CN103814599B - 实时位置感知推荐 - Google Patents
实时位置感知推荐 Download PDFInfo
- Publication number
- CN103814599B CN103814599B CN201280045362.1A CN201280045362A CN103814599B CN 103814599 B CN103814599 B CN 103814599B CN 201280045362 A CN201280045362 A CN 201280045362A CN 103814599 B CN103814599 B CN 103814599B
- Authority
- CN
- China
- Prior art keywords
- user
- place
- places
- feature
- recommended
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/021—Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9537—Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0261—Targeted advertisements based on user location
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0267—Wireless devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0269—Targeted advertisements based on user profile or attribute
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Finance (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Information Transfer Between Computers (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephonic Communication Services (AREA)
Abstract
本文中论述用于实时位置感知推荐的系统及方法。在一实例中,一种用于产生位置感知推荐的方法可包含:接收用户的当前位置;计算用于所述用户的地点图;遍历所述地点图;选择推荐;及传递所述推荐。在此实例中,基于所述当前位置计算所述地点图。遍历所述地点图可识别在所述当前位置的预界定距离内的一个或一个以上潜在推荐。
Description
优先权主张
本申请案主张于2011年7月20日提出申请的标题为“用于实时位置感知推荐的系统及方法(SYSTEMS AND METHODS FOR REAL-TIME LOCATION-AWARE RECOMMENDATIONS)”的序列号为61/509,987的美国临时专利申请案的优先权权益,所述专利申请案以全文引用的方式并入本文中。
背景技术
可经由基于网络的系统(例如因特网)获得的信息爆炸可使尝试定位所要信息片段或产品的人不知所措。举例来说,寻找吃东西的地点或本地娱乐活动的人可搜索因特网,但可能被数据量弄得不知所措或不能定位任何相关信息。可经由因特网获得的信息量的急剧增长已给用户留下分类及浏览大量数据以找到与其需要相关的信息的问题。有目标的搜索服务及推荐引擎已经实施以尝试帮助用户定位相关信息或产品。成功的推荐系统不仅节省用户定位相关信息(例如,吃东西的地点或待购买的产品)的时间,而且还可通过广告驱动额外收益或操作搜索服务或推荐引擎的服务提供者的额外销售收入。
因特网连接的智能电话(例如iPhoneTM(来自加利福尼亚州库比蒂诺苹果公司))的出现已因使可经由因特网获得的大量信息在任何地点可用而加剧了所述问题。智能电话还通常具有位置确定能力,从而添加可用数据以供由搜索或推荐引擎使用。然而,提供实时位置感知推荐呈现重大挑战。
传统推荐系统使用某种形式的协作过滤来减少通过简单关键词或自然语言搜索找到的信息量。推荐系统通常采用两种不同基本类型的协作过滤,基于用户或基于物项(或基于目标)。基于用户的协作过滤集中于将相似用户行为分组。基于物项的推荐系统集中于将类似物项分组。使用协作过滤的基于物项的推荐可由商务网站用来基于买过类似产品的用户的购买历史提供推荐(例如,买过X的用户还买过Y及Z)。基于物项的推荐还可应用于如餐厅或娱乐场所的事物。然而,尤其在位置被添加到推荐矩阵时,协作过滤为有限的。
附图说明
在所附图式的图中通过举例而非限制的方式图解说明一些实施例,其中:
图1是图解说明根据实例性实施例的简单地点图的关系图。
图2是图解说明根据实例性实施例的更详细地点图的关系图。
图3是图解说明根据实例性实施例的用于操作移动装置的环境的框图。
图4是图解说明根据实例性实施例的移动装置的框图。
图5是图解说明根据实例性实施例的用于递送实时位置感知推荐及广告的基于网络的系统的框图。
图6是图解说明根据实例性实施例的能够产生实时位置感知推荐的实例性推荐子系统的框图。
图7是图解说明用于产生实时位置感知推荐的实例性方法的流程图。
图8是图解说明根据实例性实施例的用于产生第二地理位置的地点图的方法的流程图。
图9是图解说明根据实例性实施例的地理位置内的场所的一组特征的表。
图10是呈计算机系统的实例性形式的机器的图解性表示,在所述计算机系统内可执行用于致使所述机器执行本文中所论述的方法中的任一者或一者以上的一组指令。
概述
本发明的发明人已认识到,除其它事物之外,产生实时位置感知推荐呈现速度及相关性等等方面的挑战。关于推荐的相关性的问题可包含位置相关性以及与个别用户的相关性。几乎实时形成与个别用户相关的位置感知推荐为重大计算挑战。本发明系统及方法可通过用以处理过去用户行为并将过去用户行为应用于当前位置的新颖方法而解决这些挑战。
实例1可包含一种用于产生位置感知推荐的方法。所述方法可包含:接收信息;计算地点图;遍历所述地点图;选择本地地点推荐;及传递所述本地地点推荐。接收信息包含规定用户的当前位置的信息。计算所述地点图即时发生且基于所述当前位置。遍历所述地点图可包含识别在所述当前位置的预界定距离内的一个或一个以上潜在地点推荐。可从所述一个或一个以上潜在地点推荐选择所述本地地点推荐。
在实例2中,实例1的方法可任选地包含计算所述地点图中所涉及的额外操作。计算所述地点图可包含存取用户简档数据,提取特征矩阵,存取地点数据及投射所述特征矩阵。存取用户简档数据可包含第一多个地点,其中所述第一多个地点中的每一地点包含记录于所述用户简档数据内的交互历史。可从所述第一多个地点提取所述特征矩阵。所述存取地点数据可包含所述当前位置内的第二多个地点。可将所述特征矩阵从所述第一多个地点投射到所述当前位置内的所述第二多个地点上。
在实例3中,实例2的方法可任选地包含从所述第一多个地点提取所述特征矩阵,其包含基于与所述第一多个地点相关联的所述用户简档数据对所述特征矩阵内的特征进行评分。
在实例4中,实例3的方法可任选地包含通过以下方式对所述特征进行评分:基于关于所述第一多个地点中的一者或一者以上的显式用户输入对所述特征进行评分。
在实例5中,实例4的方法可任选地包含基于包含以下各项的显式用户输入对所述特征进行评分:用户供应的等级评定;评论;相关登记;及用户将一地点保存到地址簿中。
在实例6中,实例3到5中的任一者的方法可任选地包含基于关于所述第一多个地点中的所述一者或一者以上的隐式用户输入对所述特征进行评分。
在实例7中,实例6的方法可任选地包含通过以下方式对所述特征进行评分:将第一加权因数应用于关于所述第一多个地点中的所述一者或一者以上的所述显式用户输入及将第二加权因数应用于关于所述第一多个地点中的所述一者或一者以上的所述隐式用户输入。
在实例8中,实例2到7中的任一者的方法可任选地包含通过分析所述第二多个地点以识别所述一个或一个以上潜在地点推荐而遍历所述地点图。
在实例9中,实例1到8中的任一者的方法可任选地包含通过基于一天中的时间过滤所述一个或一个以上潜在地点推荐而选择所述本地地点推荐。
实例10可包含一种用于产生位置感知实时推荐的系统。本文中所描述的所述系统可执行上文所描述的实例性方法中的任一者。所述系统可包含伺服器,其耦合到包含位置模块、地点图模块、推荐引擎及处理器执行的发布应用程序的网络。所述位置模块可经配置以确定与经由所述网络接入所述服务器的用户相关联的当前位置。所述地点图模块可经配置以基于所述当前位置即时计算用于所述用户的地点图。所述推荐引擎可经配置以遍历所述地点图以识别在所述当前位置的预界定距离内的一个或一个以上潜在地点推荐,且从所述一个或一个以上潜在地点推荐选择用于所述用户的本地地点推荐。所述处理器执行的发布应用程序可经配置以经由所述网络将所述本地地点推荐传递到所述用户。
在实例11中,实例10的系统可包含所述地点图模块任选地经配置以存取用于用户的用户简档数据,所述用户简档数据包含第一多个地点,其中所述第一多个地点中的每一地点包含记录于所述用户简档数据内的交互历史;从所述第一多个地点提取特征矩阵;存取所述当前位置内的第二多个地点的地点数据;及将所述特征矩阵从所述第一多个地点投射到所述当前位置内的所述第二多个地点上。
在实例12中,实例11的系统可包含所述地点图模块任选地进一步经配置以基于与所述第一多个地点相关联的所述用户简档数据对所述特征矩阵内的特征进行评分。
在实例13中,实例12的系统可包含所述地点图模块任选地进一步经配置以基于关于所述第一多个地点中的一者或一者以上的显式用户输入对所述特征进行评分。
在实例14中,实例13的系统可包含所述地点图模块任选地进一步经配置以基于关于所述第一多个地点中的所述一者或一者以上的隐式用户输入对所述特征进行评分。
在实例15中,实例13到14中的任一者的系统可包含所述地点图模块任选地进一步经配置以将第一加权因数应用于关于所述第一多个地点中的所述一者或一者以上的所述显式用户输入且将第二加权因数应用于关于所述第一多个地点中的所述一者或一者以上的所述隐式用户输入。
在实例16中,实例11到15中的任一者的系统可包含所述推荐引擎任选地进一步经配置以分析所述第二多个地点以识别所述一个或一个以上潜在地点推荐。
实例17包含一种含有指令的机器可读存储媒体,所述指令在由联网系统执行时致使所述联网系统执行上文所论述的实例1到10中的任一者。
定义
地点或场所-出于本说明书及相关联权利要求书的目的,互换地使用术语“地点”与“场所”来指物理位置,例如餐厅、剧院、体育馆或商业地点等等。地点或场所将具有各种属性或特征,例如物理位置、种类及营业时间等等。地点或场所还可归类成多个不同种类,例如餐厅或意大利餐厅。
