US20080077574A1 - Topic Based Recommender System & Methods - Google Patents

Topic Based Recommender System & Methods Download PDF

Info

Publication number
US20080077574A1
US20080077574A1 US11855934 US85593407A US2008077574A1 US 20080077574 A1 US20080077574 A1 US 20080077574A1 US 11855934 US11855934 US 11855934 US 85593407 A US85593407 A US 85593407A US 2008077574 A1 US2008077574 A1 US 2008077574A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
user
content
ratings
method
set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11855934
Inventor
John Nicholas Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
John Nicholas and Kristin Gross Trust U/A/D April 13 2010
Original Assignee
John Nicholas Gross
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/30943Information retrieval; Database structures therefor ; File system structures therefor details of database functions independent of the retrieved data type
    • G06F17/30964Querying
    • G06F17/30967Query formulation
    • G06F17/3097Query formulation using system suggestions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor ; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • G06F17/30522Query processing with adaptation to user needs
    • G06F17/3053Query processing with adaptation to user needs using ranking
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor ; File system structures therefor of unstructured textual data
    • G06F17/30699Filtering based on additional data, e.g. user or group profiles
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • G06F17/30864Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
    • G06F17/30867Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0251Targeted advertisement
    • G06Q30/0255Targeted advertisement based on user history
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0251Targeted advertisement
    • G06Q30/0255Targeted advertisement based on user history
    • G06Q30/0256User search
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0251Targeted advertisement
    • G06Q30/0269Targeted advertisement based on user profile or attribute
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0273Fees for advertisement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking

Abstract

A recommendation system is used to provide suggestions in environments such as message boards, RSS aggregators, blogs and the like by comparing member interests and creating recommendation items corresponding to categorized topics or other members. In some instances a natural language can assist in processing content to sort it into the appropriate topic bin. An advertising module cooperates with the system to provide content based ads relevant to the recommended items.

