CN103858242A - 纳米结构的透明导电氧化物电致变色装置 - Google Patents

纳米结构的透明导电氧化物电致变色装置 Download PDF

Info

Publication number
CN103858242A
CN103858242A CN201280041759.3A CN201280041759A CN103858242A CN 103858242 A CN103858242 A CN 103858242A CN 201280041759 A CN201280041759 A CN 201280041759A CN 103858242 A CN103858242 A CN 103858242A
Authority
CN
China
Prior art keywords
devices according
nanostructure
substrate
electrolyte
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280041759.3A
Other languages
English (en)
Other versions
CN103858242B (zh
Inventor
D·迈里罗恩
R·丹吉腊拉
A·略尔德斯
R·布翁桑蒂
G·加西亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California School Affairs Committee, University of
Original Assignee
California School Affairs Committee, University of
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California School Affairs Committee, University of filed Critical California School Affairs Committee, University of
Publication of CN103858242A publication Critical patent/CN103858242A/zh
Application granted granted Critical
Publication of CN103858242B publication Critical patent/CN103858242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2405Areas of differing opacity for light transmission control
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1555Counter electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F2001/164Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect the electrolyte is made of polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/10Function characteristic plasmon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/11Function characteristic involving infrared radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本文所描述的实施方式提供了一种电致变色装置。在示例性实施方式中,所述电致变色装置包括(1)基底和(2)所述基底支撑的膜,其中,所述膜包括透明导电氧化物(TCO)纳米结构。在另一实施方式中,所述电致变色装置进一步包括(a)电解质,所述纳米结构嵌在所述电解质中,使得电解质、纳米结构的混合物位于基底的上方和(b)位于该混合物上方的对电极。在另一实施方式中,电致变色装置进一步包括位于基底上在基底和混合物之间的导电涂层。在另一实施方式中,电致变色装置进一步包括位于混合物上面的第二基底。

