线荧光法(XRF)。
过渡型氧化铝可以是γ-氧化铝族,例如η-氧化铝或者χ-氧化铝。这些材料可以通过在400-750℃煅烧铝氢氧化物来形成,并且通常具有120-400m2/g的BET表面积。替代地,过渡型氧化铝可以是δ-氧化铝族,其包括可以通过加热γ族氧化铝到约800℃以上的温度来形成的高温形式例如δ-和θ-氧化铝。δ族氧化铝通常具有50-150m2/g的BET表面积。在本发明中,过渡型氧化铝优选包含BET表面积是120-170m2/g的γ氧化铝和/或δ氧化铝。在催化剂前体使用γ氧化铝制备的情况下,可以通过煅烧和还原程序来将其至少一部分转化成δ氧化铝。因此催化剂前体可以用γ氧化铝制备,而催化剂包含贵金属助催化的钴微晶,其分散在γ氧化铝、δ氧化铝或者包含δ和γ氧化铝的混合相材料上。氧化铝应当处于适于用作催化剂载体的纯度。具体地,氧化铝中碱金属,特别是钠的水平理想地<50ppm,更优选<10ppm。应当理解本发明所用的过渡型氧化铝与水合氧化铝(例如三水合氧化铝)和勃姆石在性能和行为上非常不同。
用于催化剂载体的合适的氧化铝粉末通常具有1-200μm的体积中值直径D[v,0.5]。在某些应用例如用于要用在浆料反应中的催化剂中,有利的是使用非常微细的颗粒,其体积中值直径D[v,0.5]是1-30μm,例如5-25μm。对于其他应用例如作为催化剂用于在流化床中进行的反应,期望的是使用更大的粒度,优选50-150μm。术语体积中值直径D[v,0.5](有时候写作D50或者D0.5)可以由粒度分析来计算,其可以例如使用Malvern Mastersizer便利地通过激光衍射来进行。
氧化铝载体的孔体积优选相对高,目的是进行钴负载。氧化铝的孔体积优选为0.30cm3/g以上,更优选是0.35-0.85cm3/g,并且可以使用已知的技术通过氮物理吸附来测定。优选的是氧化铝载体具有相对大的平均孔径,因为使用这样的载体可以赋予催化剂特别好的选择性。优选的载体的平均孔径(APD)是至少10nm,特别是12-25nm。[用术语平均孔径表示由在0.99相对压力的氮物理吸附等温线的吸附分支所测量的孔体积除以BET表面积,乘以4]。
过渡型氧化铝理想的是粉末形式,但是也可以是成形的粒料或者挤出物。
在粉末形式中例如作为喷雾干燥的粉末,所形成的催化剂前体可以用于浆料相费-托反应器。催化剂前体粉末也可以成形为粒料或挤出物,或者用于制备适于涂覆金属或陶瓷载体结构的活化涂层。在成形的形式例如粒料或挤出物中,催化剂前体可以适用于固定床费-托反应器。在涂覆形式中例如作为金属或陶瓷载体结构上的活化涂层,催化剂可以用于微通道反应器中。
在活化的催化剂中,催化剂前体中至少部分氧化钴(Co3O4)被还原成单质钴。当处于还原态时,催化剂包含钴微晶,其理想的平均尺寸是6-14nm,优选6-10nm。这可以通过XRD分析或由钴表面积测量来测定,其可以适合地通过氢化学吸附来测定。
处于还原态的催化剂会难以处理,因为它们会与空气中的氧气自发反应,这会导致不期望的自动加热和活性损失。因此还原的催化剂优选通过用合适的阻挡涂层包封该还原的催化剂颗粒来进行保护。在费-托催化剂的情况中,这可以适合地是烃蜡。根据已知的方法,催化剂可以以粒料、锭剂或薄片的形式来提供。替代地,催化剂可以作为在熔融蜡中的浆料来提供。
制备催化剂载体的方法包括:(a)如下来形成改性的催化剂载体:用镁化合物浸渍过渡型氧化铝,在第一煅烧中在≤600℃的温度干燥和煅烧经浸渍的氧化铝,以将镁化合物转化成氧化形式,和(b)如下来形成催化剂前体:用钴化合物和贵金属助催化剂化合物浸渍经改性的催化剂载体,在第二煅烧中干燥和煅烧经浸渍的催化剂载体,以将钴化合物转化成氧化钴。
在浸渍方法中,适合的可溶性金属化合物(例如金属硝酸盐或乙酸盐)可以从水溶液或非水溶液(例如乙醇)(其可以包含其他材料)浸渍到载体材料上,然后干燥除去一种或多种溶剂。一种或多种可溶性金属化合物可以存在于该溶液中。可以进行一个或多个浸渍步骤来提高金属负载量。浸渍可以使用催化剂制造领域的技术人员已知的任何方法来进行,但是优选通过所谓的“干法”或“初始润湿”浸渍来进行,因为这使得所使用的和需要在干燥中除去的溶剂的量最小化。初始润湿浸渍包括将载体材料与仅足以填充载体的孔的溶液进行混合。在本发明中,优选至多初始润湿体积的150%的量。
镁化合物可以是任何适合的可溶性镁化合物,但是优选的是通过加热相对容易地转化成氧化镁,并且不会留下可能会导致中毒或者费-托方法中不期望的副反应的残留物的镁化合物。一种特别优选的镁化合物是硝酸镁,其适宜地作为水溶液施用到过渡型氧化铝上。单次浸渍通常足以在经煅烧的催化剂前体中提供所需的镁含量。