Description

    RELATED APPLICATION DATA
  • The present application claims the benefit under 35 U.S.C. 119(e) of the priority date of Provisional Application Ser. No. 60/826,677 filed Sep. 22, 2006 which is hereby incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates to electronic recommendation systems and other related systems.
  • BACKGROUND
  • Recommender systems are well known in the art. In one example, such systems can make recommendations for movie titles to a subscriber. In other instances they can provide suggestions for book purchases, or even television program viewing. Such algorithms are commonplace in a number of Internet commerce environments, including at Amazon, CDNOW, and Netflix to name a few, as well as programming guide systems such as TiVO.
  • Traditionally recommender systems are used in environments in which a content provider is attempting to provide new and interesting material to subscribers, in the form of additional products and services. In some cases (see eg. U.S. Pat. No. 6,493,703 incorporated by reference herein) recommenders have been employed for the purpose of informing members of an online community of content and/or preferences of other members. Nonetheless the use of recommenders has not been extended fully to such domains and other online areas, including social networks, which could benefit from such systems. Only recently for example have recommenders been proposed for generating user to user recommendations in a music related community. See e.g., US Publication No. 2007/0203790 to Torrens, incorporated by reference herein. Similar systems which recommend content/users are described in U.S. Pat. No. 6,493,703 to Knight et al., also incorporated by reference herein.
  • Multi-dimensional recommenders have also been recently introduced. For an example of such systems, please see U.S. Patent Publication No. 2004/0103092 to Tuzhilin et al. and an article entitled “Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach” to Adomavicius et al., both of which are hereby incorporated by reference herein. In such systems, however, the extra dimensionality arises from additional content related to items which are nonetheless still traditional commerce items, such as movies.
  • SUMMARY OF THE INVENTION
  • An object of the present invention, therefore, is to reduce and/or overcome the aforementioned limitations of the prior art. A recommender system which evaluates multiple data sources is employed to generate more accurate and relevant predictions concerning data items and other users within a community.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of a multi-dimensional recommender system of the present invention.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates an example of a preferred embodiment of a multi-dimensional recommender system 100. A user/item compiler and database 110 includes a schema in which ratings for individual items by individual users are identified in a typical matrix fashion well-known in the art. The primary difference, in this instance, is that the items are not products/services (i.e., books, movies, etc.) as in the prior art, but instead represent more generalized concepts, such as a rating identified by a user for an author, a social network contact, a particular message board or post, a particular blog or website, a particular RSS Feed, etc., as shown by the data received from sources.
  • Explicit Endorsement Data Sources 120
  • As an example of an explicit data source 120, in a typical message board application such as operated by Yahoo! (under the moniker Yahoo Message Boards) or the Motley Fool, users are permitted to designate “favorite” authors, and/or to “recommend” posts written by particular individuals. In accordance with the present invention these designations of favorite authors and recommendations for posts are monitored, tabulated, and then translated into ratings for such authors/posts and compiled in a database under control of an item/user compiler module. The ratings will be a function of the environment in which the information is collected of course, so that a recommendation by person A for a post written by person B can be scored as a simple 1 or 0. While current message board systems presently track these kinds of endorsements, it will be understood that the invention can be applied to any aspect of such environments in which subscribers are allowed to endorse, rate, or declare an interest or preference for a certain author, post, subject, etc.
  • The purpose of using a recommender algorithm (either collaborative filter or content filter as the case may require) would be of course to recommend additional authors, topics, or similar subject matter to members of such message boards based on their professed interests in other authors and topics. For example a first individual with favorite authors A, B, C may not realize that other individuals designating A, B, C as favorite authors also designate D and E as favorite authors, and this information can be passed on to such first individual increase the potential enjoyment of such site.
  • Similarly in other environments as data source a user's designation of favorite web-logs (blogs), favorite RSS feeds, etc. as evidenced by their inclusion in an RSS aggregator or as designated favorites within a web browser, or by some other mechanism could be similarly tabulated to create a user-item matrix of ratings for such items. This can be used to pass on recommendations for new blogs, RSS feeds, etc.
  • In some applications an e-commerce site includes social networking features whereby members link to each other explicitly as part of groups. For example in sites operated by Myspace, or Netflix, members can designate other members explicitly with the label friends. As with the other data sources, these user-friend associations can be tabulated into a form suitable for use by a recommendation algorithm. Again, while these sites specifically designate individuals as friends, other sites may allow members to designate some other favorite item, such as an image, a website, a video, etc.
  • It should be apparent therefore that the item/user compiler database may in fact be comprised of several different dedicated files unique to a particular site or domain of users.
  • Implicit Endorsement Data Sources 125
  • In contrast to explicit data sources, the data from implicit data sources 125 includes materials which typically must undergo further processing to determine both the item and the associated rating. That is, in the case of a search result for example, the item may be one of the pages presented in the search result, or one or more concepts derived from the content of such page. The rating may be based on a number of invocations of such page, a length of time spent at such page, or any other well-known attention metric used to determine a person's interest in a particular website.