Description

纳米结构的透明导电氧化物电致变色装置
相关申请
本申请要求2011年8月26日提交的美国临时专利申请号为No.61/528,124的优先权,并将其作为参考并入本申请中。
政府支持声明
本发明是根据美国能源部授予的合同号DE-AC02-05CH11231由政府支持完成的。政府对本发明有一定的权力。
技术领域
本发明所描述的实施方式涉及电致变色的领域,特别是涉及一种纳米结构的透明导电氧化物电致变色装置。
背景技术
等离子体开关的一个重要的要求是在重复循环中的稳定性,不论是应用于大型的还是微尺寸的装置。事实上,这是限制许多其他潜在的电致变色技术应用到智能窗户涂层的关键因素26
定域表面等离子体的吸收特征在高掺杂级的在半导体纳米晶体中在近红外范围内出现上升。
附图说明
图1表示的是基底和沉积在该基底表面的掺锑氧化锡层的横截面图的例子。
图2A-2D表示的是不同电致变色装置的部分的横截面图的例子。
图3A-3D表示的是不同纳米晶体的显微照片的例子。
图3E表示的是冠有有机配体且分散在疏水性溶剂中的图3A-3D所示的纳米晶体的透射光谱的例子。
图4A表示的是将纳米晶体制成导电膜的过程的例子。
图4B表示的是不同纳米晶体的导电膜的透射光谱图的例子。
图5表示的是从纳米晶体膜解吸甲酸的解吸图的例子。
图6表示的是纳米晶体膜的表面电阻对该膜的退火温度的图的例子。
图7A-7C、8、9A-9C、10、11和12表示的是不同的纳米晶体膜或不同的电致变色装置的不同特性的图的例子。
具体实施方式
使用纳米颗粒的电致变色装置已经被证实,如美国专利号6 712 999中的。这样的纳米结构的电致变色装置使用了如掺锑氧化锡的材料。图1表示的是基底和沉积在该基底表面的掺锑氧化锡层的横截面图的一个例子。许多电致变色膜类似于电池电极。
具有定域表面等离子体共振(LSPR)特征的金属纳米结构已经被用在传感器、表面增强光谱和光伏电池的光捕获中1-5。与金属不同,掺杂半导体的等离子体振子共振频率可以通过改变材料的组成来进行改进,从而为等离子体光处理创造新的机会。事实上,明确定义的LSPR特征已经在高掺杂半导体纳米晶体(NCs)的光(红外)谱中观测到了,尤其是透明导电氧化物如掺锡氧化铟(ITO)6-8
这些光学特性引起了很大的兴趣,因为等离子体峰的位置可以在化学掺杂级的基础上进行调整。但是,等离子体的化学调节由材料的组成确定,该组成通常不能动态地修改。虽然最近显示含有不足的Cu2S和Cu2Se的NCs的铜的LSPR会响应氧化或还原化学处理而有所位移,但是这种组成-驱动的光学响应依赖于Cu+离子异常的高流动性并且可逆氧化掺杂的机制仍不确定9,10
电化学掺杂有CdSe纳米晶体(NC)的膜曾在可见光带隙吸收开始处显示出漂白激发子峰并在远红外区域引入一个新的带内吸收峰11,12
在金属纳米结构中(例如,Au或者Ag),通过高背景电荷密度的快速筛选限制使得LSPR峰的最大位移至10或者20nm。
冠于NCs表面的烃配体在相邻的NCs之间形成高度绝缘障碍。简单的空气退火使LSPR特征消失,与通过填充结构氧空位(structural oxygenvacancies)来进行自由载流子的捕获相一致16
文献中的报道的和目前出现在市场中的电致变色窗户涂层可以大幅地调节可见光,对近红外(NIR)透过率具有较小的动态范围26
在此所描述的实施方式提供了一种电致变色装置。在示例性实施方式中,所述电致变色装置包括(1)基底和(2)由所述基底支撑的膜,其中,所述膜包括透明导电氧化物(TCO)纳米结构。在进一步的实施方式中,所述电致变色装置还包括(a)电解质,其中,所述纳米结构嵌在所述电解质中,使得电解质、纳米结构的混合物位于所述基底的上方以及(b)位于该混合物上方的对电极。在进一步的实施方式中,所述电致变色装置还包括沉积在所述基底上在所述基底和所述混合物之间的导电涂层。在进一步的实施方式中,所述电致变色装置还包括位于所述混合物上方的第二基底。
参考图2A,在一个示例性实施方式中,该实施方式包括基底210和由基底210支撑的膜212,其中,膜212包括透明导电氧化物(TCO)纳米结构214。在进一步的实施方式中,如图2B所示,该实施方式还包括电解质220,其中,纳米结构214嵌在电解质220中,得到电解质,纳米结构混合物222位于基底210的上方以及位于混合物222上方的对电极226。在进一步的实施方式中,如图2C所示,该实施方式还包括沉积在基底210上在基底210和混合物222之间的导电涂层230。在进一步的实施方式中,如图2D所示,该实施方式还包括位于混合物222上方的第二基底240。
基底
在一个示例性实施方式中,基底210包括玻璃。在一个示例性实施方式中,基底210包括透明材料。在一个示例性实施方式中,基底210包括塑料。在一个示例性实施方式中,基底210包括聚乙烯对苯二甲酸酯(PET)。
纳米结构
在一个示例性实施方式中,纳米结构214包括TCO纳米晶体。在一个示例性实施方式中,纳米结构214包括TCO纳米线。在一个示例性实施方式中,纳米结构214包括TCO纳米棒。在一个示例性实施方式中,纳米结构214包括TCO纳米多孔材料。
在一个示例性实施方式中,纳米结构214包括掺锡氧化铟(ITO)。在一个示例性实施方式中,纳米结构214包括掺铝氧化锌(AZO)。在一个示例性实施方式中,纳米结构214包括掺镓氧化锌。在一个示例性实施方式中,纳米结构214包括掺铟、镓氧化锌。在一个示例性实施方式中,纳米结构214包括掺铟氧化锌。
电解质
在一个示例性实施方式中,电解质220包括无机材料。在一个示例性实施方式中,电解质220包括聚合物。在一个示例性实施方式中,电解质220包括凝胶。在一个示例性实施方式中,电解质220包括有机液体。在一个示例性实施方式中,电解质220包括含水液体。
对电极
在一个示例性实施方式中,对电极226包括电致变色膜。在一个示例性实施方式中,对电极226包括过渡金属氧化物。在一个特定的实施方式中,该过渡金属氧化物包括氧化镍。在一个特定的实施方式中,该过渡金属氧化物包括氧化钒。在一个特定的实施方式中,该过渡金属氧化物包括氧化钛。
导电涂层
在一个示例性实施方式中,导电涂层230包括透明材料。在一个示例性实施方式中,导电涂层230包括TCO。在一个示例性实施方式中,导电涂层230包括石墨烯。在一个示例性实施方式中,导电涂层230包括碳纳米棒。在一个示例性实施方式中,导电涂层230包括金属纳米线。
实施例
在此将通过一个具体的实施例来描述本发明的实施方式。下面提供的实施例用于说明的目的,并不意在以任何方式限制和定义本文所描述的实施方式。
材料和方法
在一个示例性实施方式中,该实施方式包括通过平衡前体的反应性和调节原料中的铟和锡的含量来合成不同尺寸和掺杂级的胶状的ITO的NCs,如图3A、图3B、图3C和图3D所示。此处所描述的实施方式包括对文献步骤的改进6,7。在一个示例性实施方式中,所得到的NCs冠有可以促进在疏水性溶剂中进行分散的有机配体。这些分散体的透射光谱显示出了位置与掺杂级相关的明确定义的LSPR峰,如图3E所示。LSPR的频率(ωLSP)正比于体积等离子体频率(ωP),该ωP随着自由载流子浓度(n)的平方根变化(1)。
ω LSP ∝ ω P = ne 2 m * ∈ 0 - - - ( 1 )
在此所描述的实施方式的合成的锡含量的变化控制着n,n反过来又调节ωLSP。LSPR的共振频率随尺寸变化很小(1),因此可作为伪自变量调节我们的活性涂层的性能。
为了使得对所述LSPR动态的调变成为可能,将所述NCs制成约150nm厚的导电膜,如图4A所示。冠于所述NCs表面的烃配体使得便于从己烷和辛烷混合物中旋涂以沉积得到的均匀的非分散的膜。但是,这些配体在相邻的NCs之间形成了高度绝缘障碍,并且这种障碍必须消除。在此所描述的实施方式包括通过将所述NC膜浸在甲酸溶液中来用小分子替换原始的大体积的油酸配体,使得质量-作用驱动了该膜内的配体交换17。甲酸是挥发性的,并且可以在惰性环境中通过低温退火进行解吸,如图5所示。所述膜的表面电阻在退火温度升至500℃降低,但相对于厘米级样品尺寸这已经足够低,接着经过200℃退火即可面内导电,如图6所示。在此所描述的实施方式包括将所述膜在250℃进行退火,其可再现地得到良好导电的膜且具有低热预算。
在膜沉积和处理的每一个阶段,其吸收峰位移至更长波长,如图4B所示,引起了关于在NC膜的自由载流子浓度和结构中可能的变化的问题。首先,已证实了所述晶体尺寸保持固定;退火后X-射线衍射图和峰的宽度保持不变。应用扩展的Drude模型来拟合光学透射光谱。该模型中考虑了NCs的载流子浓度、介电环境、体积分数的可能的变化,以及可能出现在NC表面进行化学改性时的阻尼的变化18,19。实验数据中得到极好的拟合,从中可以推断出所述吸收峰的位移可以主要归因于ITO的体积分数,其从在溶剂分散中的极低,到含有油酸配体的沉积后的膜中的0.35,以及最后到进行了配体交换和退火的膜中的0.47。增大ITO体积分数会增强相邻NCs间的耦合,从而使得其与每个处理步骤更密切接触,以及提高了围绕在NCs周围的平均介电环境20,21。在膜处理过程中,在等离子体频率上观察到很小的变化,并且因此在自由载流子浓度上也变化很小。