如果需要,将经浸渍的氧化铝在空气或惰性气体(例如氮气)下干燥。干燥以除去溶剂可以在约20℃的环境温度进行,但是优选在90-120℃的温度进行1-8小时。也可以使用真空干燥。替代地,干燥步骤可以作为施加到经浸渍的氧化铝上的煅烧方法的初始部分来进行。
第一煅烧应当在≤600℃进行,优选≤550℃或者甚至≤540℃,以使得通过镁化合物分解所形成的氧化镁不转化成铝酸镁尖晶石。虽然煅烧可以在惰性气体(例如氮气)下进行,但是它优选在空气下进行。第一煅烧适宜地在≥250℃的温度进行,优选≥350℃,最优选≥450℃,以使得镁化合物向氧化镁的转化基本完全,并且不是过度冗长的。通常第一煅烧可以通过在1-6小时的时间内,将温度升高到最大温度,并且在此保持至多约6小时的时间来进行。
经镁改性的氧化铝然后可以用钴和贵金属化合物来处理。用于生产钴催化剂的浸渍方法通常包括将催化剂载体与适当浓度的乙酸钴和/或硝酸钴(例如六水合硝酸钴(II))的溶液相组合。而可以使用许多溶剂,例如水、醇、酮或者它们的混合物,优选将经改性的载体使用硝酸钴水溶液进行浸渍。使用六水合硝酸钴,可以通过将材料升温到约60℃(此时硝酸钴溶解在它的结晶水中)来“自溶液化”。优选重复该浸渍和干燥,直到经煅烧的催化剂前体的钴含量是15-30wt%。
贵金属助催化剂也通过浸渍,使用合适的可溶性化合物例如硝酸盐(其包括亚硝酰基硝酸盐)、氯化物、乙酸盐或者它们的混合物而包括在催化剂前体中。优选该贵金属助催化剂化合物是Pt、Pd、Re、Ru、Ir或Au的化合物,并且重复该浸渍,直到干燥的催化剂前体的贵金属含量是0.05-0.5wt%,优选0.05-0.2wt%。在一种优选的实施方案中,该贵金属化合物是Ru化合物。可以使用乙酸钌,优选亚硝酰基硝酸钌。
钴化合物和贵金属化合物可以同时或者相继浸渍。因此,助催化剂可以在钴之前或之后包括在催化剂前体中,或者通过将钴和助催化剂化合物合并在相同的浸渍溶液中而同时包括在催化剂前体中。已经发现钴和贵金属助催化剂的同时共浸渍在本发明中进行得特别好。
如对于经镁改性的载体那样,干燥步骤可以在20-120℃在空气中或在惰性气体(例如氮气)下或者在真空炉中进行。同样,催化剂前体可以在第二煅烧之前干燥以除去溶剂,或者使用第二煅烧来干燥和将钴化合物转化成氧化形式。在第二煅烧之前,催化剂前体可以在低温预煅烧,特别是在第一钴浸渍之后第二或者进一步的钴浸渍之前进行。这样的预煅烧优选通过在干燥步骤之后,升温到200-300℃的温度持续1-6小时的时间来进行。第二煅烧可以在空气或惰性气体中,在250-650℃的温度进行,优选450-650℃,更优选450-550℃。煅烧时间优选≤24小时,更优选≤16小时,最优选≤8小时,特别是≤6小时。通常,第二煅烧可以通过在1-6小时的时间内,升温到最大温度和在此保持至多约6小时的时间来进行。
为了赋予催化剂前体以用于费-托反应的催化活性,至少部分氧化钴可以还原成钴金属。该还原步骤可以用选自以下的还原气体来进行:氢、合成气或者氢和/或一氧化碳与氮或其他惰性气体的混合物。可以使用的优选的还原气体流包括含氢和/或含一氧化碳的气体。还原优选使用含氢气体在升高的温度进行。优选该还原气体流包含>25vol%的氢,更优选>50vol%,最优选>75vol%,特别是>90vol%。在还原阶段中,还原气体流和因此催化剂前体的温度优选是350-500℃。还原时间优选≤24小时,更优选≤16小时,最优选≤8小时,特别是≤6小时,并且最小还原时间是约2小时。
优选至少60%的钴被还原,即还原度(DOR)优选是≥60%,更优选≥75%,特别是≥80%。用于评估DOR的程序升温还原(TPR)方法可以如下来使用:
1.以10℃/分钟将样品温度稳步增加到所需的还原温度,并且在该温度保持7小时(TPR1)。
2.不冷却回室温,将样品温度以10℃/分钟升温到1000℃,并且在1000℃保持10分钟(TPR2)。这使得全部的钴完全还原。
3.整合从TPR1和2所收集的氢。比率TPR1/(TPR1+TPR2)是还原度(表达为%)。
还原可以在环境压力或提高的压力下进行,即还原气体的压力可以适当地是1-50巴绝压,优选1-20巴绝压,更优选1-10巴绝压。
还原气体流的气体时空速率(GHSV)可以是100-25000h-1,优选1000-15000h-1