  • Other sources of implicit data can include ads selected by an individual (during an online session or from another electronic interface which collects and presents ad related data, such as a Tivo box or the like), audio/video content, posts, blogs, podcasts, articles, stories and the like which are read and/or authored by the person. Those skilled in the art will appreciate that such monitorings could be done in any situation where a person's selections can be identified.
  • Natural Language Classifier 130
  • Regardless of the source of the implicit data, the invention uses a natural language classifier/mapper module 130 to translate the raw data into one or more predefined concepts—representing the items in this instance—with reference to a topic/concept classification database 140. For example, a topic/concept may include such items as personal interests/hobbies, music bands, company names, stock symbols, brand names, foods, restaurants, movies, etc., depending on the intended application. These are but examples of course and it will be understood that such topics/concepts could include almost anything.
  • The items for the recommender database 140 can be mapped onto the topics/concepts either on a 1:1 basis, a 1:N basis, or an N:1 basis. In other words, if an item in the recommender database 140 is designated with the label “Sony,” there may be an identical entry in the topic/concept classification with such term. Semantic equivalents may also be used where appropriate. Similarly a single item “Sony” may be associated with multiple topics/concepts, such as a reference to a particular product or service offered by such company (for example Vaio) a stock symbol for Sony, a reference to a key employee/officer of Sony, and the like. Conversely some topics/concepts may also be mapped to multiple items, so that a reference to Sony Vaio may be linked to such items as Sony and personal state of the art computers.
  • The natural language classifier/mapper 130 is preferably trained with a training corpus 145 so that it can effectively learn the correct correlations between data and concepts. After training, the natural language classifier/mapper 130 can recognize words/phrases within a search page, ad, post, etc., and correlate them to one or more topics/concepts. Thus if a document contains the word Dell, the NL classifier can be taught to recognize such word as corresponding to such concepts as a particular brand name, a computer company, and the like.
  • The advantage of such approach, of course, is that documents authored/reviewed by individuals do not have to contain specific or explicit references to the item in question. Thus the system understands that an individual reading articles about Porsches, Ferraris, etc, is probably interested in high end sports cars, luxury items, etc. While NL classifiers are well-known and have been used in other contexts such as search engines and related indices, they do not appear to have been used to date to assist in the identification and rating of items for a recommender.
  • Ratings
  • As alluded to earlier the ratings in the above types of applications can be based on any convenient scale depending on the source of the data and the intended use. Some designations may be rated or scaled higher than others, depending on their recency, relative use, etc. The weightings again can be based on system performance requirements, objectives, and other well-known parameters. Thus with all other things being equal, older designations may receive higher scores than more recent designations, so long as the former are still designated as active in the user's day to day experience. So for example, after a predefined period, the first designated favorite author for a particular individual may receive a boosting to their rating if such author is still being read by the individual. Similarly, “stale” endorsements may be reduced over time if they are not frequently used. The degree of activity may be benchmarked to cause a desired result (i.e., endorsements receiving no activity within N days may receive a maximum attenuation factor) monitored to attenuate the ratings.
  • Quantitatively, the ratings therefore can be a simple mathematical relationship of usage frequency and age of the endorsement. The ratings may also be affected by the context in which they are generated, or in which the recommendation is solicited, as noted in the Tuzhilin materials above. The ratings can be updated at any regular desired interval of time, such as on a daily, weekly, or other convenient basis. For example, one approach may use the product of (frequency of use * age of the endorsement), with some normalization applied. This will result in an increase in score for older and more frequently used items. Other types of algorithms will be apparent to those skilled in the art. In this respect the invention attempts to mimic the behavior of a learning network which gives precedence to connections which are more strongly connected and reinforced regularly.
  • Recommendation Engine Module 115 Outputs
  • A recommendation engine module 115 thus generates outputs in a conventional fashion using a collaborative filtering algorithm, a content based filtering algorithm, or some combination therefore depending on the particular application and the data available in the item/user database. The outputs can include:
  • 1) predictions on how much particular users will like particular items; for example, in a message board application, an indication of a rating at output 180 that a particular person would give to a specific post, specific author, specific topic, etc.;
  • 2) recommendation outputs 170 on specific authors, topics, posts, etc. which a particular person may want to consider for review in their perusings at such site; this data can be presented to a user in the form of individual entries, top x lists, etc.
  • 3) an output to adjust, adapt or personalize search engine (not shown) results presented to a user in response to a query on a specific subject. For example if a user performed a search at a site relating to video recorders, the result set typically includes a set of N distinct hits. The information from the recommendation engine 115 may be used to tailor the results more particularly to the user.
  • In a first instance, the user has a prior profile which can be determined and exploited from item/user database 110, so that the search results are modified accordingly. As an example, the user may have expressed a favorable interest, endorsement or inclination towards Sony. This data in turn could be used to optionally modify, bias or alter the N distinct hits to accommodate the prior experiences.
  • In a second instance, even if the user does not have a profile, the query can be compared against items in the item/user database to determine favored or highly rated articles. Thus, in the above example, any ratings for Sony, or other video recorder suppliers, could be evaluated to identify additional modifications to the search engine results. In this manner a recommender can supplement the performance of a search engine based on real world experiences and thus increase the chances of successful experiences by searchers.