为了积极调变它们的表面等离子体共振,将所述NC膜定位为在电化学电池中的工作电极,并在原位透射光谱中记录为施加电位的函数。由于从所述电解质的强吸收带开始,该原位测量被限制在400-2200nm的光谱窗口。在开路电压中的该膜的光谱相比其在空气环境中的光谱表现出极小的变化,与其在介电环境中的变化相一致,表明没有在NC表面发生化学反应。当施加负偏压时,所述SPR峰位移至更高的能量且变得更强,如图7A所示。这些变化都与所述自由载流子浓度n的调变相一致,其将使得所述等离子体共振频率位移,如方程式(1)中,并且按比例地增强对所述LSPR峰的消光1
这一结果与早期的纳米晶体Sb-SnO2的膜的光谱电化学响应的报道形成了鲜明的对比22,23。在该报道中,施加电位引起了微不足道的位移,而仅改变了其等离子体吸收特征的强度。据此,高密度的表面陷阱致使该表面附近的自由载流子较强的损耗,并提出损耗区域的厚度变化是导致ωLSP几乎恒定的原因,即使在注入或提取电子时。本文所描述的实施方式所观察到的LSPR峰的强移表明一些实施方式相对免于这样的表面缺陷位点。
事实上,在此所描述的实施方式中所述表面等离子体共振的调变被认为是更类似于在金属纳米结构中的发现14且与最近在具有介电层的ITO平界面上证实的相关24。在后一种情况中,在薄的(~5nm)的累积区域(accumulationregion)中的所述自由载流子的浓度将通过在ITO膜和在介电层对面的对电极之间施加电压来进行调变。由于观测到等离子体共振位移至比原始状态更短和更长的波长,表明在所述NCs的表面附近分别形成了累积和损耗区域。该假设预测对小NCs有更强的调变,它的整个体积可以位于进行强烈调变的累积/损耗区域中。实际上,对比具有相似化学掺杂级的NCs,在两个施加偏压的极端值间的消光变化的幅度与NC的直径相关,如图7B所示。因此,对于小的高度掺杂的NCs,本文所描述的实施方式可以有力地调变所述等离子体频率,以及相关的自由载流子的浓度,该浓度是贯穿每个NC和整个膜的体积中导致ωLSP几乎恒定的原因,即使在注入或提取电子时。
结果
这些动态变化将通过使用扩展的Drude模型来对电化学调变的NC膜的光谱进行拟合以此进行定量评价。整个电化学电池的绝对透射率将用于建模以便恰当地解释这些界面。对于与ITO纳米晶体膜相关的自由参数,该值的置信度是通过起始于不同的初始条件且保持所有参数在物理上合理的范围之内来进行评估的。结果发现,无论起始条件如何,ωP都可靠地收敛到接近相同的值,以至于ωP和n可以提取为在电化学电池中施加的偏压的函数,如图7C和图8所示。所述自由载流子的浓度通过近3个因子而变化,致使在两个极端值之间的等离子体的频率通过近2个因子而变化。
等离子体共振中如此大的变化可以适用于微米级的等离子的装置,或者甚至可以用于单一纳米晶体级2,14。与平面ITO膜的情况不同,通过所述NC膜的透射率有着显著的变化,由于其具有更大的表面积。需要注意的是,对于1.55μm光的透射率的对比度,与无线电通讯相关,无需任何优化就超过12:1(~11dB)。通过调整化学掺杂级,通过本文中所描述的实施方式可以将在近红外(NIR)的任何特定波长进行最大化的调变。
根据其中所描述的实施方式,基于LSPR调变的动态的、光谱选择性的窗户涂层的电位表现将通过测量NC膜的动态透射率来进行探究,作为膜厚度的函数,如图9A所示。在更厚的膜中所述表面等离子体吸收变得饱和,提供了在高和低的透射之间更清晰的界限,并在负偏压下将NIR透射率减至最小。然而,在正偏压下的最大的NIR透射率和可见光透射率,通常,将受到不利的影响。这些权衡导致一个最佳的厚度,在该厚度下NIR透射率的动态范围最大化,并且对可见光透射率的影响最小化。
这些动态光学特性对智能窗户性能的启示可以通过折合(convoluting)310nm厚的NC膜的透射光谱和太阳光谱来评价,如图9B所示。阴影区域表示的是该太阳光谱投射的部分,当膜在“漂白”状态(正偏压)和“着色”的状态(负偏压)。显而易见的是,NIR光进行着强烈地调变此时可见光在两种状态下进行很大程度的透射。对这些曲线进行积分,发现在两种状态间整体透射率有21%的差值和太阳光谱的NIR部分的透光率有35%的差值。这已经表明对窗户太阳能加热有大幅的调变性,并且通过对纳米晶体尺寸、化学掺杂级、耦合和膜的厚度进行潜在地可用的附加优化获得进一步的增益。同时,对人眼可见的太阳辐射量存在仅6%的调变,如图9C所示;即使在着色状态,仍然超过这些光的92%可用于抵销电力照明的需要。
本文所述的实施方式的初步耐久性测试表明在多个充放电循环中它们的电化学性能几乎没有变化,如图10所示,并且CdSe的NC膜循环至少10,000次其性能也未退化12。本文所描述的实施方式的稳定性与上面提出的机制一致,即累积/损耗层在所述NC表面附近可逆地开关。不同于传统的电致变色涂层26或最近报道的等离子的Cu2S和Cu2Se的NCs9,10,本操作原理中不涉及阳离子迁移穿过活性材料。换句话说,所述开关是电容性的,并且本文所描述的实施方式如一个超级电容器的电极进行操作。
电容性的开关的假定是通过对比NC膜在含有Li+电解质的光谱电化学响应和在四丁基铵(TBA+)电解质中的行为来进行测试的。与Li+不同的是,TBA+体积太大而不能嵌入,只剩下电容性贡献23。通过循环伏安法记录的两种电解质的充电曲线是相似的,并且注入和提取的总电荷几乎相同的,如图11所示。更能说明问题的是,所述NIR的光学响应难以区分,如图12所示。显然,嵌入不是实现已观察到的所述等离子体共振的激烈调变所必须的。电池和电致变色电极材料的惯用退化途径,即从反复的嵌入和脱嵌中产生的应变26,因此被本文所描述的实施方式的电容性操作机制所规避。着色效率也比常规的电致变色膜改善了数倍,如图12所示。
所述电容上补偿注入载流子的功效,无需嵌入,不限定于选择ITO作为电极材料;这相当于在单位纳米尺度上的纳米结构化的直接结果。任何经充电和放电的光学性质变化后的材料,包括其他等离子体NCs,还有传统的电致变色材料如WO3,在原则上可按照这种方式进行操作27。因此,本文所描述的实施方式表明一种设计基于纳米晶体的电致变色电极的新范例,该电极强于循环使用且大大扩展了材料选择的选项以获得用于智能窗户和其他光学调变的应用的目标光学响应特性。
应用
贯穿本文所描述的实施方式所述透射率的电化学调变在动态“智能窗户”应用中令人尤其感兴趣。在这种情况下,本文所描述的实施方式可以有效地作为大型等离子体装置的部分,按照纳米等离子体原理来进行操作。通过本文所描述的实施方式,可以对从太阳红外辐射所产生的热负荷进行动态地调变以响应于室外环境的改变,同时通过本文所描述的实施方式可以保持可见光透射率以作采光使用25
综述
本文所描述的实施方式证实了所述ITO的NC膜的表面等离子体共振能通过完全可逆的电化学掺杂进行动态地调节,从而实现对半导体LSPR特征的电子操控的承诺。但是,本文所描述的实施方式中的所述LSPR调变是自由电子的共同响应,更类似于Au或者Ag的LSPR的电化学响应13,14
本文所描述的实施方式的LSPR可以动态地在覆盖了大部分近红外(NIR)光谱(包括无线电通信波长)的范围内进行位移,打开了潜在应用之门,这些潜在应用包括控制光学耦合从纳米等离子体装置的进或出或调节光谱特征的等离子体放大化15。本文所描述的实施方式可以动态地调变太阳红外辐射的透射率。考虑到其出色的可见光透过性,这种调变为在先进的、节能的“智能窗户”上的动态涂层提供了一个独特的机会。
附加材料
原料
乙酰丙酮铟(In(acac)3,99.99%)、双乙酰丙酮二氯化锡(Sn(acac)2Cl2,98%)、醋酸锡(Sn(Ac)4,99.99%)、肉豆蔻酸(MA,≥98%)、1-十八碳烯(ODE,90%)和油酸(OLAC,90%)是从Aldrich购得并且未经进一步的纯化直接使用。油胺(OLAM,90%)从Acros获得。
方法
ITO纳米晶体的合成
ITO纳米晶体(NCS)的合成稍微改进了文献中的方案(6,7)并且是在惰性气氛下使用标准舒伦克线(Schlenk-line)技术进行的。具体地:
a)直径为4nm的含16.8%的Sn的ITO的NCs:In(acac)3(1mmol)、Sn(acac)4(0.2mmol)和MA(3mmol)与20mL的ODE在三颈烧瓶中混合,并在110℃下真空脱气2h。然后,将温度升高至295℃,迅速注入1mL预先脱气的3M的OLAM在ODE中的溶液。将溶液温度降至280℃并保持1h。注入10分钟内,溶液几乎瞬间变成黄色,之后变成橙色,最后深绿色。然后将温度进一步降低到240℃再反应1h。向最终反应混合物中加入10ml氯仿并用乙醇沉淀来收集NCs。用己烷/乙醇进一步沉淀并洗涤。最后,将该NCs分散到辛烷:己烷为1:1的混合物中。
b)直径为7nm含4.4%的Sn的ITO的NCs:将7g含In(acac)3(0.5mmol)和Sn(acac)2Cl2(0.027mmol)的OLAM溶液在50ml的三颈烧瓶中混合,并在氮气氛围中在250℃下磁力搅拌5h。随着前体盐的溶解该溶液变得澄清,接着变成深黄色,接着到达250℃时变成深蓝绿色。重复用乙醇沉淀和离心的步骤得到最终产物,将最终产物在己烷中重新分散,并加入20μL的OLAM和40μL的OLAC以进一步地稳定NC的分散体。反复三次在己烷中的重新分散和在乙醇中的重新沉淀,将ITO的NCs分散到辛烷:己烷为1:1的混合物中。