位置-出于本说明书及相关联权利要求书的目的,使用术语“位置”来指地理位置,例如经度/纬度组合或街道地址。
实时-出于本说明书及相关联权利要求书的目的,使用术语“实时”来指在事件发生或可操作系统接收到输入时即时执行计算或操作。然而,术语“实时”的使用不打算排除致使输入与响应之间的某一延时的操作,只要所述延时为由机器的性能特性诱发的无意结果即可。
具体实施方式
描述用于提供实时位置感知推荐的实例性系统及方法。在一些实例性实施例中,用于提供实时位置感知推荐的系统及方法可基于与基于网络的系统(例如基于网络的位置感知推荐系统)交互的用户的过去行为提供推荐。在以下说明中,出于解释的目的,陈述众多特定细节以便提供对实例性实施例的透彻理解。然而,所属领域的技术人员将显而易见,可在没有这些特定细节的情况下实践本发明。还将显而易见,实时位置感知推荐不限于所提供的实例且可包含未具体论述的其它情境。
根据实例性实施例,基于网络的系统可提供利用用户与基于网络的系统的过去交互的基于用户的当前位置的推荐。在一些实例中,用户经由移动装置(例如智能电话、平板计算装置或因特网启用的个人数字助理(PDA)等等)与基于网络的系统交互。在一实例中,基于网络的系统可包含能够导出位置感知推荐且将推荐几乎实时传递到用户的移动装置的推荐子系统。产生实时位置感知推荐需要即时计算,这是因为预编程(预编译)推荐在使用用户简档数据(例如,偏好以及显式及隐式行为)及位置数据两者来产生推荐时并非为有效的。
在(例如)可能用以推荐影片(例如,来自加利福尼亚州洛斯盖多斯奈飞公司的NETFLIX.COM上的影片推荐)的传统协作过滤推荐系统中,推荐系统可使用来自跨越多个地理位置的多个人的观看历史来开发预编译推荐。观看者的位置与推荐无关或最好仅可非常广泛地应用于推荐。另外,如下文将更详细地论述,推荐引擎可具有更多的可用输入,这是因为人们通常比他们访问本地关注点(例如,餐厅或娱乐场所)更经常地观看影片。
相比来说,位置感知推荐引擎经常可能具有少得多的输入来一起工作产生推荐。用户通常仅一周几次访问本地设施且还往往更频繁地访问相同位置。因此,位置感知推荐引擎可受益于使用胜过简单协作过滤的算法。在实例性实施例中,位置感知推荐系统可产生地点的图表(在本文中称为地点图)来达成个性化推荐及新发现。地点图含有物理位置作为由固有或用户特定关系(还称为特征)互连的节点。图1是图解说明用于特定地理位置处的特定用户的简单地点图的关系图或图表。
根据一实例,可依据包含关于物理位置的一般信息及用户输入的多个输入产生地点图。关于物理位置的一般信息可包含位置(例如,经度/纬度、街道地址等)、种类(例如,餐厅、酒吧等)及评论等等。用户输入可包含与物理位置的隐式及显式交互两者。推荐系统可接着使用学习类似性度量及预测性分析的机器来产生用于特定位置中的特定用户的地点图。推荐系统所使用的算法允许用户在一个位置中的隐式及显式交互投射到新位置上的实时投射以产生与所述新位置中可用的用户的经阐明关注及场所(例如,餐厅、娱乐活动等)两者相关的推荐。在一实例中,用户在一个位置中的隐式及显式交互到新位置的投射包含通过空间过滤机制(例如,中心点及半径)对所述新位置中的地点进行过滤。
特定实例性实施例中所使用的输入可包含三个一般存储桶:显式交互、隐式交互及地点(位置)信息。显式交互可包含等级评定、评论、登记、将地点保存到地址簿中或用户采取的可积极地解释为指示关于场所的偏好的另一显式行动。显式交互为来自用户的直接揭露用户偏好及选择的输入。隐式交互按搜索、浏览或与移动应用程序交互的结果为消极的。举例来说,隐式交互可在用户点击本地场所的在线细节页面时记录。仅点击场所的细节页面不会积极地识别用户关于所述场所的意图。在一些情形中,用户可读取所述细节页面且决定其不喜欢所述场所(或不太可能喜欢所述场所)。推荐系统可基于用户的隐式交互推断对场所的某一关注,但这些隐式交互可由推荐系统以不同于显式交互的方式处置。最后,推荐系统使用地点或场所信息作为输入以计算地点图。
在一实例中,推荐系统使用利用数学技术及机器学习来基于上文所描述的输入识别场所的图案及关系的专门索引及检索算法。在给出上文所论述的输入的情况下,动态地产生的输出由针对特定用户的地点的多个级的关系组成。图2是图解说明根据实例性实施例的更详细地点图的关系图。
如图1及图2中所图解说明的地点图实例所说明,具有类似特征的本地地点经常在地点图中最终相关(例如,在图表中某一寿司地点将可能具有其它寿司地点)。在一实例中,推荐系统使用算法(例如主分量分析(PCA)及/或奇异值分解(SVD))来提取跨越地理区域内的一组位置的特征。此基于机器的特征提取可识别位置之间的用户不容易显而易见的类似性。举例来说,经提取类似性特征可能为如“在市中心提供昂贵的食物且具有获奖甜点的餐厅”的事物。所述特征经常如此晦涩使得其需要仔细重新建构分析两个机器相关位置来确定如何开发共享特征。因此,在这些实例中,推断出而非暗示此关系(由共享特征表示)-意指这些为已计算/推断而非直接或启发式地暗示的数学算法的结果。在此实例中,维度减少可应用于增进推断地点(例如,场所)之间的关系的概念。这些技术使得实例性推荐引擎能够开发地点当中的先前未知的连接,从而允许向用户呈现新的个性化发现作为推荐。
如上文所提及,在开发地点图时,可由推荐引擎以不同方式处理显式及隐式用户交互。虽然有时在隐式与显式动作之间(已由用户浏览并评定等级的地点之间)似乎存在高度相关,但用以从隐式交互模型化显式交互的尝试通常产生较低质量推荐。在一实例中,推荐的质量可通过用户是否按照推荐行事(显式地或隐式地)来量度。举例来说,历史用户交互数据表明,试图基于用户观看特定地点的详细页面的次数来预测用户对所述地点的等级评定尚未被证明为可靠的。尽管可应用混合模型,但多数实例性实施例使用概率性类似性度量来计算特定地理区域(例如,邻居、城市或都会区域)中的地点当中的关系。
产生个性化地点图可为困难任务。如上文所提及,用户-地点交互通常为稀少的且在新地理位置中极其稀少(或不存在)。为解决稀少数据问题,推荐系统可使用维度减少及矩阵因数分解。在实例性系统中,使用上文所提及的PCA及SVD算法执行维度减少及矩阵因数分解。通过将原始用户-地点交互矩阵因数分解,系统可基于用户简档数据揭露不同地理位置中的地点当中的隐藏连接并成功建立新地理位置(例如,其中用户与本地地点具有有限或不具有显式或隐式交互的地理位置)的地点图。在特定实例中,特别是在用户最初开始使用推荐系统(例如,冷启动)时,推荐系统还可利用更多传统协作过滤技术。
在一实例中,推荐系统可形成新地理位置的位置感知推荐。不同于推荐影片(其中系统可离线预先计算推荐“查找表”),位置感知推荐系统必须处置本地上下文并实时响应由现代移动装置提出的要求。当用户在整天内四处移动(其中其移动装置去往不同地点)时,用户要求根据其周围的地点不断地且动态地重新计算推荐(例如,当前地理位置)以及其它因数(例如一天中的时间)。周期性地离线计算推荐将不会产生移动装置用户期望的结果。需要实时且与上下文中的用户的当前位置一起执行推荐计算。
在一实例中,推荐系统可采用迅速地点图节点遍历来解决上文所论述的实时位置感知推荐问题。本文中所论述的推荐系统能够基于用户的先前地点(例如,用户简档数据)及与用户的当前位置的相关不断地重新计算用户推荐且更新经推荐地点列表。因此,所论述推荐系统为考虑到移动器件可用性的本地发现的最优解决方案。
在一实例中,当用户与地点(地点图内的节点)交互时,将显式及隐式交互映射于地点图上(例如,更新节点及边缘)。接着可在地点图内计算反映用户的本地品味(例如,喜欢及不喜欢)的路径,可将所述路径称为品味路径。基于这些品味路径,系统可预测用户可能在当前位置中喜欢的地点。
如上文所述,推荐系统可使用考虑到地点图以外的信息(例如用户简档信息及社交图(例如,社交网络连接))的混合模型。在冷启动情境(其中用户尚未记录许多(或任何)显式或隐式交互)中,此额外信息可为尤其有用的。
实例性操作环境
图3是图解说明根据实例性实施例的用于操作移动装置400的环境300的框图。移动电子装置400可为各种类型的装置中的任一者,举例来说,蜂窝式电话、个人数字助理(PDA)、个人导航装置(PND)、手持式计算机、平板计算机、笔记本计算机或其它类型的可移动装置。装置400可经由连接310与通信网络320介接。取决于移动电子装置400的形式,可使用各种类型的连接310及通信网络320中的任一者。
举例来说,连接310可为码分多址(CDMA)连接、全球移动通信系统(GSM)连接或其它类型的蜂窝式连接。此连接310可实施各种类型的数据传送技术(例如单载波无线电传输技术(1×RTT)、演进数据最优化(EVDO)技术、通用包无线电服务(GPRS)技术、GSM增强的数据率演进(EDGE)技术或其它数据传送技术)中的任一者。当采用此技术时,通信网络320可包含具有由蜂窝式电话交换机互连的重叠地理覆盖范围的多个小区站的蜂窝式网络。这些蜂窝式电话交换机可耦合到网络骨干,举例来说,公共交换电话网络(PSTN)、包交换数据网络或其它类型的网络。
在另一实例中,连接310可为无线保真(Wi-Fi,IEEE802.11x类型)连接、全球互通微波接入(WiMAX)连接或另一类型的无线数据连接。在此实施例中,通信网络320可包含耦合到局域网(LAN)、广域网(WAN)、因特网或其它包交换数据网络的一个或一个以上无线接入点。
在又一实例中,连接310可为有线连接(举例来说,以太网链路),且所述通信网络可为局域网(LAN)、广域网(WAN)、因特网或其它包交换数据网络。因此,清楚地预期各种不同配置。
多个服务器330可经由接口(举例来说,经由有线或无线接口)耦合到通信网络320。这些服务器330可经配置以向移动电子装置400提供各种类型的服务。举例来说,一个或一个以上服务器130可执行基于位置的服务(LBS)应用程序340,所述应用程序与在装置400上执行的软件相互操作以向用户提供LBS。LBS可使用装置的位置及/或其它装置的位置知识来向用户提供位置特定信息、推荐、通知、交互能力及/或其它功能性。装置的位置及/或其它装置的位置知识可通过装置400与在服务器330中的一者或一者以上执行的位置确定应用程序350的相互操作获得。位置信息还可由装置400在不使用位置确定应用程序(例如应用程序350)的情况下提供。在特定实例中,装置400可具有通过位置确定应用程序350扩增的一些有限位置确定能力。
实例性移动装置