  • To map search queries to items for the above enhancements, the topic/concept classification database 140 can be consulted as needed. Again this may result in a number of item related entries being used to modify the search results.
  • It should be apparent that the output could be used by a separate recommender system, as well, to supplement an existing data set.
  • Advertising Module 150
  • An advertising module 150 can be used to provide relevant advertising material based on the content of predictions, recommendations and other outputs of the recommendation engine. As seen in FIG. 1, an interface routine 153 permits third parties and site operators to enter well-known advertising campaign information, such as advertising copy/content, desired keywords, and other information well-known in the art. The ads can take any form suitable for presentation within an electronic interface, and may include text and multi-media information (audio, video, graphics, etc.)
  • In prior art systems ads are correlated to search engine results, such as in a system known as “Adwords” offered by Google. In such applications ads are presented to searchers based on one or more topics identified in a search query.
  • The present invention extends this concept to recommenders, so that ads are served in accordance with a topic determined from a recommendation. For example, on a message board application, if the system were to determine that (based on prior ratings for certain topics) the user should also be recommended to review content on a board devoted to vintage cars, the ads presented with such recommendation could be tailored to content of such vintage car board, and/or to the specific content of the recommendation itself.
  • As seen in FIG. 1, the advertising stock 152 offered by third parties is matched against one or more topics/concepts in the topic/concept classification database 140. The mapping of the advertising stock to such topics can again be done automatically by natural language classifier/mapper 130, or alternatively selected independently by the third party/system site operator. In the latter case some oversight may be necessary to prevent third parties from intentionally polluting the relevancy of ads by presenting them in inappropriate contexts.
  • An advertising engine 151 is invoked and cooperates with a recommendation engine 115 so that relevant ads are presented with an output of the latter. As noted above such ads may also be presented as suitable for inclusion with a modified set of search results for a search engine. In this fashion an advertising system can be superimposed over the recommender system, so that relevant ads are presented at 160 in response to, and in conjunction with, a recommendation, prediction, etc., either at the same time, or at a later time in the form of emails, alerts, printed copy or other suitable materials for consumer consumption.
  • Applications
  • As alluded to earlier, the present invention can be used advantageously in a number of e-commerce applications, including:
      • Message boards: the invention can be employed to predict/recommend other authors, posters, topics, etc., which would be of interest to members;
      • Social networking: the invention can be employed to predict/recommend other contacts, “friends,” topics, etc. which a member of an online community may enjoy based on such member's other friends, topics reviewed, etc. By measuring an adoption rate between members for particular friends, or determining which friends' interests are most often copied, the system can even provide suggestions to specific members so that they send invitations to other members predicted to be good candidates for friends within the community.
      • RSS, Blogs, Podcasts, Ads: the invention can be employed to predict/recommend other Ads, RSS feeds, Blogs and Podcasts to individuals, based on adoptions/endorsements made by other online users.
  • Furthermore other options include monitoring group behavior and treating any such collection of individuals as a single entity for item/rating purposes. This aggregation can be used to recommend higher order logical groupings of individuals, particularly in social networking applications, to enhance the user experience.
  • That is, in conventional CF systems, individuals are automatically assigned to specific clusters based on a determination of a significant number of common interests/tastes. In the present invention the individual self-selected groupings within social networks can be broken down and treated as clusters so that comparisons can be made against particular user's interests, predilections, etc. Based on such comparisons groups can opt to extend invitations to new members which they would otherwise not notice or come into contact with. Conversely new members can be given some immediate insight into potentially fruitful social groups.
  • It will be understood by those skilled in the art that the above is merely an example and that countless variations on the above can be implemented in accordance with the present teachings. A number of other conventional steps that would be included in a commercial application have been omitted, as well, to better emphasize the present teachings.
  • It will be apparent to those skilled in the art that the modules of the present invention, including those illustrated in FIG. 1 can be implemented using any one of many known programming languages suitable for creating applications that can run on large scale computing systems, including servers connected to a network (such as the Internet). The details of the specific implementation of the present invention will vary depending on the programming language(s) used to embody the above principles, and are not material to an understanding of the present invention. Furthermore, in some instances, a portion of the hardware and software of FIG. 1 will be contained locally to a member's computing system, which can include a portable machine or a computing machine at the users premises, such as a personal computer, a PDA, digital video recorder, receiver, etc.
  • Furthermore it will be apparent to those skilled in the art that this is not the entire set of software modules that can be used, or an exhaustive list of all operations executed by such modules. It is expected, in fact, that other features will be added by system operators in accordance with customer preferences and/or system performance requirements. Furthermore, while not explicitly shown or described herein, the details of the various software routines, executable code, etc., required to effectuate the functionality discussed above in such modules are not material to the present invention, and may be implemented in any number of ways known to those skilled in the art.
  • The above descriptions are intended as merely illustrative embodiments of the proposed inventions. It is understood that the protection afforded the present invention also comprehends and extends to embodiments different from those above, but which fall within the scope of the present claims.