c)直径为10nm含4.4%的Sn的ITO的NCs:可以通过与7nm的NCs的制备中所描述的相同的过程,并使用2mmol的In(acac)3和0.11mmol的Sn(acac)2Cl2来获得NCs。
d)直径为12nm含4.4%的Sn的ITO的NCs:可以通过与7nm的NCs的制备中所描述的相同的过程,并使用25mL烧瓶且OLAM的量减少到2.3g来获得NCs。
e)直径为12nm含9.4%的Sn的ITO的NCs:可以通过与7nm的NCs的制备中所描述的相同的过程,并增大Sn(acac)2Cl2的量到0.054mmol来获得NCs。
元素分析
用Varian720/730系列光谱仪通过诱导耦合等离子体原子发射光谱(ICP-AES)进行元素分析。将ITO样品在浓盐酸中消解。在每个测量重复9次的基础上进行评估,所提取的Sn含量的相对误差在所报道的百分比的3%以内。
形态分析
低和高分辨TEM是在200kV加速电压下使用JEOL2100显微镜上进行。用于TEM分析的样品是通过在超薄碳涂覆铜网表面上干燥一滴含有NCs的己烷溶液来制得的。
膜的制备
采用旋转铸造技术来生成ITO纳米晶体的薄膜。通过三步超声处理来清洗玻璃基底:15min含2%的Helmenex溶液的去离子水、15min丙酮、15min异丙醇。各个超声步骤间冲洗三次。使用30μl的ITO纳米晶体(~67mg/ml)的辛烷/己烷为1:1溶液分配到2.5cm×2.5cm的玻璃基底上。旋转方法由初始1000RPM的30秒的旋转紧接4000RPM的20s的旋转组成。原位配体交换是通过将纳米晶体膜浸在1M甲酸/乙腈溶液45min进行的。用乙腈冲洗样品,并在热处理之前用氮气枪干燥。将所有样品在氩气环境250℃下加热1小时。重复全部过程外加层来增加膜厚度。从样品中除去膜边缘,以消除旋涂得到的均匀性较差的区域。金触点,110nm厚含5nm铬粘合层,通过热蒸发至该样品的一个边缘。
膜的表征
使用Vecco Dektak150+轮廓仪在每个后处理步骤之间测量膜厚度并使用Zeiss Gemini Ultra-55分析扫描电子显微镜通过90度的横截面图像进行确认。在后处理步骤之间使用配有GADDS区域检测器的Bruker D8-DiscoverX射线衍射仪在40Kv和20mA采用Cu Kα,1.54波长下来检查膜的形态。
电化学测量
将所制备的膜浸在无水0.1M高氯酸锂/碳酸丙烯酯电解液中进行电化学测量。采用分开的锂箔作为对电极和参比电极。该膜在相对参比电极的1.5V-4V电位范围内被驱动。在不同的电位获取该膜的原位光谱。这些都是在光学响应的稳定后获取的,该稳定需要历时数分钟。然而,这不是开关速度的固有限制,而可能是被低的面内导电性(in-plane conductivity)所限制。由采用(溅射)ITO膜所供给的纳米晶体其开关更迅速,但这种构造避免了简化透射谱的解读。所述电解质在测量过程中的路径长度是~2mm。采用具有10μA源电流的计时电位分析技术(chronopotentiometry technique)在电位限制之间进行电荷测量。每次测量中进行五个循环,并且最终值由每组数据平均得出。采用循环伏安技术进行膜的循环。在电位限制范围之间以1mV/s的扫描速率将膜平均循环10次。所有的电化学测量均在无水的0.1M高氯酸四丁基铵(TBAP)/乙腈电解质中重复。在此设置中,用铂丝作对电极。将由浸在0.01M AgNO3/0.1M TBAP/乙腈溶液中的银丝组成的Ag/Ag+参比电极用作参比电极。该膜在相对于参比电极的-1.55V-4V电位范围内被驱动以匹配由锂基电解质的设置条件。着色效率是通过计算正和负偏压之间的光密度的变化值与单位面积相关电荷量的比率。所有的电化学测量均在带有Bio-logic VSP的恒定电位仪和ASD Quality Spec Pro VIS/NIR光谱仪的氩气手套箱中进行。
Drude建模
所述ITO纳米晶体溶液、薄膜和电化学的半电池装置的镜面透射率(Specular transmittance)是使用Scout软件进行的模拟(www.wtheiss.com)。在每种情况下,对绝对透射率进行建模,因为本实验的几何学必须准确地解释。在拟合ITO纳米晶体的光学常数之前,将所述基底、吸收池、TCE和/或电解质的透射率使用大量的自由参数进行建模。在获得良好拟合的背景透过率之后,在拟合ITO透射光谱之前固定这些自由参数。
对于每一个几何学,采用Maxwell-Garnett(MG)有效中值近似来模拟ITO纳米晶体层。通常情况下,在体积分数高于0.3时采用Bruggeman有效中值近似模拟导电纳米晶体膜(18,19)。然而,我们发现,该模型并不是十分适于本研究中的薄膜,该膜具有0.4和更高的体积分数。令人惊讶的是,因为Bruggeman模型考虑了颗粒间的电子耦合,当用时4点探针测量法进行测试时所述ITO膜都是横向导电的。
对于350-2500nm的光谱范围,四个组分的电极化率被用来描述所测量的数据。恒定介电背景是第一组分。带隙吸收用O’Leary-Johnson-Lim模型(28)来解释,此模型以前已被应用到ITO上(29)。然而,这个模型假设吸收进入了未填充的抛物线能带,这绝非是高掺杂的ITO的情况。因此,这种模型被选来定性地解释带隙并且对提取的带隙参数输入了很少的可信度。第三组分的极化性是一个谐波振荡器,它描述的是从价带到导电带的上半部分的紫外线吸收(29)。
第四个也是最后一个组分是由扩展的Drude理论所描述的自由载流子吸收。电离杂质散射被认为在高掺杂半导体的电子输运中发挥着重要的作用。这种散射是通过考虑阻尼常数的频率依赖性来解释扩展的Drude理论。选用已被证明对ITO是有用的(19,29)的常用的经验模型。它给出了与其他分析模型(18,30)非常相似的结果,这解释了阻尼参数的ω-3/2的依赖性(31)。
通过起始于大量的非常不同的初始猜想,拟合等离子体频率获得了高置信水平,因为它在每种情况下都会收敛到相同的值。这对这里所有的几何学研究都是正确的,如薄膜、溶液和电化学的半电池装置。通常情况下,由该模型所提取的膜的厚度也是可靠的,并与轮廓仪测量良好地吻合。最后,还发现近粒子(near-particle)介电函数随着施加电位系统地变化。这与在响应注入和提取电子电荷时电解质的局部重组(local reorganization)的假设是一致的。关于介电函数模型详细的说明将予以公布。
参考文献
1、Link,S.&El-Sayed,M.A.Spectral properties and relaxation dynamicsof surface plasmon electronic oscillations in gold and silver nanodots andnanorods.J.Phys.Chem.B.1999,103,8410-8426.
2、Liu,N.,Tang,M.L.,Hentschel,M.,Giessen,H.&Alivisatos,A.P.Nanoantenna-enhanced gas sensing in a single tailored nanofocus.Nature Mater.2011,doi:10.1038/nmat3029.
3、Larsson,E.M.,Langhammer,C.,Zoric,I.&Kasemo,B.Nanoplasmonicprobes of catalytic reactions.Science2009,326,1091-1094.
4、Elghanian,R.,Storhoff,J.J.,Mucic,R.C.,Letsinger,R.L.&Mirkin,C.A.Selective colorimetric detection of polynucleotides based on thedistance-dependent optical properties of gold nanoparticles.Science1997,277,1078-1081.
5、Atwater,H.A.&Polman,A.Plasmonics for improved photovoltaicdevices.Nature Mater.2010,9,205-213.
6、Giltsrap,R.A.,Capozzi,C.J.,Carson,C.G.,Gerhardt,R.A.&Summers,C.J.Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion.Adv.Mater.2008,20,4163-4166.
7、Choi,S.,Nam,K.M.,Park,B.K.,Seo,W.S.&Park,J.T.Preparationand optical properties of colloidal monodisperse and highly crystalline ITOnanoparticles.Chem.Mater.2008,20,2609-2611.