图4是图解说明根据实例性实施例的移动装置400的框图。装置400可包含处理器410。处理器410可为适合于移动装置的各种不同类型的市售处理器(举例来说,XScale架构微处理器、不具有互锁管线阶段(MIPS)架构处理器的微处理器或另一类型的处理器)中的任一者。存储器420(例如随机存取存储器(RAM)、快闪存储器或其它类型的存储器)通常可由处理器存取。存储器420可经调适以存储操作系统(OS)430以及应用程序440(例如可向用户提供LBS的移动位置启用的应用程序)。处理器410可直接或经由适当中间硬件耦合到显示器450及一个或一个以上输入/输出(I/O)装置460(例如小键盘、触控面板传感器、麦克风等)。类似地,在一些实施例中,处理器410可耦合到与天线490介接的收发器470。取决于装置400的本质,收发器470可经配置以经由天线490传输及接收蜂窝式网络信号、无线数据信号或其它类型的信号。以此方式,可建立与通信网络320的连接310。此外,在一些配置中,GPS接收器480还可利用天线490来接收GPS信号。
关于提供及接收基于位置的服务的额外细节可在授予菲利普斯(Phillips)等人且让与马赛诸塞州波士顿威尔(Where)公司的标题为“基于位置的服务(Location-BasedServices)”的美国专利7,848,765中找到,所述专利借此以引用方式并入。
实例性平台架构
图5是图解说明根据实例性实施例的用于递送实时位置感知推荐及广告的基于网络的系统500的框图。描述描绘可在其内部署实例性实施例的客户端-服务器系统500的框图。在基于网络的位置感知推荐、广告或发布系统的实例性形式中,联网系统502经由网络504(例如,因特网或广域网(WAN))将服务器侧功能性提供到一个或一个以上客户端510、512。举例来说,图5图解说明在相应客户端机器510及512上执行的web客户端506(例如,浏览器(例如由华盛顿州雷蒙德微软公司开发的因特网探索者浏览器))及编程客户端508(例如,来自马赛诸塞州波士顿威尔公司的威尔智能电话应用程序)。在一实例中,客户端机器510及512可呈移动装置(例如移动装置400)的形式。
应用程序编程接口(API)服务器514及web服务器516耦合到一个或一个以上应用程序服务器518且分别将编程及web接口提供到所述应用程序服务器。应用程序服务器518代管一个或一个以上发布应用程序520(在特定实例中,这些发布应用程序还可包含商务应用程序、广告应用程序及市场应用程序,仅举几个例子)、付款应用程序522及推荐子系统532。应用程序服务器518又展示为耦合到促进存取一个或一个以上数据库526的一个或一个以上数据库服务器524。在一些实例中,应用程序服务器518可在不需要数据库服务器524的情况下直接存取数据库526。
发布应用程序520可向接入联网系统502的用户提供若干个发布功能及服务。付款应用程序522可同样地向用户提供若干个付款服务及功能。付款应用程序522可允许用户在账户中积累价值(例如,在商业货币(例如美元)或专有货币(例如“点数”)中),且接着稍后兑换经由各种发布应用程序520广告或使其可获得的产品(例如,商品或服务)的经积累价值。付款应用程序522还可经配置以在检验期间向用户呈现由推荐子系统532产生的推荐。推荐子系统532可向联网系统502的用户提供实时位置感知推荐。推荐子系统532可经配置以使用由联网系统502提供的各种通信机制中的所有通信机制来向用户呈现推荐。尽管发布应用程序520、付款应用程序522及推荐子系统532在图5中展示为全部形成联网系统502的一部分,但将了解,在替代实施例中,付款应用程序522可形成与联网系统502分离且不同的付款服务的一部分。
此外,尽管图5中所展示的系统500采用客户端-服务器架构,但本发明当然不限于此架构,且可能相等地良好应用于(举例来说)分布式或同级架构系统中。各种发布应用程序520、付款应用程序522及推荐子系统532还可能实施为不必具有联网能力的独立软件程序。
web客户端506经由由web服务器516支持的web接口存取各种发布应用程序520、付款应用程序522及推荐子系统532。类似地,编程客户端508经由由API服务器514提供的编程接口存取由发布应用程序520、付款应用程序522及推荐子系统532提供的各种服务及功能。举例来说,编程客户端508可为本地推荐智能电话应用程序(例如,由马赛诸塞州波士顿威尔公司开发的威尔应用程序)使得用户能够在其智能电话上利用由所述智能电话提供的用户简档数据及当前位置信息接收实时位置感知推荐。
图5还图解说明在第三方服务器机器540上执行的第三方应用程序528,这是因为所述第三方应用程序可经由由API服务器514提供的编程接口编程接入到联网系统502。举例来说,第三方应用程序528可利用从联网系统502检索的信息支持由第三方代管的网站上的一个或一个以上特征或功能。举例来说,第三方网站可提供由联网系统502的相关应用程序支持的一个或一个以上促销、市场或付款功能。另外,第三方网站可通过推荐子系统532提供可在联网系统502上获得的物项的用户推荐。另外,应用程序服务器518可经由第三方系统(例如第三方服务器540)存取广告数据。
实例性推荐子系统
图6是图解说明根据实例性实施例的能够产生实时位置感知推荐的实例性推荐子系统532的框图。在此实例中,推荐子系统532可包含地点图模块605、位置模块630及推荐引擎620。在一些实例中,地点图模块605可包含特征提取模块610及投射模块615。在此实例中,推荐子系统532可存取数据库526以存储及/或检索用户简档数据以及关于本地地点的信息(还称为位置数据)。
在一实例中,地点图模块605可基于用户简档数据及位置数据产生当前位置的地点图。在一些实例中,位置数据可由位置模块630提供。在特定实例中,地点图模块605包含特征提取模块610,其可调用算法(例如PCA及SVD)来提取在用户简档数据中具有与其相关的交互的第一多个地点的特征矩阵。特征提取模块610还可使用与所述多个地点相关联的显式及隐式用户交互两者来对经提取特征中的每一者进行评分。参见图9以找到图解说明多个地点的实例性特征矩阵的表。显式及隐式用户交互数据可存储于用户简档数据内。投射模块615可将特征矩阵投射到由位置模块630提供的第二多个地点上。在一些实例中,所述第二多个地点从不必包含与所述第一多个地点有共同之处的任何地点的不同地理位置导出。在一实例中,投射模块615可使用当前位置周围的空间搜索(例如,中心点及半径)来基于新地点特征值过滤用户周围的地点。在此实例中,过滤器将仅展示具有类似于从用户简档数据导出的特征矩阵内的特征值的特征值的地点。最后,推荐引擎620可使用地点图模块605的输出来产生特定位置中的特定用户的位置感知推荐。在特定实例中,推荐引擎620维持特定位置中的特定用户的所推荐地点列表。推荐子系统532可在用户在整天内从一个地点移动到另一地点时连续地更新所推荐地点列表。
参考图7到8详细描述关于由推荐子系统532提供的功能性的额外细节。
实例性推荐方法
图7是图解说明用于产生实时位置感知推荐的实例性方法700的流程图。在此实例中,方法700可包含用于以下各项的操作:确定当前用户位置702、计算当前用户位置的地点图704、产生本地推荐705及将位置感知推荐发送到用户708。
在此实例中,方法700可在702处以应用程序服务器518从客户端(例如客户端512)接收位置数据开始。在一实例中,客户端512为移动装置(例如移动装置400)且可提供从GPS接收器480获得的GPS位置数据。在704处,方法700可以推荐子系统532计算当前用户位置的地点图继续。在一实例中,地点图可包含投射到当前用户位置中的多个地点上的经评分特征矩阵(参见图9)。在一实例中,位置模块620可将多个地点提供到投射模块615且投射模块615可产生地点图。
在706处,方法700可以推荐引擎620从由地点图模块605产生的地点图产生本地推荐继续。推荐引擎620可通过遍历地点图且提取与用户的用户简档数据内的地点具有强相关的地点而产生本地推荐。最后,在708处,方法700可以推荐子系统532经由由应用程序服务器518维持的通信通道将位置感知推荐传输到客户端装置512结束。
图8是图解说明根据实例性实施例的用于计算第二地理位置的地点图的方法704的流程图。在此实例中,方法704可包含用于以下各项的操作:存取用户简档数据802、提取关系(例如,特征)804、存取位置数据806及将关系(例如,特征)投射到地理位置内的地点上808。
在此实例中,方法704可以地点图模块605存取用户简档数据以获得与第一多个地点相关联的用户交互数据开始。与所述第一多个地点相关联的用户交互数据可包含显式及隐式交互数据两者。如上文所论述,显式交互数据显式地指示用户关于地点(或地点的某一方面)的偏好。举例来说,用户可将地点保存到最爱列表,因此显式地指示用户喜欢所述地点。用户还可书写评论或做出显式地指示用户喜欢此特定地点的甜点的调查。如上文所论述,隐式交互隐式地指示用户对特定地点的关注。举例来说,如果用户多次观看一地点的细节页面,那么系统可推断用户对所述地点的关注。如上文所述,以不同于显式交互的方式将隐式交互加权或对其进行评分。
在804处,方法704可以特征提取模块610提取所述第一多个地点之间的关系或与所述第一多个地点相关联的特征继续。在一些实例中,根据用户的显式及隐式交互对经提取特征进行评分。经提取且经评分特征可形成用于描述(或表示)用户的偏好的特征矩阵。在一实例中,每一用户行动具有代码及值。当用户执行与一地点相关联的行动(例如,用户120已对地点2345执行行动4)时,与所述行动相关联的代码及值产生与地点ID及用户ID相关联的评分。此信息被馈送到矩阵中,所述矩阵可馈送到用于特征提取的SVD算法中。在806处,方法704以位置模块620从数据库526存取当前地理位置(例如,在操作702处接收的位置)内的第二多个地点的位置数据继续。最后,方法700可在808处以投射模块615将特征矩阵(例如,所述第一多个地点之间的经提取关系)投射到由当前用户位置指示的地理位置内的所述第二多个地点上结束。在此实例中,通过方法704产生的地点图可接着用于产生用户在新地理位置(例如,其中用户尚未与任何地点交互的位置)中的位置感知推荐。
模块、组件及逻辑
本文中将特定实施例描述为包含逻辑或若干个组件、模块或机构。模块可构成软件模块(例如,在机器可读媒体上或在传输信号中体现的代码)或硬件模块。硬件模块为能够执行特定操作且可以特定方式配置或布置的有形单元。在实例性实施例中,一个或一个以上计算机系统(例如,独立客户端或服务器计算机系统)或者计算机系统的一个或一个以上硬件模块(例如,处理器或处理器群组)可通过软件(例如,应用程序或应用程序部分)配置为操作以执行如本文中所描述的特定操作的硬件模块。