Claims (40)

  1. 1. A method of generating automatic recommendations for content to a first user with a computing system comprising:
    (a) identifying a first content reviewed by the first user with the computing system;
    (b) identifying a second content reviewed by a plurality of second users with the computing system;
    (c) causing a recommender system to generate a prediction and/or a recommendation for portions of said second content which are likely to be of interest to the first user based on an analysis of said first content and said second content;
    wherein said first content and second content includes materials derived and combined with the computing system as multidimensional data from at least two of the following content sources accessed by said first user and said plurality of second users: 1) a message board; 2) a social network site; 3) a blog; 4) an RSS feed; 5) a content site;
    wherein the prediction and/or recommendation is based on multidimensional data.
  2. 2. The method of claim 1 wherein said recommender prediction and/or recommendation is further based on content authored by said first user and/or said plurality of second users.
  3. 3. The method of claim 1 where at least some of said content is derived from implicit ratings determined from classifying data reviewed by the first user and said plurality of second users into one or more topics or concepts.
  4. 4. The method of claim 1 wherein said prediction and/or a recommendation is based on explicit ratings provided by the first user and said plurality of second users.
  5. 5. The method of claim 4 wherein said explicit ratings are given a weighting in accordance with a time characteristic.
  6. 6. The method of claim 5 wherein weighting increases for older ratings.
  7. 7. The method of claim 5 wherein said weighting is also adjusted based on a frequency of ratings provided for a particular data item.
  8. 8. The method of claim 1 further including a step: presenting an advertisement along with said recommendation, which advertisement is based on a content of said recommendation.
  9. 9. A method of generating automatic recommendations for content to a first user with a computing system comprising:
    (a) processing a set of first ratings from the first user for a first data source with the computing system, which first data source includes at least one of a human author, a social network contact, a message board, an RSS feed and/or a web log;
    (b) processing a set of second ratings from one or more second users for said first data source and one or more second data sources with the computing system, which second data sources also include at least one of a human author, a social network contact, a message board, an RSS feed and/or a web log;
    (c) correlating said set of first ratings and said set of second ratings with the computing system to identify a selected set of second users that are suitable as predictors for said first user;
    (d) recommending one or more of said second data sources to said first user based on a correlation of said first user to said selected set of second users done with the computing system.
  10. 10. The method of claim 9 wherein said correlation is determined by at least one of collaborative filtering and/or corroborative filtering.
  11. 11. The method of claim 9 wherein said first set of ratings and said second set of ratings includes implicit ratings data which is determined implicitly from actions taken by said first user and said set of second users in reviewing content presented electronically during an Internet session.
  12. 12. The method of claim 9 wherein said set of first ratings and said set of second ratings are recommendations given to authors of message board posts.
  13. 13. The method of claim 9 further including a step: presenting an advertisement to said first user which contains content predicted based on said correlation.
  14. 14. A method of generating automatic recommendations for content to a first user with a computing system comprising:
    (a) providing a database correlating a plurality of individual data items and rankings for a first user, wherein at least some of said individual data items represent human individuals;
    (b) identifying first content presented to the first user with the computing system;
    (c) identifying a first rating provided by said first user with the computing system for said first content which is related to least a first one of said plurality of individual data items;
    (d) identifying second content presented to said first user with the computing system;
    (e) identifying a second rating provided by said first user with the computing system for said second content which is related to least a second one of said plurality of individual data items;
    (f) repeating steps (a) through (e) for one or more second users;
    (g) comparing ratings provided by said first user and one or more second users for said plurality of individual data items to identify correlations between such users and/or items;
    (h) generating a prediction and/or a recommendation for the first user concerning at least a third data item based in part on step (g).
  15. 15. The method of claim 14 wherein said data items are human perceivable media items.
  16. 16. The method of claim 15 wherein said data items are movies.
  17. 17. A method of generating automatic recommendations for content to a first user with a computing system comprising:
    (a) providing a first database correlating a plurality of individual data items and rankings for a first user, wherein at least some of said individual data items represent human individuals;
    (b) providing a second database correlating a plurality of topics or concepts to one or more of said plurality of individual data items;
    (c) identifying first content presented to the first user with the computing system;
    (d) analyzing said first content to identify one or more of said plurality of topics or concepts and any corresponding individual data item;
    (e) identifying a rating provided by said first user with the computing system for said first content;
    (f) generating a ranking for said corresponding individual data item from said rating for said first content;
    (g) comparing rankings provided by said first user and one or more second users for said plurality of individual data items to identify correlations between such users and/or items;
    (h) generating a prediction and/or a recommendation for the first user concerning a data item based in part on step (g).
  18. 18. The method of claim 17 wherein step (d) is performed by a natural language engine classifier.
  19. 19. The method of claim 18 further including a step: training said natural language engine with a training corpus.
  20. 20. The method of claim 17 where said first content includes at least one of: a) an advertisement presented to the first user; b) a search result list; c) human readable content reviewed on the Internet.
