CN103824880A - 双轴张应变GeSn n沟道隧穿场效应晶体管 - Google Patents

双轴张应变GeSn n沟道隧穿场效应晶体管 Download PDF

Info

Publication number
CN103824880A
CN103824880A CN201410057748.5A CN201410057748A CN103824880A CN 103824880 A CN103824880 A CN 103824880A CN 201410057748 A CN201410057748 A CN 201410057748A CN 103824880 A CN103824880 A CN 103824880A
Authority
CN
China
Prior art keywords
gesn
raceway groove
tensile strain
effect transistor
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410057748.5A
Other languages
English (en)
Other versions
CN103824880B (zh
Inventor
刘艳
韩根全
王洪娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410057748.5A priority Critical patent/CN103824880B/zh
Publication of CN103824880A publication Critical patent/CN103824880A/zh
Application granted granted Critical
Publication of CN103824880B publication Critical patent/CN103824880B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种带有双轴张应变的GeSnn沟道隧穿场效应晶体管(10),其结构包括衬底(101)、源极(102)、漏极(104)、GeSnn沟道(103)、绝缘介电质薄膜(105)以及栅电极(106)。源极、n沟道、漏极形成竖直的器件结构。源极区域材料的晶格常数比GeSnn沟道(103)晶格常数大。GeSnn沟道形成XY面内的双轴张应变,这种应变有利于沟道GeSn从间接带隙转变为直接带隙,从而发生直接量子隧穿,隧穿电流增大,进而提高器件性能。

Description

双轴张应变GeSn n沟道隧穿场效应晶体管
技术领域
  本发明涉及一种双轴张应变GeSn n沟道TFET(TunnelingField-effect Transistor:隧穿场效应晶体管)。
背景技术
随着集成电路的进一步发展,芯片特征尺寸的进一步缩小,单个芯片上集成的器件数目的增多,功耗越来越成为人们所关注的问题。根据ITRS数据显示,当特征尺寸缩小到32nm节点时,功耗会是预计趋势的8倍,即随着特征尺寸的逐步缩小,传统的MOS器件就功耗方面将不能满足需求(Nature,vol479,329-337,2011)。另外,MOSFET尺寸的减小面临着室温下亚阈值斜率最小为60mv/decade的限制。基于量子隧穿效应的隧穿场效应晶体管与MOSFET相比,没有亚阈值斜率最小为60mv/decade的限制,并且可以有效的降低功耗。但如何增大隧穿几率、增大隧穿电流成为TFET研究的重点。理论和实验已经证明直接隧穿比间接隧穿具有更大的隧穿几率(Journal of applied physics 113,194507,2013)。
理论证实,当Sn的组分达到6.5%~11%时,弛豫的GnSn材料会转变为直接带隙(Journal of Applied Physics113,073707,2013)。此时则会在源与沟道之间形成直接隧穿,有效的增大隧穿几率,增大隧穿电流,提高器件的性能。但是,Sn组分的增加会使整个材料的质量以及热稳定性变差,通过增加Sn的组分得到直接带隙的GeSn是困难的。理论计算显示,GeSn中引入双轴张应变有利于材料向直接带隙的转变。(Appl.Phys.Lett.,vol.98,no.1,pp.011111-1-011111-3,2011)。
发明内容
本发明的目的是提出一种双轴张应变的GeSn n沟道的隧穿场效应晶体管(TFET)的结构。其中源极区域材料的晶格常数比沟道材料的晶格常数大,形成沿沟道方向的单轴压应变,沿垂直沟道的平面内的双轴张应变。这种应变有利于沟道GeSn由间接带隙转变为直接带隙,在源与沟道之间形成直接量子隧穿,增大隧穿几率,从而增大隧穿电流,进而提高器件性能。
为实现发明目的,本发明提出以下技术方案:
一种双轴张应变的GeSn n沟道的隧穿场效应晶体管,其具有一GeSn n沟道、一衬底、一源极、一漏极、一绝缘介电质薄膜、一栅极。 
所述源极是通过外延生长或是键合的方式生长在衬底上,其材料为弛豫的单晶半导体材料GeSn,源极、 n沟道、漏极形成竖直的器件结构;
所述绝缘介电质薄膜环绕生长在GeSn n沟道上;
所述栅电极覆盖在绝缘介电质薄膜上;
所述源极材料的晶格常数比 n沟道GeSn晶格常数大;形成沿沟道方向的单轴压应变,沿垂直沟道的平面内的双轴张应变。
 本发明的隧穿场效应晶体管能够在GeSn沟道形成XY面内的双轴张应变,这种应变有利于 n沟道GeSn从间接带隙转变为直接带隙,从而发生直接量子隧穿,隧穿电流增大,进而提高器件性能。
附图说明
图1为GeSn n沟道TFET的XZ面剖面图。
图2为GeSn n沟道TFET制造的第一步。
图3为GeSn n沟道TFET制造的第二步。
图4为GeSn n沟道TFET制造的第三步。
图5为GeSn n沟道TFET制造的第四步。
图6为GeSn n沟道TFET制造的第六步。
具体实施方式
为了更为清晰地了解本发明的技术实质,以下结合附图和实施例详细说明本发明的结构和工艺实现:
参见图1所示的双轴张应变GeSn n沟道隧穿场效应晶体管,其包括:
一衬底101,材料为单晶Ge;
一 n沟道103,材料为单晶GeSn,通式为Ge1-x Sn x (0≤y≤0.25),如采用Ge0.95Sn0.05
一源极102,材料为单晶GeSn,通式为Ge1-y Sn y (0<x≤0.25,x>y)如可采用Ge0.9Sn0.1
 一绝缘介电质薄膜105,生长在沟道上,如采用H-k(高k值)材料二氧化铪HfO2;
一栅电极106,覆盖在所述绝缘介电质薄膜上;
一漏极104,材料为单晶Ge。
参见图2-图6,为双轴张应变GeSn n沟道TFET(10)的制造过程:
第一步,如图2所示,在衬底101上外延生长一层弛豫的单晶材料作源极102;
   第二步,如图3所示,在源极102上生长 n沟道103;
   第三步,如图4所示,在 n沟道103上外延生长Ge漏极104;
   第四步,如图5所示,利用光刻或刻蚀形成竖直器件结构;
   第五步,如图6所示,在 n沟道上环绕生成绝缘介质薄膜105和栅电极106。
虽然本发明已以实例公开如上,然其并非用以限定本分明,如果对发明的各种改动或变形不脱离本发明的精神和范围,这些改动和变形在本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形,本发明的保护范围当视权利要求为准。