在还原步骤之前,如果需要,经干燥或者经煅烧的催化剂前体可以使用本领域技术人员已知的方法,形成适于该催化剂要用于其中的方法的成形单元。该成形单元可以是聚集体、粒料或挤出物,其可以是球形、圆柱形、环形或者多孔粒料,其可以是多叶形的或者有凹槽的,例如具有四叶形横截面。
在还原后,由于钴金属与空气中的氧的反应性,用于制备催化剂的方法优选进一步包括将经还原的催化剂包封在烃蜡中的步骤。
该催化剂可以用于烃的费-托合成。使用钴催化剂的烃的费-托合成是公知的。费-托合成将包含一氧化碳和氢的合成气混合物转化成烃。合成气典型的氢:一氧化碳比是1.6-3.0:1,优选1.8-2.2:1。该反应可以在连续或者间歇方法中,使用一个或多个固定床反应器、微通道反应器(即催化剂位于横截面积通常<150mm2的通道中的反应器)、常规的搅拌式浆料相反应器、喷射环管反应器、鼓泡塔反应器或者流化床反应器来进行。该方法可以在10-60巴绝压的压力和150-260℃的温度操作。对于连续操作来说,气体时空速率(GHSV)可以是100-25000h-1。优选的操作范围是1000-20000h-1
本发明的催化剂已经显示出在高运行温度的增加的稳定性,尤其是200-260℃的温度,特别是230-260℃的温度。对于230-250℃的温度,该方法可以以CO转化率40%以上,C5+烃选择性≥80%和甲烷选择性≤15%(优选≤10%)来运行。这种选择性稳定性(即C5+烃选择性稳定性和甲烷选择性稳定性)已经被证实是24小时或更长。不具有氧化镁助催化或者具有更高水平镁的相应的催化剂不显示出相同的选择性稳定性。在相同的流速、温度和压力条件下可以实现0.8以上和甚至0.9以上的转化率稳定性,其定义为初始CO转化率(在≥210℃操作之前)除以最终CO转化率(在≥210℃,特别是230℃-260℃操作之后)。
现在将参考下面的实施例和参考图1、2和3来进一步描述本发明。
实施例1:制备催化剂前体
a)载体。将市售的过渡型氧化铝粉末(Puralox100/150)使用初始润湿方法,用六水合硝酸镁(MgNHH)水溶液进行浸渍。然后将该潮湿的材料铺展到不锈钢托盘上,并且在空气中于550℃煅烧5小时,升温速率是5℃/分钟。制造了三种改性载体,标称使用了0.5wt%的Mg、3wt%的Mg和作为对比的6wt%的Mg。用量是:
实施例1a:0.5%的Mg-39.6g的Puralox100/150,2.7g的MgNHH,42.5mL去离子水。
实施例1b:3%的Mg-38.5g的Puralox100/150,15.9g的MgNHH,32.5mL的去离子水。
对比例A:6%的Mg-36.9g的Puralox100/150,31.6g的MgNHH,20.8mL去离子水。
b)催化剂前体。将全部三种改性载体用六水合硝酸钴(CoNHH)和亚硝酰基硝酸钌(RuNN)的水溶液,通过初始润湿来共浸渍,以产生标称具有20wt%的Co和0.1wt%的Ru的催化剂前体。用量是49.50g的CoNHH,0.16g的RuNN和适量的去离子水(对于0.5wt%的Mg、3wt%的Mg和6wt%的Mg材料分别是14.0mL、6.0mL和2.5mL)。将该潮湿的材料铺展到不锈钢托盘上,并且在250℃煅烧8小时,升温速率是5℃/分钟。另外,通过相同的方法生产了对比材料对比例B,其含有在Puralox100/150上的标称20%的Co和0.1%的Ru。
通过XRF在三种含Mg材料上的元素分析如下:
样品 Co Al Mg Ru
实施例1a 17.18 36.86 0.26 0.06
实施例1b 19.58 33.28 2.06 0.06
对比例A 18.26 31.07 4.13 0.05
钴表面积使用上述氢化学吸附来测定。
Figure BDA0000488928410000101
在催化剂前体上进行的程序升温还原(TPR)在全部图中显示了两个主要峰,其对应于Co3O4到CoO和CoO到Co金属的转变。随着Mg含量的增加,两个峰的最大值向更高的温度迁移,并且在Co3O4-CoO峰上出现了低温肩部。并且随着Mg负载量的增加,特别是直到3%的Mg负载量,所述峰下面的面积也增加,这表明经Mg改性的材料具有更大量的可还原钴,不过对于更高的Mg负载量来说,这种钴仅在500℃以上的温度还原。
Figure BDA0000488928410000102
实施例2:催化剂测试