  21. 21. The method of claim 17 further including a step: customizing a search engine result by the first user concerning one of said topics or concepts based on said prediction and/or recommendation.
  22. 22. The method of claim 1 further including a step: presenting an advertisement along with said recommendation, which advertisement is based on a content of said recommendation.
  23. 23. A method of generating automatic recommendations for content to a first user with a computing system comprising:
    (a) processing a set of first ratings from the first user for a first data source with the computing system, which first data source includes at least one of a human author, a social network contact, a message board, an RSS feed and/or a web log;
    wherein said set of first ratings are weighted by at least one of the
    following factors: 1) time; and/or 2) frequency;
    (b) processing a set of second ratings from one or more second users for said first data source and one or more second data sources with the computing system, which second data sources also include at least one of a human author, a social network contact, a message board, an RSS feed and/or a web log;
    wherein said set of second ratings are also weighted by at least one of the following factors: 1) time; and/or 2) frequency;
    (c) correlating said set of first ratings and said set of second ratings with the computing system to generate groups of users and/or groups of data sources suitable for a recommender system;
    (d) generating a recommendation with the recommender system to said first user for one of said second data sources based on step (c).
  24. 24. The method of claim 23 further including a step: customizing a search engine result by the first user based on said prediction and/or recommendation.
  25. 25. The method of claim 23 further including a step: presenting an advertisement along with said recommendation, which advertisement is based on a content of said recommendation.
  26. 26. A method of presenting advertising content in connection with an automatic recommendation to a user comprising:
    (a) identifying content presented to a plurality of users;
    (b) processing said content with a natural language engine to classify and map such content to one or more topics;
    (c) correlating a set of ad items to said one or more topics;
    (d) causing a recommender system to generate a prediction and/or a recommendation for a user, said recommendation being related to one or more of said topics;
    (e) presenting one of said set of ad items to the user as part of said prediction and/or recommendation.
  27. 27. The method of claim 26 further including a step: generating implicit ratings for said content based on behavior of said plurality of users.
  28. 28. The method of claim 27 further including a step: weighting said implicit ratings based on a time and/or a frequency of such ratings.
  29. 29. The method of claim 26 wherein said recommendation is related to a data source, including one of a human author, a social network contact, a message board, an RSS feed and/or a web log;
  30. 30. A method of generating automatic recommendations to a first user in connection with an online message board with a computing system comprising:
    (a) identifying a first set of electronic messages on the online message board reviewed by the first user with the computing system;
    (b) identifying a second set of electronic messages on the online message board reviewed by a plurality of second users with the computing system;
    (c) evaluating a first set of ratings provided by the first user in connection with said first set of electronic messages and a second set of ratings provided by said plurality of second users for said second set of messages with the computing system;
    wherein said first set of ratings and said second set of ratings can be generated by at least one of an explicit rating and/or an implicit rating, which implicit rating is derived from online actions taken by said first user and said plurality of second users;
    (d) generating a prediction and/or a recommendation for the first user from said first set of ratings and said second set of ratings which identifies at least one of: 1) one or more of said plurality of second users which are likely to be of interest to the first user; 2) one or more electronic messages which are likely to be of interest to the first user; 3) one or more electronic message authors which are likely to be of interest to the first user.
  31. 31. The method of claim 30 further including a step: customizing a search engine result by the first user based on said prediction and/or recommendation.
  32. 32. The method of claim 30 further including a step: presenting an advertisement along with said recommendation, which advertisement is based on a content of said recommendation.
  33. 33. The method of claim 30 further including a step: presenting an advertisement to said first user while he/she is reviewing an electronic message, which advertisement is based both on said first set of ratings as well as content of said electronic message.
  34. 34. The method of claim 30 wherein at least one of said explicit ratings and/or implicit ratings are given a weighting in accordance with a time characteristic.
  35. 35. The method of claim 34 wherein weighting increases for older ratings.
  36. 36. The method of claim 35 wherein said weighting is also adjusted based on a frequency of ratings provided for a particular data item.
  37. 37. The method of claim 30 wherein additional content reviewed by said first user and said plurality of second users at a separate website from said online message board as well as corresponding ratings for such content are also evaluated in determining said recommendation.
  38. 38. The method of claim 30 wherein said ratings are associated with at least one of: a user recommendation for an electronic message; a user designation of a preferred author for electronic messages; a user designation of an ignored author for electronic messages; a user recommendation for a particular topic; a user time spent reviewing an electronic message; a user search for a set of electronic messages; an ad selected by a user while reviewing an electronic message; a number of instances which a user has reviewed a selected electronic message.
  39. 39. The method of claim 30 including a step: identifying and publishing lists of groups of users with common ratings behavior.
  40. 40. The method of claim 30 including a step: identifying individual groups of users with common ratings behavior and providing suggestions to such groups for new memberships.
US11855934 2006-09-22 2007-09-14 Topic Based Recommender System & Methods Abandoned US20080077574A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US82667706 true 2006-09-22 2006-09-22
US11855934 US20080077574A1 (en) 2006-09-22 2007-09-14 Topic Based Recommender System & Methods