8、Kanehara,M.,Koike,H.,Yoshinaga,T.&Teranishi,T.Indium tin oxidenanoparticles with compositionally tunable surface plasmon resonancefrequencies in the near IR region.J.Am.Chem.Soc.2009,131,17736-17737.
9、Luther,M.J.,Jain,P.K.,Ewers,T.&Alivisatos,A.P.Localized surfaceplasmon resonance arising from free carriers in doped quantum dots.NatureMater.2011,10,361-366.
10、Dorfs,D.et al.Reversible Tunability of the Near-Infrared Valence BandPlasmon Resonance in Cu2-xSe Nanocrystals.J.Am.Chem.Soc.2011,doi:10.1021/ja2016284.
11、Wang,C.,Shim,M.&Guyot-Sionnest,P.Electrochromic nanocrystalquantum dots.Science2001,291,2390-2392.
12、Guyot-Sionnest,P.&Wang,C.Fast voltammetric and electrochromicresponse of semiconductor nanocrystal thin films.J.Phys.Chem.B2003,107,7355-7359.
13、Ung,T.,Giersig,M.,Dunstan,D.&Mulvaney,P.Spectroelectrochemistry of Colloidal Silver.Langmuir,1997,13,1773-1782.
14、Novo,C.,Funston,A.M.,Gooding,A.K.&Mulvaney,P.Electrochemical Charging of Single Nanorods.J.Am.Chem.Soc.2009,131,14664-14666.
15、Boltasseva,A.&Atwater,H.A.Low-Loss Plasmonic Metamaterials.Science2011,331,290.
16、Yamada,N.et al.Donor compensation and carrier-transport mechanismin tin doped In2O3films studied by means of conversion electron119Sn Mossbauerspectroscopy and hall effect measurement.Jpn.J.Appl.Phys.2000,39,4158-4163.
17、Zarghami,M.H.et al.P-Type PbSe and PbS quantum dot solidsprepared with short chain acids and diacids.ACS Nano2010,4,2475-2585.
18、Ederth,J.,Heszler,P.,Hultaker,A.,Niklasson,G.A.&Granqvist,C.G.Indium tin oxide films made from nanoparticles:Models for the optical andelectrical properties.Thin Solid Films2003,445,199-206.
19、Solieman,A.&Aegerter,M.A.Modeling of optical and electricalproperties of In2O3:Sn coatings made by various techniques.Thin Solid Films2005,502,205-211.
20、Ghosh,S.K.&Pal,T.Interparticle coupling effect on the surfaceplasmon resonance of gold nanoparticles:From theory to application.Chem.Rev.2007,107,4797-4862.
21、Halas,N.J.,Lal,S.,Chang,W.-S.,Link,S.&Nordlander,P.Plasmon instrongly coupled metallic structures.Chem.Rev.2011,doi:10.1021/cr200061k.
22、Zum Felde,U.,Haase,M.&Weller,H.Electrochromism of highlydoped nanocrystalline SnO:Sb.J.Phys.Chem.B2000,104,9388-9395.
23、Pflughoefft,M.&Weller,H.Spectroelectrochemical analysis of theelectrochromism of antimony-doped nanoparticulate tin-dioxide electrodes.J.Phys.Chem.B2002,106,10530-10534.
24、Feiganbaum,E.,Diest,K.&Atwater,H.A.Unity-order index change intransparent conducting oxides at visible frequencies.Nano Lett.2010,10,21112116.
25、Lee,E.S.et al."Advancement in Electrochromic Windows”(CEC-500-2006-052,California Energy Commission,PIER,Lawrence BerkeleyNational Laboratory,Berkeley,CA,2006).
26、Baetens,R.,Jelle,B.P.&Gustavsen,A.Propeties,requirements andpossibilities of smart windows for dynamic daylight and solar energy control inbuildings:A state-of-the art review.Sol.Energ.Mat.Sol.C.2010,94,87-105.
27、In fact,there is some suggestion in the literature that NiO-basedelectrochromic films,may in some cases operate on pseudocapacitive principles.For example,see:S.E.Lee,C.E.Tracy,Y.Yan,J.R.Pitts,S.K.Deb,Solid statenanocomposite electrochromic pseudocapacitors.Electrochem.Sol.Stat.Lett.2005,8,A188-A190.
28、O′Leary,S.K.,Johnson,S.R.&Lim,P.K.The relationship between thedistribution of electronic states and the optical absorption spectrum of anamorphous semiconductor:An empirical analysis.J.Appl.Phys.1997,82,3334-3340.
29、Mergel,D.&Qiao,Z.Dielectric modelling of optical spectra of thinIn2O3:Sn films.J.Phys.D2002,35,794-801.
30、Hamberg,I.&Granqvist,C.G.Evaporated Sn-doped In2O3films-basicoptical-properties and applications to energy-efficient windows.J.Appl.Phys.1986,60,123-159.
31、Gerlach,E.Carrier scattering and transport in semiconductors treated bythe energy-loss method.J.Phys.C.1986,19,4585-4603.
结论
应当理解的是上面的描述和实施例旨在说明而不是限制。通过阅读上面的描述和实施例,很多实施方式将对本领域技术人员是显而易见的。因此,本发明所描述的实施方式的不应该仅参照上面的描述和实施例来确定,而应该参考所附权利要求书所决定,以及与这样的称为的权利要求同等的全部范围。