a)变化的GHSV。通过将约0.134g的每个前体置于微反应器测试单元的腔室内来测试催化剂。将催化剂在425℃在H2和Ar流中还原,然后降温到160℃。此时,引入CO以形成H2:CO比为2:1的合成气混合物,将压力设定为20巴,然后使用0.1℃/分钟的升温速度逐步升温到210℃。使用30mlN/分钟合成气流速穿过每个腔室来开始催化测试。温度从210℃增加到230℃和240℃,并且在230℃和240℃调整合成气流速,以在230℃获得40%以上的转化率。下表给出了所获得的实验结果的汇总。这些表中所给出的转化率、对于CH4的选择性和对于C5+的选择性的值通过以规定间隔取平均实验值来获得。通过在相同的条件下,用最终的转化率除以初始的转化率来计算转化率稳定性。
实施例1a
Figure BDA0000488928410000111
转化率稳定性=0.84
实施例1b
Figure BDA0000488928410000112
转化率稳定性=0.99
对比例A
Figure BDA0000488928410000113
转化率稳定性=0
对比例B
Figure BDA0000488928410000121
转化率稳定性=0.68
这些实验的主要发现汇总如下:
与对比例B相比,将Mg加入到Co-Ru催化剂中降低了催化剂的活性,特别是在210℃更是如此。Mg的加入量越高,催化剂和对比例A的活性越低,并且4.12%的Mg在210℃是无效的。但是,实施例1a和1b中加入Mg使得催化剂稳定性增加。回到初始条件(210℃和30ml/分钟进料)显示了掺有0.5%的Mg的催化剂失去了约3%的初始活性,而掺有3%的Mg的催化剂仅失去了0.2%的初始活性。虽然未改性的催化剂比掺有Mg的催化剂更具活性,但是在经历了在230℃和240℃的测试条件后,它失去了7%的初始活性,并且具有0.68的转化率稳定性,相比之下,实施例1a和1b的值分别是0.84和0.99。
b)固定的GHSV。在微反应器中使用0.1g催化剂,但是在16800l/kg催化剂·h的固定GHSV下来进行另外的测试。测试了实施例1b和另一对比催化剂。如同对比例B那样,对比例C包含了在过渡型氧化铝上的标称20%的Co和0.1%的Ru,并且同样通过浸渍来制备。但是,用于制备该催化剂的钌化合物是乙酸钌,并且所用的市售的过渡型氧化铝是HP14/150。两种催化剂的还原均在380℃使用纯氢进行7h。在H2/CO比为2:1,压力20巴和GHSV为16800l kg催化剂 -1·h-1进行测试。结果在下表中给出,并且显示在图1、2和3中。
图1显示了对比催化剂C相对于时间的性能。该结果表明对比催化剂C仅在250℃提供了40%以上的转化率,此时它快速失活。失活也可以在图1中在240℃和230℃看到。初始CH4水平随着温度增加了10,这表明选择性下降,并且当初始操作条件(210℃)重新建立时保持在约15%。此外,在操作于250℃后,CO转化率从初始的约9%降低到约4%,即在这种情况中转化率稳定性是约0.44。
图2和3显示了实施例1b相对于时间的性能。在图2中,实施例1b证实了在240℃转化率为40%以上,并且在230℃和240℃的CO转化率是稳定的。图2还显示了在整个测试过程中甲烷水平保持在10%以下。该测试在100小时停止。进行重复测试,并且显示在图3中。在这种情况中,在210℃重建操作之前,该方法从210℃直接加热到240℃,然后到250℃。再次观察到在240℃时CO的转化率是约50%,并且在250℃操作产生了65-70%的CO转化率。通过重建初始操作条件,CO转化率保持在约9%,和甲烷选择性不增加到10%以上。因此该测试显示了镁掺杂的催化剂保持了它的初始性能。

Claims (24)

1.一种用于制备适用于烃的费-托合成的催化剂前体的方法,该催化剂前体包含10-40wt%的氧化钴微晶和0.05-0.5wt%的贵金属助催化剂,其分散在多孔过渡型氧化铝的表面上,其中该过渡型氧化铝的表面已经通过纳入0.25-3.5wt%的镁来改性,该方法包括步骤:
(a)如下来形成经改性的催化剂载体:用镁化合物浸渍过渡型氧化铝,在第一煅烧中在≤600℃的温度干燥和煅烧经浸渍的氧化铝,以将镁化合物转化成氧化形式,和
(b)如下来形成催化剂前体:用钴化合物和贵金属助催化剂化合物浸渍经改性的催化剂载体,在第二煅烧中干燥和煅烧经浸渍的催化剂载体,以将钴化合物转化成氧化钴。
2.根据权利要求1所述的方法,其中该过渡型氧化铝包括γ氧化铝和/或δ氧化铝。
3.根据权利要求1或2所述的方法,其中该过渡型氧化铝是粉末或者成形的粒料或者挤出物。