在各种实施例中,可以机械或电子方式实施硬件模块。举例来说,硬件模块可包括经永久配置(例如,作为专用处理器(例如现场可编程门阵列(FPGA))或专用集成电路(ASIC))以执行特定操作的专用电路或逻辑。硬件模块还可包括通过软件暂时配置以执行特定操作的可编程逻辑或电路(例如,涵盖在通用处理器或其它可编程处理器内)。将了解,在专用且经永久配置的电路中或在经暂时配置的电路(例如,通过软件配置)中以机械方式实施硬件模块的决策可因成本及时间考虑而驱动。
因此,术语“硬件模块”应理解为涵盖有形实体,其为物理构造、经永久配置(例如,硬接线)或经暂时配置(例如,编程)而以特定方式操作及/或执行本文中所描述的特定操作的实体。考虑其中暂时配置(例如,编程)硬件模块的实施例,硬件模块中的每一者不需要在任一时刻处配置或实例化。举例来说,在硬件模块包括使用软件配置的通用处理器的情况下,通用处理器可在不同时间配置为相应不同硬件模块。软件可相应地配置处理器(举例来说)以在一个时刻处构成特定硬件模块且在不同时刻处构成不同硬件模块。
硬件模块可将信息提供到其它硬件模块及从其它硬件模块接收信息。因此,所描述硬件模块可视为以通信方式耦合。在多个此类硬件模块同时存在的情况下,可通过经由连接硬件模块的信号传输(例如,适当电路及总线)实现通信。在其中多个硬件模块在不同时间配置或实例化的实施例中,可(举例来说)通过存储及检索多个硬件模块可存取的存储器结构中的信息实现此类硬件模块之间的通信。举例来说,一个硬件模块可执行一操作,且将所述操作的输出存储于其以通信方式耦合到的存储器装置中。另一硬件模块可接着在稍后时间存取存储器装置以检索并处理所存储输出。硬件模块还可起始与输入或输出装置的通信,且可对资源(例如,信息集合)操作。
本文中所描述的实例性方法的各种操作可至少部分地由经暂时配置(例如,通过软件)或经永久配置以执行相关操作的一个或一个以上处理器执行。无论经暂时配置还是经永久配置,此类处理器均可构成操作以执行一个或一个以上操作或功能的处理器实施的模块。在一些实例性实施例中,本文中所提及的模块可包括处理器实施的模块。
类似地,本文中所描述的方法可至少部分地为处理器实施的。举例来说,方法的操作中的至少一些操作可由一个或一个以上处理器或者处理器实施的模块执行。所述操作中的特定操作的执行可分布于不仅驻存于单个机器内而且跨越若干个机器部署的一个或一个以上处理器当中。在一些实例性实施例中,所述一个或多个处理器可位于单个位置中(例如,在家庭环境、办公室环境内或作为服务器群),而在其它实施例中,所述处理器可跨越若干个位置分布。
所述一个或一个以上处理器还可操作以支持在“云计算”环境中或作为“软件即服务”(SaaS)执行相关操作。举例来说,所述操作中的至少一些操作可由计算机群组(作为包含处理器的机器的实例)执行,这些操作可经由网络(例如,因特网)且经由一个或一个以上适当接口(例如,应用程序接口(API))来存取。
电子设备及系统
实例性实施例可实施于数字电子电路中或计算机硬件、固件、软件中或其组合中。实例性实施例可使用计算机程序产品实施,例如,有形地体现于信息载体中(例如,机器可读媒体中)以供由数据处理设备(例如,可编程处理器、计算机或多个计算机)的操作执行或控制所述操作的计算机程序。
计算机程序可以任何形式的编程语言(包含编译语言或解译语言)来写入,且其可部署为任何形式,包含部署为独立程序或部署为模块、子例程或适合于在计算环境中使用的其它单元。计算机程序可经部署以在一个计算机上或在一个位点处或跨越多个位点分布且由通信网络互连的多个计算机上执行。
在实例性实施例中,操作可由执行计算机程序的一个或一个以上可编程处理器执行以通过对输入数据进行操作并产生输出来执行功能。方法操作还可由专用逻辑电路(例如,场可编程门阵列(FPGA)或专用集成电路(ASIC))执行,且实例性实施例的设备可实施为专用逻辑电路。
计算系统可包含客户端及服务器。客户端与服务器一般彼此远离且通常通过通信网络交互。客户端与服务器的关系借助于运行于相应计算机上且彼此之间具有客户端-服务器关系的计算机程序而产生。在部署可编程计算系统的实施例中,将了解,硬件及软件架构两者均需要考虑。具体来说,将了解,是在经永久配置硬件(例如,ASIC)中、在经暂时配置硬件(例如,软件与可编程处理器的组合)中还是在经永久配置硬件与经暂时配置硬件的组合中实施特定功能性的选择可为设计选择。下文陈述在各种实例性实施例中可部署的硬件(例如,机器)及软件架构。
实例性机器架构及机器可读媒体
图10是呈计算机系统1000的实例性形式的机器的框图,在所述计算机系统内可执行用于致使所述机器执行本文中所论述的方法中的任一者或一者以上的指令。在替代实施例中,所述机器作为独立装置操作或可连接(例如,联网)到其它机器。在联网部署中,所述机器可在服务器-客户端网络环境中以服务器或客户端机器的能力操作或者在同级间(或分布式)网络环境中作为同级机器操作。所述机器可为个人计算机(PC)、平板PC、机顶盒(STB)、个人数字助理(PDA)、蜂窝式电话、web站器具、网络路由器、开关或桥接器或者能够执行规定待由所述机器采取的行动的指定(顺序或以其它方式)的任何机器。此外,尽管图解说明仅单个机器,但还应将术语“机器”视为包含个别地或联合地执行一组(或多组)指令以执行本文中所论述的方法中的任一或一者以上的任何机器集合。
实例性计算机系统1000包含处理器1002(例如,中央处理单元(CPU)、图形处理单元(GPU)或两者)、经由总线1008彼此通信的主存储器1004及静态存储器1006。计算机系统1000可进一步包含视频显示单元1010(例如,液晶显示器(LCD)或阴极射线管(CRT))。计算机系统1000还包含字母数字输入装置1012(例如,键盘)、用户接口(UI)导航装置1014(例如,鼠标)、磁盘驱动单元1016、信号产生装置1018(例如,扬声器)及网络接口装置1020。
机器可读媒体
磁盘驱动单元1016包含其上存储有体现或由本文中所描述的方法或功能中的任一者或一者以上使用的一组或一组以上指令及数据结构(例如,软件)1024的机器可读媒体1022。指令1024还可在其由计算机系统1000执行期间完全地或至少部分地驻存于主存储器1004内及/或处理器1002内,主存储器1004及处理器1002还构成机器可读媒体。
尽管在实例性实施例中将机器可读媒体1022展示为单个媒体,但术语“机器可读媒体”可包含存储一个或一个以上指令或者数据结构的单个媒体或多个媒体(例如,集中式或分布式数据库及/或相关联高速缓冲存储器及服务器)。术语“机器可读媒体”还应视为包含能够存储、编码或载运用于由机器执行且致使机器执行本发明的方法中的任一者或一者以上的指令或者能够存储、编码或载运由此类指令使用或与此类指令相关联的数据结构的任何有形媒体。因此,术语“机器可读媒体”应视为包含(但不限于)固态存储器以及光学及磁性媒体。机器可读媒体的特定实例包含非易失性存储器,其通过举例的方式包含半导体存储器装置(例如,可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)及快闪存储器装置);磁盘(例如内部硬磁盘及可装卸式磁盘;磁光盘);以及CD-ROM及DVD-ROM磁盘。
传输媒体
指令1024可经由通信网络1026使用传输媒体进一步传输或接收。指令1024可使用网络接口装置1020及若干个众所周知的传送协议(例如,HTTP)中的任一者传输。通信网络的实例包含局域网(“LAN”)、广域网(“WAN”)、因特网、移动电话网络、普通老式电话(POTS)网络及无线数据网络(例如,WiFi及WiMax网络)。术语“传输媒体”应视为包含能够存储、编码或载运用于由机器执行的指令的任何有形媒体且包含数字或模拟通信信号或者用以促进此软件的通信的其它无形媒体。
因此,已描述在基于网络的市场上向用户做出上下文推荐的方法及系统。虽然已参考特定实例性实施例描述了本发明,但将显而易见,可在不背离本发明的较宽广范围的情况下对这些实施例做出各种修改及改变。因此,应将本说明书及图式视为具有说明性而非限定性意义。
虽然已参考特定实例性实施例描述了实施例,但将显而易见,可在不背离本发明的较宽广范围的情况下对这些实施例做出各种修改及改变。因此,应将本说明书及图式视为具有说明性而非限定性意义。形成本发明的一部分的所附图式以图解说明而非限制方式展示其中可实践标的物的特定实施例。充分详细地描述了所说明的实施例使得所属领域的技术人员能够实践本文中所揭示的教示。可使用其它实施例且可从本发明导出其它实施例,使得可在不背离本发明的范围的情况下做出结构及逻辑替代及改变。因此,本具体实施方式不应视为具有限制意义,且各种实施例的范围仅由所附权利要求书连同授权此权利要求书的等效物的全部范围加以界定。
发明性标的物的此类实施例可在本文中个别地及/或共同地由术语“发明”指代,此仅为了便利且并不打算在事实上已揭示一个以上发明或发明性概念的情况下将本申请案的范围自发地限于任何单个发明或发明性概念。因此,虽然本文中已说明及描述了特定实施例,但应了解,经计算以实现相同目的的任何布置均可替代所展示的特定实施例。本发明打算涵盖各种实施例的任何及所有更改或变化。所属领域的技术人员在审阅以上说明后将了解以上实施例的组合及本文中未具体描述的其它实施例。
本文件中所参考的所有公开案、专利及专利文件就像个别地以引用方式并入一样将其全文以引用方式并入本文中。在本文件与那些以引用方式并入的文件之间存在使用不一致的情况下,应将所述所并入的参考文献中的使用视为对本文件的使用的补充;对于不可调和的不一致性,以本文件中的使用为准。
在本文件中,如在专利文件中常见,使用术语“一(a)”或“一(an)”来包含一个或一个以上,其独立于“至少一个(at least one)”或“一个或一个以上(one or more)”的任何其它实例或使用。在本文件中,使用术语“或(or)”来指非排他性或,使得“A或B”包含“A但非B”、“B但非A”及“A及B”,除非另有指示。在所附权利要求书中,将术语“包含(including)”及“其中(in which)”用作相应术语“包括(comprising)”及“其中(wherein)”的普通英语等效物。此外,在所附权利要求书中,术语“包含(including)”及“包括(comprising)”为开放式的,也就是说,包含除列示于技术方案中的此术语之后的那些元件以外的元件的系统、装置、项目或过程仍被视为归属于所述技术方案的范围内。此外,在所附权利要求书中,术语“第一(first)”、“第二(second)”及“第三(third)”等仅用作标签,且不打算对其对象强加数字要求。
提供发明摘要以允许读者迅速地确定本技术发明的本质。基于以下理解提交本概述:其将不用于解释或限制本权利要求书的范围或含义。另外,在前述具体实施方式中,出于简化本发明的目的,可见各种特征被一起分组于单个实施例中。不应将此揭示方法解释为反映以下意图:所主张的实施例需要比每一技术方案中所明确陈述的特征多的特征。而是,如所附权利要求书反映:发明性标的物在于少于单个所揭示实施例的所有特征。因此,所附权利要求书借此并入到具体实施方式中,其中每一技术方案本身独立地作为单独实施例。