Claims (32)

1.一种电致变色装置,该电致变色装置包括:
基底;和
由所述基底支撑的膜,其中,所述膜包括透明导电氧化物(TCO)纳米结构。
2.根据权利要求1所述的装置,其中,所述基底包括玻璃。
3.根据权利要求1所述的装置,其中,所述基底包括透明材料。
4.根据权利要求1所述的装置,其中,所述基底包括塑料。
5.根据权利要求1所述的装置,其中,所述基底包括聚乙烯对苯二甲酸酯(PET)。
6.根据权利要求1所述的装置,其中,所述纳米结构包括TCO纳米晶体。
7.根据权利要求1所述的装置,其中,所述纳米结构包括TCO纳米线。
8.根据权利要求1所述的装置,其中,所述纳米结构包括TCO纳米棒。
9.根据权利要求1所述的装置,其中,所述纳米结构包括TCO纳米多孔材料。
10.根据权利要求1所述的装置,其中,所述纳米结构包括掺锡氧化铟(ITO)。
11.根据权利要求1所述的装置,其中,所述纳米结构包括掺铝氧化锌(AZO)。
12.根据权利要求1所述的装置,其中,所述纳米结构包括掺镓氧化锌。
13.根据权利要求1所述的装置,其中,所述纳米结构包括掺铟、镓氧化锌。
14.根据权利要求1所述的装置,其中,所述纳米结构包括掺铟氧化锌。
15.根据权利要求1所述的装置,其中,所述装置还包括:
电解质,其中,所述纳米结构嵌在所述电解质中,使得电解质、纳米结构的混合物位于所述基底的上方;以及
位于该混合物上方的对电极。
16.根据权利要求15所述的装置,其中,所述电解质包括无机材料。
17.根据权利要求15所述的装置,其中,所述电解质包括聚合物。
18.根据权利要求15所述的装置,其中,所述电解质包括凝胶。
19.根据权利要求15所述的装置,其中,所述电解质包括有机液体。
20.根据权利要求15所述的装置,其中,所述电解质包括含水液体。
21.根据权利要求15所述的装置,其中,所述电解质包括电致变色膜。
22.根据权利要求15所述的装置,其中,所述对电极包括过渡金属氧化物。
23.根据权利要求22所述的装置,其中,所述过渡金属氧化物包括氧化镍。
24.根据权利要求22所述的装置,其中,所述过渡金属氧化物包括氧化钒。
25.根据权利要求22所述的装置,其中,所述过渡金属氧化物包括氧化钛。
26.根据权利要求15所述的装置,其中,所述装置还包括沉积在所述基底上在所述基底和所述混合物之间的导电涂层。
27.根据权利要求26所述的装置,其中,所述涂层包括透明材料。
28.根据权利要求26所述的装置,其中,所述涂层包括TCO。
29.根据权利要求26所述的装置,其中,所述涂层包括石墨烯。
30.根据权利要求26所述的装置,其中,所述涂层包括碳纳米棒。
31.根据权利要求26所述的装置,其中,所述涂层包括金属纳米线。
32.根据权利要求15所述的装置,其中,所述装置还包括位于所述混合物上方的第二基底。
CN201280041759.3A 2011-08-26 2012-08-21 纳米结构的透明导电氧化物电致变色装置 Active CN103858242B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161528124P 2011-08-26 2011-08-26
US61/528,124 2011-08-26
PCT/US2012/051757 WO2013032790A2 (en) 2011-08-26 2012-08-21 Nanostructured transparent conducting oxide electrochromic device