4.根据权利要求1-3任一项所述的方法,其中该镁化合物是硝酸镁。
5.根据权利要求1-4任一项所述的方法,其中该钴化合物是硝酸钴、乙酸钴或者它们的混合物。
6.根据权利要求1-5任一项所述的方法,其中该贵金属助催化剂化合物选自Pt、Pd、Re、Ru、Ir或Au的化合物,优选Ru的化合物。
7.根据权利要求1-6任一项所述的方法,其中该贵金属化合物是贵金属乙酸盐或者硝酸盐,包括亚硝酰基硝酸盐。
8.根据权利要求1-7任一项所述的方法,其中该钴化合物和贵金属化合物是同时浸渍的。
9.根据权利要求1-7任一项所述的方法,其中该钴化合物和贵金属化合物是相继浸渍的。
10.根据权利要求1-9任一项所述的方法,其中第一煅烧在≤550℃的温度进行。
11.根据权利要求1-10任一项所述的方法,其中第一煅烧在≥250℃的温度进行,优选≥350℃,最优选≥450℃。
12.一种催化剂前体,其能够通过根据权利要求1-11任一项所述的方法来获得。
13.一种制备催化剂的方法,其包括还原根据权利要求1-11任一项所制备的催化剂前体的步骤。
14.根据权利要求13所述的方法,其中还原步骤用包含氢、合成气或者氢和/或一氧化碳与氮或其他惰性气体的混合物的还原气体混合物来进行。
15.根据权利要求14所述的方法,其中该还原气体混合物包含>90体积%的氢。
16.根据权利要求14或15所述的方法,其中还原在350-500℃的温度进行。
17.根据权利要求13-16任一项所述的方法,其进一步包括将经还原的催化剂包封在烃蜡中的步骤。
18.一种催化剂,其能够通过根据权利要求13-17任一项所述的方法来获得。
19.一种用于烃的费-托合成的方法,其包括步骤:将包含氢和一氧化碳的合成气混合物与根据权利要求13-17任一项所述的方法所制备的催化剂在费-托反应器中接触。
20.根据权利要求19所述的方法,其中该费-托反应器是固定床反应器、浆料相反应器或者微通道反应器。
21.根据权利要求19或20所述的方法,其中该合成气混合物的氢:一氧化碳之比是1.6:1-3.0:1,优选1.8:1-2.2:1。
22.根据权利要求19-21任一项所述的方法,其中该方法在10-60巴绝压的压力和210-260℃的温度进行。
23.根据权利要求22所述的方法,其中该方法在230-250℃范围的温度进行,其CO转化率为40%以上,并且C5+烃选择性≥80%和甲烷选择性≤15%,优选≤10%。
24.根据权利要求22或23所述的方法,其中该方法的转化率稳定性≥0.8,优选≥0.9。
CN201280050291.4A 2011-10-14 2012-10-03 包含钴、镁和贵金属的费-托催化剂 Pending CN103874539A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1117738.3A GB201117738D0 (en) 2011-10-14 2011-10-14 Cobalt catalyst
GB1117738.3 2011-10-14
PCT/GB2012/052447 WO2013054091A1 (en) 2011-10-14 2012-10-03 Fischer-tropsch catalyst comprising cobalt, magnesium and precious metal

Publications (1)

Publication Number Publication Date
CN103874539A true CN103874539A (zh) 2014-06-18

Family

ID=45092028

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280050291.4A Pending CN103874539A (zh) 2011-10-14 2012-10-03 包含钴、镁和贵金属的费-托催化剂

Country Status (5)

Country Link
US (2) US9346038B2 (zh)
EP (1) EP2766114A1 (zh)
CN (1) CN103874539A (zh)
GB (2) GB201117738D0 (zh)
WO (1) WO2013054091A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999016A (zh) * 2016-10-28 2018-05-08 中国石油化工股份有限公司 一种具有三维通道结构的反应器及其应用