Claims (20)
1.一种由处理器执行的用于产生位置感知推荐的方法,所述方法包括:
接收指定用户的当前位置的信息;
基于所述当前位置实时计算用于所述用户的地点图,所述地点图含有物理位置作为由用户特定关系互连的节点,并且根据关于所述物理位置的信息及用户输入而计算所述地点图,所述用户输入包含与所述物理位置的显式交互;
遍历所述地点图以识别在所述用户的所述当前位置的预界定距离内的一个或多个地点推荐;
从所识别的所述一个或多个地点推荐选择用于所述用户的本地地点推荐;及
将所述本地地点推荐传递到所述用户。
2.根据权利要求1所述的方法,其中所述计算所述地点图包含:
存取用于用户的用户简档数据,所述用户简档数据包含第一多个地点的信息,其中所述第一多个地点中的每一地点包含记录于所述用户简档数据内的交互历史,所述交互历史包含与所述物理位置的隐式或显式用户交互;
从所述第一多个地点提取特征矩阵,所述特征矩阵的特征包含所述物理位置之间的关系;
存取第二位置内的第二多个地点的地点数据;及
将所述特征矩阵从所述第一多个地点投射到所述当前位置内的所述第二多个地点上。
3.根据权利要求2所述的方法,其中所述从所述第一多个地点提取所述特征矩阵包含:基于与所述第一多个地点相关联的所述用户简档数据对所述特征矩阵内的特征进行评分。
4.根据权利要求3所述的方法,其中所述对所述特征进行评分包含:基于关于所述第一多个地点中的一者或多者的显式用户输入对所述特征进行评分。
5.根据权利要求4所述的方法,其中所述基于显式用户输入对所述特征进行评分包含:基于以下显式输入中的一者或多者对所述特征进行评分:
用户供应的等级评定;
评论;
相关登记;及
用户将一地点保存到地址簿中。
6.根据权利要求4所述的方法,其中所述对所述特征进行评分包含:基于关于所述第一多个地点中的所述一者或多者的隐式用户输入对所述特征进行评分。
7.根据权利要求6所述的方法,其中所述对所述特征进行评分包含:将第一加权因数应用于关于所述第一多个地点中的所述一者或多者的所述显式用户输入及将第二加权因数应用于关于所述第一多个地点中的所述一者或多者的所述隐式用户输入。
8.根据权利要求2所述的方法,其中所述遍历所述地点图包含:分析所述第二多个地点以识别所述一个或多个地点推荐。
9.根据权利要求1所述的方法,其中所述选择所述本地地点推荐包含:基于一天中的时间过滤所述一个或多个地点推荐。
10.一种用于产生位置感知推荐的系统,所述系统包括:
服务器,其耦合到网络,所述服务器包含,
位置模块,其经配置以确定与经由所述网络接入所述服务器的用户相关联的当前位置;
地点图模块,其经配置以基于所述当前位置实时计算用于所述用户的地点图,所述地点图含有物理位置作为由用户特定关系互连的节点,并且根据关于所述物理位置的信息及用户输入而计算所述地点图,所述用户输入包含与所述物理位置的显式交互;
推荐引擎,其经配置以,
遍历所述地点图以识别在所述当前位置的预界定距离内的一个或多个地点推荐,及
从所识别的所述一个或多个地点推荐选择用于所述用户的本地地点推荐;及
处理器执行的发布应用程序,其经配置以经由所述网络将所述本地地点推荐传递到所述用户。
11.根据权利要求10所述的系统,其中所述地点图模块进一步经配置以:
存取用于用户的用户简档数据,所述用户简档数据包含第一多个地点的信息,其中所述第一多个地点中的每一地点包含记录于所述用户简档数据内的交互历史,所述交互历史包含与所述物理位置的隐式或显式用户交互;
从所述第一多个地点提取特征矩阵,所述特征矩阵的特征包含所述物理位置之间的关系;
存取第二位置内的第二多个地点的地点数据;及
将所述特征矩阵从所述第一多个地点投射到所述当前位置内的所述第二多个地点上。
12.根据权利要求11所述的系统,其中所述地点图模块进一步经配置以基于与所述第一多个地点相关联的所述用户简档数据对所述特征矩阵内的特征进行评分。
13.根据权利要求12所述的系统,其中所述地点图模块进一步经配置以基于关于所述第一多个地点中的一者或多者的显式用户输入对所述特征进行评分。
14.根据权利要求13所述的系统,其中所述地点图模块进一步经配置以基于关于所述第一多个地点中的所述一者或多者的隐式用户输入对所述特征进行评分。
15.根据权利要求14所述的系统,其中所述地点图模块进一步经配置以将第一加权因数应用于关于所述第一多个地点中的所述一者或多者的所述显式用户输入且将第二加权因数应用于关于所述第一多个地点中的所述一者或多者的所述隐式用户输入。
16.根据权利要求11所述的系统,其中所述推荐引擎进一步经配置以分析所述第二多个地点以识别所述一个或多个地点推荐。
17.一种含有指令的机器可读存储媒体,所述指令在由联网系统执行时致使所述联网系统:
接收指定用户的当前位置的信息;
基于所述当前位置实时计算用于所述用户的地点图,所述地点图含有物理位置作为由用户特定关系互连的节点,并且根据关于所述物理位置的信息及用户输入而计算所述地点图,所述用户输入包含与所述物理位置的显式交互;
遍历所述地点图以识别在所述用户的所述当前位置的预界定距离内的一个或多个地点推荐;
从所识别的所述一个或多个地点推荐选择用于所述用户的本地地点推荐;及
将所述本地地点推荐传递到所述用户。
18.根据权利要求17所述的机器可读存储媒体,其中所述致使所述联网系统计算所述地点图的指令包含致使所述联网系统进行以下操作的指令:
存取用于用户的用户简档数据,所述用户简档数据包含第一多个地点的信息,其中所述第一多个地点中的每一地点包含记录于所述用户简档数据内的交互历史,所述交互历史包含与所述物理位置的隐式或显式用户交互;
从所述第一多个地点提取特征矩阵,所述特征矩阵的特征包含所述物理位置之间的关系;
存取第二位置内的第二多个地点的地点数据;及
将所述特征矩阵从所述第一多个地点投射到所述当前位置内的所述第二多个地点上。
19.根据权利要求18所述的机器可读存储媒体,其中所述致使所述联网系统从所述第一多个地点提取所述特征矩阵的指令包含致使所述联网系统进行以下操作的指令:基于与所述第一多个地点相关联的所述用户简档数据对所述特征矩阵内的特征进行评分。
20.根据权利要求19所述的机器可读存储媒体,其中所述致使所述联网系统对所述特征进行评分的指令包含致使所述联网系统进行以下操作的指令:基于关于所述第一多个地点中的一者或多者的显式用户输入对所述特征进行评分及基于关于所述第一多个地点中的所述一者或多者的隐式用户输入对所述特征进行评分。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811168578.2A CN109597945B (zh) | 2011-07-20 | 2012-07-20 | 用于产生位置感知推荐的方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161509987P | 2011-07-20 | 2011-07-20 | |
US61/509,987 | 2011-07-20 | ||
PCT/US2012/047621 WO2013013161A1 (en) | 2011-07-20 | 2012-07-20 | Real-time location-aware recommendations |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811168578.2A Division CN109597945B (zh) | 2011-07-20 | 2012-07-20 | 用于产生位置感知推荐的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103814599A CN103814599A (zh) | 2014-05-21 |
CN103814599B true CN103814599B (zh) | 2018-11-02 |
Family
ID=47556543
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811168578.2A Active CN109597945B (zh) | 2011-07-20 | 2012-07-20 | 用于产生位置感知推荐的方法 |
CN201280045362.1A Expired - Fee Related CN103814599B (zh) | 2011-07-20 | 2012-07-20 | 实时位置感知推荐 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811168578.2A Active CN109597945B (zh) | 2011-07-20 | 2012-07-20 | 用于产生位置感知推荐的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10114901B2 (zh) |
EP (1) | EP2735187A4 (zh) |
KR (2) | KR101634152B1 (zh) |
CN (2) | CN109597945B (zh) |
AU (2) | AU2012283826B8 (zh) |
CA (1) | CA2842265C (zh) |
WO (1) | WO2013013161A1 (zh) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013013161A1 (en) | 2011-07-20 | 2013-01-24 | Ebay Inc. | Real-time location-aware recommendations |
US10467677B2 (en) | 2011-09-28 | 2019-11-05 | Nara Logics, Inc. | Systems and methods for providing recommendations based on collaborative and/or content-based nodal interrelationships |
US8732101B1 (en) | 2013-03-15 | 2014-05-20 | Nara Logics, Inc. | Apparatus and method for providing harmonized recommendations based on an integrated user profile |