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US11855934 US20080077574A1 (en) 2006-09-22 2007-09-14 Topic Based Recommender System & Methods
US14087385 US20140081756A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site With Recommended Content
US14087400 US9507878B2 (en) 2006-09-22 2013-11-22 Social search system and method
US14087374 US9652557B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on correlating users and user adoptions
US14087406 US9275171B2 (en) 2006-09-22 2013-11-22 Content recommendations for social networks
US14087390 US20140081757A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Search Results
US14087267 US20140081754A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Tracking User Actions At Other Websites
US14087369 US9275170B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on user interests
US14087424 US20140081960A1 (en) 2006-09-22 2013-11-22 Friend & Group Recommendations for Social Networks
US14639907 US9646109B2 (en) 2006-09-22 2015-03-05 Topic based recommender system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14087267 Continuation US20140081754A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Tracking User Actions At Other Websites

Related Child Applications (9)

Application Number Title Priority Date Filing Date
US14087267 Continuation US20140081754A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Tracking User Actions At Other Websites
US14087385 Continuation US20140081756A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site With Recommended Content
US14087400 Continuation US9507878B2 (en) 2006-09-22 2013-11-22 Social search system and method
US14087374 Continuation US9652557B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on correlating users and user adoptions
US14087406 Continuation US9275171B2 (en) 2006-09-22 2013-11-22 Content recommendations for social networks
US14087390 Continuation US20140081757A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Search Results
US14087369 Continuation US9275170B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on user interests
US14087424 Continuation US20140081960A1 (en) 2006-09-22 2013-11-22 Friend & Group Recommendations for Social Networks
US14639907 Continuation US9646109B2 (en) 2006-09-22 2015-03-05 Topic based recommender system and method

Publications (1)

Publication Number Publication Date
US20080077574A1 true true US20080077574A1 (en) 2008-03-27

Family

ID=39226271

Family Applications (10)

Application Number Title Priority Date Filing Date
US11855934 Abandoned US20080077574A1 (en) 2006-09-22 2007-09-14 Topic Based Recommender System & Methods
US14087267 Abandoned US20140081754A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Tracking User Actions At Other Websites
US14087369 Active US9275170B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on user interests
US14087390 Abandoned US20140081757A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Search Results
US14087385 Abandoned US20140081756A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site With Recommended Content
US14087400 Active US9507878B2 (en) 2006-09-22 2013-11-22 Social search system and method
US14087406 Active US9275171B2 (en) 2006-09-22 2013-11-22 Content recommendations for social networks
US14087424 Abandoned US20140081960A1 (en) 2006-09-22 2013-11-22 Friend & Group Recommendations for Social Networks
US14087374 Active US9652557B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on correlating users and user adoptions
US14639907 Active US9646109B2 (en) 2006-09-22 2015-03-05 Topic based recommender system and method

Family Applications After (9)

Application Number Title Priority Date Filing Date
US14087267 Abandoned US20140081754A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Tracking User Actions At Other Websites
US14087369 Active US9275170B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on user interests
US14087390 Abandoned US20140081757A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site Based on Search Results
US14087385 Abandoned US20140081756A1 (en) 2006-09-22 2013-11-22 Methods For Presenting Online Advertising At A Social Network Site With Recommended Content
US14087400 Active US9507878B2 (en) 2006-09-22 2013-11-22 Social search system and method
US14087406 Active US9275171B2 (en) 2006-09-22 2013-11-22 Content recommendations for social networks
US14087424 Abandoned US20140081960A1 (en) 2006-09-22 2013-11-22 Friend & Group Recommendations for Social Networks
US14087374 Active US9652557B2 (en) 2006-09-22 2013-11-22 Methods for presenting online advertising at a social network site based on correlating users and user adoptions
US14639907 Active US9646109B2 (en) 2006-09-22 2015-03-05 Topic based recommender system and method

Country Status (1)

Country Link
US (10) US20080077574A1 (en)