Claims (4)

1.一种带有双轴张应变的GeSn n沟道隧穿场效应晶体管,其特征在于,具有一GeSn n沟道、一衬底、一源极、一漏极、一绝缘介质薄膜、一栅电极;
    所述源极是通过外延生长或是键合的方式生长在衬底上,其材料为弛豫的单晶半导体材料GeSn,源极、n沟道、漏极形成竖直的器件结构;
所述绝缘介电质薄膜环绕生长在GeSn n沟道上;
所述栅电极覆盖在绝缘介电质薄膜上;
所述源极材料的晶格常数比 n沟道GeSn晶格常数大;形成沿沟道方向的单轴压应变,沿垂直沟道的平面内的双轴张应变。
2.如权利要求1所述的带有双轴张应变的GeSn n沟道隧穿场效应晶体管,其特征在于,所述 n沟道GeSn材料的通式为Ge1-x Sn x, 其中0≤x≤0.25。
3.如权利要求2所述的带有双轴张应变的GeSn n沟道隧穿场效应晶体管,其特征在于,所述源极GeSn材料的通式为Ge1-y Sn y 其中,0≤y≤0.25,y>x
4.如权利要求3所述的带有双轴张应变的GeSn n沟道隧穿场效应晶体管,其特征在于,所述衬底和漏极采用的是单晶Ge材料。
CN201410057748.5A 2014-02-20 2014-02-20 双轴张应变GeSn n沟道隧穿场效应晶体管 Expired - Fee Related CN103824880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410057748.5A CN103824880B (zh) 2014-02-20 2014-02-20 双轴张应变GeSn n沟道隧穿场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410057748.5A CN103824880B (zh) 2014-02-20 2014-02-20 双轴张应变GeSn n沟道隧穿场效应晶体管

Publications (2)

Publication Number Publication Date
CN103824880A true CN103824880A (zh) 2014-05-28
CN103824880B CN103824880B (zh) 2015-04-22

Family

ID=50759842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410057748.5A Expired - Fee Related CN103824880B (zh) 2014-02-20 2014-02-20 双轴张应变GeSn n沟道隧穿场效应晶体管

Country Status (1)