US10789526B2 (en) | 2012-03-09 | 2020-09-29 | Nara Logics, Inc. | Method, system, and non-transitory computer-readable medium for constructing and applying synaptic networks |
US11151617B2 (en) | 2012-03-09 | 2021-10-19 | Nara Logics, Inc. | Systems and methods for providing recommendations based on collaborative and/or content-based nodal interrelationships |
US11727249B2 (en) | 2011-09-28 | 2023-08-15 | Nara Logics, Inc. | Methods for constructing and applying synaptic networks |
US8170971B1 (en) | 2011-09-28 | 2012-05-01 | Ava, Inc. | Systems and methods for providing recommendations based on collaborative and/or content-based nodal interrelationships |
US9058573B2 (en) * | 2011-11-21 | 2015-06-16 | Facebook, Inc. | Network traffic-analysis-based suggestion generation |
US9195721B2 (en) | 2012-06-04 | 2015-11-24 | Apple Inc. | Mobile device with localized app recommendations |
US10657768B2 (en) | 2012-06-22 | 2020-05-19 | Zonal Systems, Llc | System and method for placing virtual geographic zone markers |
US9317996B2 (en) | 2012-06-22 | 2016-04-19 | II Robert L. Pierce | Method for authenticating a wager using a system and method for interacting with virtual geographic zones |
US10360760B2 (en) | 2012-06-22 | 2019-07-23 | Zonal Systems, Llc | System and method for placing virtual geographic zone markers |
US10460354B2 (en) | 2012-12-05 | 2019-10-29 | Ebay Inc. | Systems and methods for customer valuation and merchant bidding |
US9972042B2 (en) | 2013-03-15 | 2018-05-15 | Sears Brands, L.L.C. | Recommendations based upon explicit user similarity |
CN103347046B (zh) * | 2013-06-06 | 2017-03-01 | 百度在线网络技术(北京)有限公司 | 一种基于位置的信息交互方法及服务器 |
US9892200B2 (en) | 2013-09-18 | 2018-02-13 | Ebay Inc. | Location-based and alter-ego queries |
US11120491B2 (en) | 2013-09-24 | 2021-09-14 | Ebay Inc. | Method, medium, and system for social media based recommendations |
US20160328452A1 (en) * | 2014-01-23 | 2016-11-10 | Nokia Technologies Oy | Apparatus and method for correlating context data |
US9996851B1 (en) | 2014-02-03 | 2018-06-12 | Google Llc | Performance based content item ranking |
US9913100B2 (en) | 2014-05-30 | 2018-03-06 | Apple Inc. | Techniques for generating maps of venues including buildings and floors |
US9402161B2 (en) | 2014-07-23 | 2016-07-26 | Apple Inc. | Providing personalized content based on historical interaction with a mobile device |
US9858610B2 (en) * | 2014-08-29 | 2018-01-02 | Wal-Mart Stores, Inc. | Product recommendation based on geographic location and user activities |
US9529500B1 (en) | 2015-06-05 | 2016-12-27 | Apple Inc. | Application recommendation based on detected triggering events |
RU2632131C2 (ru) | 2015-08-28 | 2017-10-02 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и устройство для создания рекомендуемого списка содержимого |
RU2629638C2 (ru) | 2015-09-28 | 2017-08-30 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и сервер создания рекомендуемого набора элементов для пользователя |
RU2632100C2 (ru) | 2015-09-28 | 2017-10-02 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и сервер создания рекомендованного набора элементов |
RU2742457C2 (ru) * | 2015-10-20 | 2021-02-05 | Аксон Вайб Аг | Система и способ выявления взаимодействия и влияния в сетях |
EP3423962A4 (en) | 2016-03-04 | 2019-10-02 | Axon Vibe AG | SYSTEMS AND METHOD FOR PREDICTING THE USER BEHAVIOR BASED ON LOCATION DATA |
RU2632144C1 (ru) | 2016-05-12 | 2017-10-02 | Общество С Ограниченной Ответственностью "Яндекс" | Компьютерный способ создания интерфейса рекомендации контента |
US11170311B2 (en) * | 2016-05-20 | 2021-11-09 | Coupa Software Incorporated | System and method for determining expense information based on inferred events |
US20180188935A1 (en) * | 2016-06-09 | 2018-07-05 | Samsung Electronics Co., Ltd. | Method and electronic device for managing notifications in a notification panel |
US10200810B2 (en) * | 2016-06-12 | 2019-02-05 | Apple Inc. | Proactive actions on mobile device using uniquely-identifiable and unlabeled locations |
EP3267386A1 (en) * | 2016-07-07 | 2018-01-10 | Yandex Europe AG | Method and apparatus for generating a content recommendation in a recommendation system |
RU2632132C1 (ru) | 2016-07-07 | 2017-10-02 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и устройство для создания рекомендаций содержимого в системе рекомендаций |
RU2636702C1 (ru) | 2016-07-07 | 2017-11-27 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и устройство для выбора сетевого ресурса в качестве источника содержимого для системы рекомендаций |