WO2019234554A2 (en) 2018-06-05 2019-12-12 Sabic Global Technologies B.V. Iron-magnesium silica supported catalysts, methods of making and uses thereof
CN112888500A (zh) * 2018-07-30 2021-06-01 沙特阿拉伯石油公司 基于中孔氧化铝的载体上含有铁、钴和铜的催化剂以及其制备方法
CN113301991A (zh) * 2019-03-14 2021-08-24 庄信万丰股份有限公司 钴催化剂及其前体
CN113710361A (zh) * 2019-05-20 2021-11-26 庄信万丰股份有限公司 催化剂制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203877A1 (de) 2014-03-04 2015-09-10 Wacker Chemie Ag Katalysator für die Fischer-Tropsch-Synthese und Verfahren zu seiner Herstellung
EP3393659B1 (en) 2015-12-21 2022-02-09 Shell Internationale Research Maatschappij B.V. Method for preparing a hydrogenation catalyst
CA2974159C (en) * 2016-07-21 2019-08-13 Indian Oil Corporation Limited A catalyst for co hydrogenation to produce synthesis fuel
US11376567B2 (en) * 2019-12-05 2022-07-05 GM Global Technology Operations LLC Methods for preparing catalytic systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050234137A1 (en) * 2002-10-16 2005-10-20 Conocophillips Company Stabilized boehmite-derived catalyst supports, catalysts, methods of making and using
WO2010147513A2 (en) * 2009-06-16 2010-12-23 Limited Liability Company "Infra Technologies" Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088671A (en) 1976-03-19 1978-05-09 Gulf Research & Development Company Conversion of synthesis gas using a cobalt-ruthenium catalyst
US4493905A (en) 1981-10-13 1985-01-15 Gulf Research & Development Company Fluid bed catalyst for synthesis gas conversion and utilization thereof for preparation of diesel fuel
US4822824A (en) 1986-07-02 1989-04-18 Exxon Research And Engineering Company Cobalt-ruthenium catalysts for Fischer-Tropsch synthesis
FR2694013B1 (fr) 1992-07-27 1994-09-30 Inst Francais Du Petrole Catalyseur à base de cobalt et procédé de conversion du gaz de synthèse en hydrocarbures.