Publications (2)

Publication Number Publication Date
CN103858242A true CN103858242A (zh) 2014-06-11
CN103858242B CN103858242B (zh) 2016-08-17

Family

ID=47757122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280041759.3A Active CN103858242B (zh) 2011-08-26 2012-08-21 纳米结构的透明导电氧化物电致变色装置

Country Status (6)

Country Link
US (1) US9341913B2 (zh)
EP (1) EP2748867B1 (zh)
JP (1) JP2014525607A (zh)
KR (1) KR101953180B1 (zh)
CN (1) CN103858242B (zh)
WO (1) WO2013032790A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119158A (zh) * 2015-09-28 2015-12-02 吴本刚 具有电致变色器件外箱的变电柜及其制作方法
CN106896260A (zh) * 2017-02-09 2017-06-27 广东电网有限责任公司云浮供电局 一种验电涂层及验电方法
CN107450223A (zh) * 2017-08-18 2017-12-08 京东方科技集团股份有限公司 变色单元、显示模组及其制作方法和显示控制方法
CN107796322A (zh) * 2016-09-06 2018-03-13 柯尼卡美能达株式会社 结构色变化型材料和应变检测装置
CN108604034A (zh) * 2016-02-15 2018-09-28 夏普株式会社 电致变色装置、以及具有电致变色装置的智能窗户
CN109207171A (zh) * 2018-08-24 2019-01-15 华南师范大学 一种液晶器件及金属氧化物纳米颗粒在液晶器件中的应用
CN109298481A (zh) * 2018-10-09 2019-02-01 东北大学 自发产生spr效应的金属银填充光子晶体光纤及其制法
CN109822996A (zh) * 2017-11-23 2019-05-31 宸美(厦门)光电有限公司 电控变色车用玻璃
CN109945996A (zh) * 2019-03-21 2019-06-28 苏州大学 一种新型机器人电子皮肤及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595363B2 (en) * 2012-12-06 2017-03-14 The Regents Of The University Of California Surface chemical modification of nanocrystals
CN103144380B (zh) * 2013-03-22 2016-08-03 中国南玻集团股份有限公司 三银调光玻璃
CN104142584B (zh) * 2013-07-16 2017-02-01 中国科学院广州能源研究所 一种氧化物纳米线型电光薄膜的制备方法
KR101544489B1 (ko) 2014-02-06 2015-08-13 인하대학교 산학협력단 겔 전해질에서 구동하는 전기변색 소자 및 이의 제조방법
US10585322B2 (en) 2014-04-15 2020-03-10 The Regents Of The University Of California Methods for producing electrochromic films by low temperature condensation of polyoxometalates
EP3259640A4 (en) * 2015-02-19 2018-11-14 Heliotrope Technologies, Inc. Methods of Charging Solid State Plasmonic Electrochromic Smart Window Devices
WO2017106160A1 (en) * 2015-12-15 2017-06-22 Board Of Regents, The University Of Texas System Nanostructured conducting films with a heterogeneous dopant distribution and methods of making and use thereof
KR101945434B1 (ko) * 2016-04-25 2019-02-08 한국에너지기술연구원 리간드-금속산화물층을 포함하는 자기구동 전기변색소자
KR101862200B1 (ko) * 2016-09-06 2018-07-06 주식회사 석원 전기변색 기판 시스템, 전기변색 기판 시스템이 이용되는 스마트 윈도우 기판 시스템 및 스마트 윈도우 기판 시스템의 제작 방법
US10944398B2 (en) 2016-09-30 2021-03-09 Uchicago Argonne, Llc Systems and methods for ultrafast plasmonic response in doped, colloidal nanostructures
WO2019172133A1 (ja) * 2018-03-05 2019-09-12 シャープ株式会社 エレクトロクロミック素子およびスマートウィンドウ
US11340479B2 (en) 2018-05-17 2022-05-24 Cardinal Cg Company Elastomeric optical device and related operation methods
US10775649B2 (en) 2018-05-17 2020-09-15 Cardinal Cg Company Elastomeric optical device and related methods
KR102052440B1 (ko) * 2018-08-29 2019-12-05 서울시립대학교 산학협력단 전기 변색성 슈퍼 커패시터
WO2020107126A1 (en) 2018-11-30 2020-06-04 Ma Joseph J K Electrochromatic optical devices, systems, and methods
JP2024501599A (ja) * 2020-08-11 2024-01-15 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ 動的光スループット制御を行うエレクトロクロミック二重層装置とその製造工程
CN116964514A (zh) * 2021-03-10 2023-10-27 富士胶片株式会社 光学调制元件、光快门及光调制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573768A (en) * 1983-12-05 1986-03-04 The Signal Companies, Inc. Electrochromic devices
US20090097096A1 (en) * 2007-10-11 2009-04-16 Samsung Electronics Co., Ltd. Electrochromic device using polyphthalate and process for preparing the same
CN101833211A (zh) * 2010-04-01 2010-09-15 中国科学院宁波材料技术与工程研究所 一种智能调光玻璃