LT3497403T (lt) | 2016-08-11 | 2021-11-25 | Axon Vibe AG | Asmenų geografinė padėtis, pagrįsta išvestiniu socialiniu tinklu |
US11481690B2 (en) | 2016-09-16 | 2022-10-25 | Foursquare Labs, Inc. | Venue detection |
USD882600S1 (en) | 2017-01-13 | 2020-04-28 | Yandex Europe Ag | Display screen with graphical user interface |
US10977683B2 (en) | 2017-05-23 | 2021-04-13 | International Business Machines Corporation | Cognitive advertising triggered by weather data |
CN107833111A (zh) * | 2017-11-28 | 2018-03-23 | 中国银行股份有限公司 | 一种产品推荐方法、装置及系统 |
RU2720952C2 (ru) | 2018-09-14 | 2020-05-15 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система для создания рекомендации цифрового содержимого |
RU2714594C1 (ru) | 2018-09-14 | 2020-02-18 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система определения параметра релевантность для элементов содержимого |
RU2720899C2 (ru) | 2018-09-14 | 2020-05-14 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система для определения зависящих от пользователя пропорций содержимого для рекомендации |
RU2725659C2 (ru) * | 2018-10-08 | 2020-07-03 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система для оценивания данных о взаимодействиях пользователь-элемент |
RU2731335C2 (ru) | 2018-10-09 | 2020-09-01 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система для формирования рекомендаций цифрового контента |
US10945190B2 (en) | 2019-01-04 | 2021-03-09 | Apple Inc. | Predictive routing based on microlocation |
CN110032677A (zh) * | 2019-03-05 | 2019-07-19 | 四川大学 | 一种基于深度神经网络和概率矩阵分解的混合推荐算法 |
WO2020245352A1 (en) * | 2019-06-07 | 2020-12-10 | Koninklijke Philips N.V. | Patient sleep therapy mask selection tool |
US20210056644A1 (en) * | 2019-08-23 | 2021-02-25 | Doug Karo | Golf Mobile Application System |
CN110611704A (zh) * | 2019-08-30 | 2019-12-24 | 阿里巴巴集团控股有限公司 | 一种基于位置的子应用推荐方法和系统 |
RU2757406C1 (ru) | 2019-09-09 | 2021-10-15 | Общество С Ограниченной Ответственностью «Яндекс» | Способ и система для обеспечения уровня сервиса при рекламе элемента контента |
CN111125473B (zh) * | 2019-12-23 | 2023-10-24 | 支付宝(杭州)信息技术有限公司 | 推荐业务处理及信息推荐方法、装置、设备及系统 |
US11055378B1 (en) * | 2020-08-21 | 2021-07-06 | Coupang Corp. | Systems and methods for loading websites with multiple items |
CN114707075B (zh) * | 2022-06-06 | 2022-10-25 | 荣耀终端有限公司 | 一种冷启动推荐方法和设备 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102047249A (zh) * | 2008-05-27 | 2011-05-04 | 高通股份有限公司 | 用于聚合和呈现与地理位置相关联的数据的方法和设备 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0128220D0 (en) * | 2001-11-24 | 2002-01-16 | Koninkl Philips Electronics Nv | Location based delivery of service data |
JP4335611B2 (ja) | 2003-08-19 | 2009-09-30 | 株式会社みずほ銀行 | 場所情報提供方法及び場所情報提供プログラム |
US7526458B2 (en) | 2003-11-28 | 2009-04-28 | Manyworlds, Inc. | Adaptive recommendations systems |
US8103445B2 (en) * | 2005-04-21 | 2012-01-24 | Microsoft Corporation | Dynamic map rendering as a function of a user parameter |
US20060271569A1 (en) * | 2005-05-27 | 2006-11-30 | Microsoft Corproation | Method and system for determining shared context |
US20070027925A1 (en) * | 2005-07-27 | 2007-02-01 | William Spencer | System and method for public geospatial registrar and services |
US20070282621A1 (en) * | 2006-06-01 | 2007-12-06 | Flipt, Inc | Mobile dating system incorporating user location information |
US20080077574A1 (en) * | 2006-09-22 | 2008-03-27 | John Nicholas Gross | Topic Based Recommender System & Methods |
US7698302B2 (en) * | 2006-10-13 | 2010-04-13 | Sony Ericsson Mobile Communications Ab | Mobile phone content-based recommendation of new media |
US20080104024A1 (en) * | 2006-10-25 | 2008-05-01 | Amit Kumar | Highlighting results in the results page based on levels of trust |
US7574422B2 (en) * | 2006-11-17 | 2009-08-11 | Yahoo! Inc. | Collaborative-filtering contextual model optimized for an objective function for recommending items |
CN101276404A (zh) * | 2007-03-30 | 2008-10-01 | 李季檩 | 一种快速准确的智能图像处理系统及其处理方法 |
US20090163183A1 (en) * | 2007-10-04 | 2009-06-25 | O'donoghue Hugh | Recommendation generation systems, apparatus and methods |
US9159034B2 (en) * | 2007-11-02 | 2015-10-13 | Ebay Inc. | Geographically localized recommendations in a computing advice facility |
US9195752B2 (en) * | 2007-12-20 | 2015-11-24 | Yahoo! Inc. | Recommendation system using social behavior analysis and vocabulary taxonomies |
KR100897436B1 (ko) | 2008-06-20 | 2009-05-14 | 김한준 | 지리정보 확인시스템의 제어방법 및 이동단말기 |
CN101334792B (zh) * | 2008-07-10 | 2011-01-12 | 中国科学院计算技术研究所 | 一种个性化服务推荐系统和方法 |