Country Link
CN (1) CN103824880B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070755A (zh) * 2015-08-11 2015-11-18 西安电子科技大学 基于SiGeSn-GeSn材料的II型异质结隧穿场效应晶体管
CN105140286A (zh) * 2015-08-11 2015-12-09 西安电子科技大学 基于GaAsN-GaAsSb材料的II型异质结隧穿场效应晶体管
CN105161528A (zh) * 2015-08-11 2015-12-16 西安电子科技大学 基于GeSn-SiGeSn材料的II型异质结隧穿场效应晶体管
CN109597221A (zh) * 2018-10-30 2019-04-09 华中科技大学 一种偏振无关的多量子阱电吸收红外光通信光调制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311306A (zh) * 2013-06-26 2013-09-18 重庆大学 带有InAlP盖层的GeSn沟道金属氧化物半导体场效应晶体管
US20130295739A1 (en) * 2012-05-01 2013-11-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device
CN103594496A (zh) * 2012-08-16 2014-02-19 中国科学院微电子研究所 半导体器件及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130295739A1 (en) * 2012-05-01 2013-11-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device
CN103594496A (zh) * 2012-08-16 2014-02-19 中国科学院微电子研究所 半导体器件及其制造方法
CN103311306A (zh) * 2013-06-26 2013-09-18 重庆大学 带有InAlP盖层的GeSn沟道金属氧化物半导体场效应晶体管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070755A (zh) * 2015-08-11 2015-11-18 西安电子科技大学 基于SiGeSn-GeSn材料的II型异质结隧穿场效应晶体管
CN105140286A (zh) * 2015-08-11 2015-12-09 西安电子科技大学 基于GaAsN-GaAsSb材料的II型异质结隧穿场效应晶体管
CN105161528A (zh) * 2015-08-11 2015-12-16 西安电子科技大学 基于GeSn-SiGeSn材料的II型异质结隧穿场效应晶体管
CN105140286B (zh) * 2015-08-11 2018-04-17 西安电子科技大学 基于GaAsN‑GaAsSb 材料的II型异质结隧穿场效应晶体管
CN109597221A (zh) * 2018-10-30 2019-04-09 华中科技大学 一种偏振无关的多量子阱电吸收红外光通信光调制器

Also Published As

Publication number Publication date
CN103824880B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
Zhou et al. A review of the most recent progresses of state-of-art gallium oxide power devices
Amano et al. The 2018 GaN power electronics roadmap
US8455858B2 (en) Semiconductor structure for reducing band-to-band tunneling (BTBT) leakage
Lind et al. III-V heterostructure nanowire tunnel FETs
CN103311306A (zh) 带有InAlP盖层的GeSn沟道金属氧化物半导体场效应晶体管
CN103824885B (zh) 带有源应变源的GeSn n沟道隧穿场效应晶体管
KR20160061969A (ko) 인핸스먼트 모드 GaN 반도체 디바이스들을 위한 복합 하이-K 금속 게이트 스택
CN103824880B (zh) 双轴张应变GeSn n沟道隧穿场效应晶体管
CN106098757B (zh) 场效应晶体管
US20150001623A1 (en) Field effect transistor and method for forming the same
US8853824B1 (en) Enhanced tunnel field effect transistor
Ge et al. An improved design for e-mode AlGaN/GaN HEMT with gate stack β-Ga2O3/p-GaN structure
CN102244094A (zh) 一种iii-v族半导体mos界面结构
CN103730507B (zh) 双轴张应变GeSn n沟道金属氧化物半导体场效应晶体管
WO2018192214A1 (zh) 纳米线GaN高电子迁移率晶体管
JP2012169470A (ja) 半導体装置およびその製造方法
CN105047719B (zh) 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管
CN103681868B (zh) 带有源漏应变源的GeSn n沟道金属氧化物半导体场效应晶体管
CN103762242B (zh) 压应变GeSn p沟道金属氧化物半导体场效应晶体管
US10644100B2 (en) Dual-gate PMOS field effect transistor with InGaAs channel
JPWO2017199792A1 (ja) 炭化珪素エピタキシャル基板および炭化珪素半導体装置
Revathy et al. Design and analysis of normally-off GaN-HEMT using β-Ga2O3 buffer for low-loss power converter applications
Wang et al. High-uniformity and high drain current density enhancement-mode AlGaN/GaN gates-seperating groove HFET
CN109888009B (zh) 具有AlGaN/GaN异质结的横向晶体管及其制作方法
CN105070755A (zh) 基于SiGeSn-GeSn材料的II型异质结隧穿场效应晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20180220

CF01 Termination of patent right due to non-payment of annual fee