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690536B1 (fr) 1992-04-28 1994-06-17 Saint Gobain Vitrage Int Vitrage electrochrome.
DE69830566T2 (de) * 1997-02-06 2006-05-11 University College Dublin Elektrochromes system
US5995273A (en) * 1998-02-25 1999-11-30 Ashwin-Ushas Corporation Electrochromic display device
DE19914093A1 (de) 1999-03-27 2000-10-19 Dornier Gmbh Elektrochromes Element
TWI302568B (en) 2003-12-22 2008-11-01 Lg Chemical Ltd Electrochromic material with improved lifetime
KR20080044233A (ko) * 2005-08-22 2008-05-20 코나르카 테크놀로지, 인코포레이티드 일체형 광전지를 갖는 디스플레이
KR100732849B1 (ko) * 2005-12-21 2007-06-27 삼성에스디아이 주식회사 유기 발광 표시장치
US7403319B2 (en) 2006-01-13 2008-07-22 Ntera Limited Electrochromic device employing gel or solid polymers having specific channel direction for the conduction of ions
DE102006017356B4 (de) * 2006-04-11 2015-12-17 Flabeg Deutschland Gmbh Verfahren zur Herstellung eines Mehrschichtsystems auf einem Träger, insbesondere in einem elektrochromen Element
TW200834610A (en) * 2007-01-10 2008-08-16 Nitto Denko Corp Transparent conductive film and method for producing the same
EP2147466B9 (en) * 2007-04-20 2014-07-16 Cambrios Technologies Corporation Composite transparent conductors
KR100865629B1 (ko) * 2007-06-05 2008-10-27 삼성전자주식회사 표시 특성이 향상된 전기변색 소자 및 그 제조 방법
US8593714B2 (en) * 2008-05-19 2013-11-26 Ajjer, Llc Composite electrode and electrolytes comprising nanoparticles and resulting devices
JP2009175718A (ja) * 2007-12-28 2009-08-06 Fujifilm Corp エレクトロデポジション方式の調光デバイス、及びエレクトロデポジション方式の反射型表示装置
JP5453725B2 (ja) * 2008-03-11 2014-03-26 株式会社リコー エレクトロクロミック化合物およびそれを用いたエレクトロクロミック表示素子
CN102124405B (zh) 2008-05-30 2015-08-26 欧帕鲁克斯有限公司 可调布拉格堆叠
JP5337519B2 (ja) 2009-02-10 2013-11-06 株式会社東芝 表示装置及び表示方法
US8289610B2 (en) 2009-08-27 2012-10-16 Guardian Industries Corp. Electrochromic devices, assemblies incorporating electrochromic devices, and/or methods of making the same
WO2013016318A2 (en) * 2011-07-25 2013-01-31 The Regents Of The University Of California Electrochromic nanocomposite films
WO2013154779A1 (en) * 2012-04-10 2013-10-17 The Regents Of The University Of California Nanocrystal-polymer nanocomposite electrochromic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573768A (en) * 1983-12-05 1986-03-04 The Signal Companies, Inc. Electrochromic devices
US20090097096A1 (en) * 2007-10-11 2009-04-16 Samsung Electronics Co., Ltd. Electrochromic device using polyphthalate and process for preparing the same
CN101833211A (zh) * 2010-04-01 2010-09-15 中国科学院宁波材料技术与工程研究所 一种智能调光玻璃

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MALTE PFLUGHOEFFT AND HORST WELLER: "Spectroelectrochemical Analysis of the Electrochromism of Antimony-Doped Nanoparticulate Tin-Dioxide Electrodes", 《THE JOURNAL OF PHYSICAL CHEMISTRY B》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119158A (zh) * 2015-09-28 2015-12-02 吴本刚 具有电致变色器件外箱的变电柜及其制作方法
CN108604034A (zh) * 2016-02-15 2018-09-28 夏普株式会社 电致变色装置、以及具有电致变色装置的智能窗户
CN107796322A (zh) * 2016-09-06 2018-03-13 柯尼卡美能达株式会社 结构色变化型材料和应变检测装置
CN107796322B (zh) * 2016-09-06 2020-08-18 柯尼卡美能达株式会社 结构色变化型材料和应变检测装置
CN106896260A (zh) * 2017-02-09 2017-06-27 广东电网有限责任公司云浮供电局 一种验电涂层及验电方法
CN107450223A (zh) * 2017-08-18 2017-12-08 京东方科技集团股份有限公司 变色单元、显示模组及其制作方法和显示控制方法
CN107450223B (zh) * 2017-08-18 2020-11-03 京东方科技集团股份有限公司 变色单元、显示模组及其制作方法和显示控制方法
CN109822996A (zh) * 2017-11-23 2019-05-31 宸美(厦门)光电有限公司 电控变色车用玻璃
CN109207171A (zh) * 2018-08-24 2019-01-15 华南师范大学 一种液晶器件及金属氧化物纳米颗粒在液晶器件中的应用
CN109207171B (zh) * 2018-08-24 2022-02-01 华南师范大学 一种液晶器件及金属氧化物纳米颗粒在液晶器件中的应用
CN109298481A (zh) * 2018-10-09 2019-02-01 东北大学 自发产生spr效应的金属银填充光子晶体光纤及其制法
CN109945996A (zh) * 2019-03-21 2019-06-28 苏州大学 一种新型机器人电子皮肤及其制备方法

Also Published As

Publication number Publication date
EP2748867A2 (en) 2014-07-02
WO2013032790A3 (en) 2014-05-08
EP2748867A4 (en) 2015-04-01
JP2014525607A (ja) 2014-09-29
KR20140063741A (ko) 2014-05-27
US20150109652A1 (en) 2015-04-23
WO2013032790A2 (en) 2013-03-07
CN103858242B (zh) 2016-08-17
KR101953180B1 (ko) 2019-02-28
US9341913B2 (en) 2016-05-17
EP2748867B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
CN103858242B (zh) 纳米结构的透明导电氧化物电致变色装置
Zandi et al. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals
Garcia et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals
Barawi et al. Dual band electrochromic devices based on Nb-doped TiO2 nanocrystalline electrodes
Mattox et al. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals
Tandon et al. Competition between depletion effects and coupling in the plasmon modulation of doped metal oxide nanocrystals
Manthiram et al. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals
Runnerstrom et al. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals
Malara et al. Smart windows for building integration: a new architecture for photovoltachromic devices
Llorente et al. Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals
Dasgupta et al. Detrimental effects of oxygen vacancies in electrochromic molybdenum oxide
Liu et al. Broadband tunable mid-infrared plasmon resonances in cadmium oxide nanocrystals induced by size-dependent nonstoichiometry
Giannuzzi et al. Tunable near-infrared localized surface plasmon resonance of F, In-Codoped CdO nanocrystals
Tandon et al. Dual-band electrochromism: Plasmonic and polaronic mechanisms
Gudjonsdottir et al. The role of dopant ions on charge injection and transport in electrochemically doped quantum dot films
Wu et al. Extraordinarily stable aqueous electrochromic battery based on Li4Ti5O12 and hybrid Al3+/Zn2+ electrolyte
Eaves-Rathert et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces
Araci et al. Potential-modulated attenuated total reflectance characterization of charge injection processes in monolayer-tethered CdSe nanocrystals
Kasani et al. Tunable visible-light surface plasmon resonance of molybdenum oxide thin films fabricated by E-beam evaporation
Sun et al. Electrochromic properties of perovskite NdNiO3 thin films for smart windows
Darwish et al. Tailoring the structural and optical features of PtCl4@ PVA polymeric composite films for optical applications
Guo et al. Mechanistic insights into the coloration, evolution, and degradation of NiO x electrochromic anodes
Araujo et al. Tunable band-edge potentials and charge storage in colloidal tin-doped indium oxide (ITO) nanocrystals
Hasani et al. Tungsten trioxide doped with CdSe quantum dots for smart windows
Liu et al. Amorphous Tungsten Oxide Nanodots for Chromatic Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1195166

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1195166

Country of ref document: HK