ITTO20090182A1 (it) * | 2009-03-11 | 2010-09-12 | Fond Istituto Italiano Di Tecnologia | Procedimento per la generazione di relazioni di ridondanza analitica per la diagnosi di sistemi |
US10984397B2 (en) * | 2009-03-31 | 2021-04-20 | Ebay Inc. | Application recommendation engine |
EP2438571A4 (en) * | 2009-06-02 | 2014-04-30 | Yahoo Inc | AUTOMATICALLY ADDRESSED ADDRESS BOOK |
US8484140B2 (en) * | 2009-06-09 | 2013-07-09 | Microsoft Corporation | Feature vector clustering |
FI20095642A0 (fi) * | 2009-06-09 | 2009-06-09 | Dopplr Oy | Maantieteellisen kohteen identifiointi |
CN101924602B (zh) * | 2009-06-12 | 2012-12-12 | 华为技术有限公司 | 数据传输方法及设备 |
US20110184945A1 (en) * | 2010-01-22 | 2011-07-28 | Qualcomm Incorporated | Location aware recommendation engine |
US8719198B2 (en) * | 2010-05-04 | 2014-05-06 | Microsoft Corporation | Collaborative location and activity recommendations |
US9269077B2 (en) * | 2010-11-16 | 2016-02-23 | At&T Intellectual Property I, L.P. | Address book autofilter |
US8489625B2 (en) * | 2010-11-29 | 2013-07-16 | Microsoft Corporation | Mobile query suggestions with time-location awareness |
US9083747B2 (en) * | 2011-03-07 | 2015-07-14 | Facebook, Inc. | Automated location check-in for geo-social networking system |
EP2695379A4 (en) * | 2011-04-01 | 2015-03-25 | Mixaroo Inc | SYSTEM AND METHOD FOR PROCESSING, STORING, INDEXING AND REAL TIME DISTRIBUTION OF SEGMENTED VIDEO |
US20130097162A1 (en) * | 2011-07-08 | 2013-04-18 | Kelly Corcoran | Method and system for generating and presenting search results that are based on location-based information from social networks, media, the internet, and/or actual on-site location |
WO2013013161A1 (en) | 2011-07-20 | 2013-01-24 | Ebay Inc. | Real-time location-aware recommendations |
-
2012
- 2012-07-20 WO PCT/US2012/047621 patent/WO2013013161A1/en active Application Filing
- 2012-07-20 AU AU2012283826A patent/AU2012283826B8/en not_active Ceased
- 2012-07-20 KR KR1020157022008A patent/KR101634152B1/ko active IP Right Grant
- 2012-07-20 EP EP12814675.0A patent/EP2735187A4/en not_active Withdrawn
- 2012-07-20 KR KR1020147004287A patent/KR101602078B1/ko active IP Right Grant
- 2012-07-20 US US13/554,584 patent/US10114901B2/en active Active
- 2012-07-20 CA CA2842265A patent/CA2842265C/en not_active Expired - Fee Related
- 2012-07-20 CN CN201811168578.2A patent/CN109597945B/zh active Active
- 2012-07-20 CN CN201280045362.1A patent/CN103814599B/zh not_active Expired - Fee Related
-
2015
- 2015-10-09 AU AU2015238908A patent/AU2015238908B2/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102047249A (zh) * | 2008-05-27 | 2011-05-04 | 高通股份有限公司 | 用于聚合和呈现与地理位置相关联的数据的方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
EP2735187A4 (en) | 2015-12-02 |
AU2012283826B2 (en) | 2015-07-09 |
AU2012283826B8 (en) | 2015-07-30 |
AU2015238908B2 (en) | 2016-09-08 |
WO2013013161A1 (en) | 2013-01-24 |
AU2012283826A1 (en) | 2014-02-06 |
CN103814599A (zh) | 2014-05-21 |
KR101634152B1 (ko) | 2016-06-28 |
KR20150099619A (ko) | 2015-08-31 |
CA2842265C (en) | 2019-05-07 |
KR20140051316A (ko) | 2014-04-30 |
CA2842265A1 (en) | 2013-01-24 |
CN109597945B (zh) | 2023-05-02 |
KR101602078B1 (ko) | 2016-03-09 |
US20130024471A1 (en) | 2013-01-24 |
EP2735187A1 (en) | 2014-05-28 |
AU2012283826A8 (en) | 2015-07-30 |
AU2015238908A1 (en) | 2015-10-29 |
US10114901B2 (en) | 2018-10-30 |
CN109597945A (zh) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103814599B (zh) | 实时位置感知推荐 | |
US10529004B2 (en) | Systems and methods for generating location-based group recommendations | |
US11727447B2 (en) | Systems and methods for customer valuation and merchant bidding | |
US20110061003A1 (en) | Advertisement display method, advertisement display system, and advertisement display program | |
AU2013361357B2 (en) | Cross-border location of goods and services | |
CN102332017A (zh) | 在移动设备中显示基于操作信息的推荐信息的方法与设备 | |
KR101859055B1 (ko) | 상품 아이템과 사용자 게시물 기반의 상품 정보 서비스 제공 방법, 그 장치 및 상품 정보 서비스 제공 시스템 | |
US20140236760A1 (en) | Information providing system, information providing apparatus and information providing method | |
US20150040018A1 (en) | Rating and review interface | |
Nicholas et al. | Failed hybrids: The death and life of Bluetooth proximity marketing | |
KR101714274B1 (ko) | 상품 아이템과 사용자 게시물 기반의 상품 정보 서비스 제공 방법, 그 장치 및 상품 정보 서비스 제공 시스템 | |
CN107969157A (zh) | 向用户提供内容项目 | |
KR101922013B1 (ko) | 글로벌 지역정보 서비스장치 및 상기 글로벌 지역정보 서비스장치의 이용방법 | |
JP2014149580A (ja) | 情報収集装置及び情報収集方法 | |
KR20150132751A (ko) | 인터넷 광고 서비스 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181102 Termination date: 20190720 |