US7071239B2 (en) 2002-10-16 2006-07-04 Conocophillips Company Fischer-Tropsch processes and catalysts using stabilized supports
US7163963B2 (en) 2003-09-08 2007-01-16 Conocophillips Company Chemically and thermally stabilized alumina for Fischer-Tropsch catalysts
GB2410449B (en) 2004-01-28 2008-05-21 Statoil Asa Fischer-Tropsch catalysts
GB2473071B (en) 2009-09-01 2013-09-11 Gtl F1 Ag Fischer-tropsch catalysts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050234137A1 (en) * 2002-10-16 2005-10-20 Conocophillips Company Stabilized boehmite-derived catalyst supports, catalysts, methods of making and using
WO2010147513A2 (en) * 2009-06-16 2010-12-23 Limited Liability Company "Infra Technologies" Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999016A (zh) * 2016-10-28 2018-05-08 中国石油化工股份有限公司 一种具有三维通道结构的反应器及其应用
WO2019234554A2 (en) 2018-06-05 2019-12-12 Sabic Global Technologies B.V. Iron-magnesium silica supported catalysts, methods of making and uses thereof
CN112888500A (zh) * 2018-07-30 2021-06-01 沙特阿拉伯石油公司 基于中孔氧化铝的载体上含有铁、钴和铜的催化剂以及其制备方法
CN113301991A (zh) * 2019-03-14 2021-08-24 庄信万丰股份有限公司 钴催化剂及其前体
CN113301991B (zh) * 2019-03-14 2023-10-03 庄信万丰股份有限公司 钴催化剂及其前体
CN113710361A (zh) * 2019-05-20 2021-11-26 庄信万丰股份有限公司 催化剂制备方法
CN113710361B (zh) * 2019-05-20 2023-09-26 庄信万丰股份有限公司 催化剂制备方法

Also Published As

Publication number Publication date
WO2013054091A1 (en) 2013-04-18
GB2509258A (en) 2014-06-25
US9346038B2 (en) 2016-05-24
US20140243436A1 (en) 2014-08-28
US20160222301A1 (en) 2016-08-04
GB201403527D0 (en) 2014-04-16
GB201117738D0 (en) 2011-11-23
EP2766114A1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
CN103874539A (zh) 包含钴、镁和贵金属的费-托催化剂
US8178467B2 (en) Metal nitrate conversion method
Montini et al. Rh (1%)@ CexZr1− xO2–Al2O3 nanocomposites: Active and stable catalysts for ethanol steam reforming
JP5334870B2 (ja) 一酸化炭素のメタン化のための触媒としての金属ドープ酸化ニッケル
RU2517700C2 (ru) Катализаторы
JP5065255B2 (ja) 触媒の製造方法
RU2516467C2 (ru) Способ получения нитрата металла на подложке
WO2010049715A1 (en) Cobalt catalyst precursor
Van Haasterecht et al. Stability and activity of carbon nanofiber-supported catalysts in the aqueous phase reforming of ethylene glycol
US20120190758A1 (en) Supported cobalt catalysts for the fischer tropsch synthesis
US7732370B2 (en) Catalysts
US20120071571A1 (en) Cobalt catalysts
EP2061595A1 (en) Metal nitrate conversion method
CN101346181B (zh) 金属硝酸盐转化方法
TWI261533B (en) Nano-gold catalyst and preparation of nano-gold catalyst
WO2014137293A1 (en) A method for preparing a highly dispersed supported metal catalyst
CN116075363A (zh) 改性催化剂担体和其上负载的催化剂
CN113301991B (zh) 钴催化剂及其前体
Schubert et al. Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20170510

AD01 Patent right deemed abandoned