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078770A1 (en) * 2000-04-28 2003-04-24 Fischer Alexander Kyrill Method for detecting a voice activity decision (voice activity detector)
US20060288000A1 (en) * 2005-06-20 2006-12-21 Raghav Gupta System to generate related search queries
US20080082565A1 (en) * 2006-09-29 2008-04-03 Apple Computer, Inc. Recommended systems
US20080082479A1 (en) * 2006-09-29 2008-04-03 Apple Computer, Inc. Head-to-head comparisons
US20080243877A1 (en) * 2007-04-02 2008-10-02 International Business Machines Corporation Promoting content from one content management system to another content management system
US20080294607A1 (en) * 2007-05-23 2008-11-27 Ali Partovi System, apparatus, and method to provide targeted content to users of social networks
US20080306938A1 (en) * 2007-06-08 2008-12-11 Ebay Inc. Electronic publication system
US20090018922A1 (en) * 2002-02-06 2009-01-15 Ryan Steelberg System and method for preemptive brand affinity content distribution
US20090024409A1 (en) * 2002-02-06 2009-01-22 Ryan Steelberg Apparatus, system and method for a brand affinity engine using positive and negative mentions
US20090049540A1 (en) * 2007-08-18 2009-02-19 Khalil Ayman S Method and system for providing targeted web feed subscription recomendations calculated through knowledge of ip addresses
US20090070192A1 (en) * 2007-09-07 2009-03-12 Ryan Steelberg Advertising request and rules-based content provision engine, system and method
US20090112717A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Apparatus, system and method for a brand affinity engine with delivery tracking and statistics
US20090112715A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20090113468A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for creation and management of advertising inventory using metadata
US20090112714A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20090112700A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for brand affinity content distribution and optimization
US20090112698A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for brand affinity content distribution and optimization
US20090112692A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20090112718A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for distributing content for use with entertainment creatives
US20090172127A1 (en) * 2007-12-28 2009-07-02 International Business Machines Corporation System and methods for recommending network content based upon social networking
US20090228354A1 (en) * 2008-03-05 2009-09-10 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20090234691A1 (en) * 2008-02-07 2009-09-17 Ryan Steelberg System and method of assessing qualitative and quantitative use of a brand
US20090234828A1 (en) * 2008-03-11 2009-09-17 Pei-Hsuan Tu Method for displaying search results in a browser interface
WO2009140085A2 (en) * 2008-05-15 2009-11-19 Yahoo, Inc. Method and apparatus for utilizing social network information for showing reviews
US20090299837A1 (en) * 2007-10-31 2009-12-03 Ryan Steelberg System and method for brand affinity content distribution and optimization
US20090307053A1 (en) * 2008-06-06 2009-12-10 Ryan Steelberg Apparatus, system and method for a brand affinity engine using positive and negative mentions
US20090319603A1 (en) * 2008-06-23 2009-12-24 Microsoft Corporation Content management using a website
US20100017398A1 (en) * 2006-06-09 2010-01-21 Raghav Gupta Determining relevancy and desirability of terms
US20100030746A1 (en) * 2008-07-30 2010-02-04 Ryan Steelberg System and method for distributing content for use with entertainment creatives including consumer messaging
US20100057719A1 (en) * 2008-09-02 2010-03-04 Parashuram Kulkarni System And Method For Generating Training Data For Function Approximation Of An Unknown Process Such As A Search Engine Ranking Algorithm
US20100076838A1 (en) * 2007-09-07 2010-03-25 Ryan Steelberg Apparatus, system and method for a brand affinity engine using positive and negative mentions and indexing
US20100076866A1 (en) * 2007-10-31 2010-03-25 Ryan Steelberg Video-related meta data engine system and method
US20100100537A1 (en) * 2008-10-22 2010-04-22 Fwix, Inc. System and method for identifying trends in web feeds collected from various content servers
US20100107189A1 (en) * 2008-06-12 2010-04-29 Ryan Steelberg Barcode advertising
US20100106730A1 (en) * 2007-04-30 2010-04-29 Aminian Mehdi Method of intermediation within a social network of users of a service/application to expose relevant media items
US20100107094A1 (en) * 2008-09-26 2010-04-29 Ryan Steelberg Advertising request and rules-based content provision engine, system and method
US20100114719A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg Engine, system and method for generation of advertisements with endorsements and associated editorial content
US20100114704A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg System and method for brand affinity content distribution and optimization
US20100114693A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg System and method for developing software and web based applications
US20100114692A1 (en) * 2008-09-30 2010-05-06 Ryan Steelberg System and method for brand affinity content distribution and placement
US20100114863A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg Search and storage engine having variable indexing for information associations
US20100114690A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg System and method for metricizing assets in a brand affinity content distribution
US20100114701A1 (en) * 2007-09-07 2010-05-06 Brand Affinity Technologies, Inc. System and method for brand affinity content distribution and optimization with charitable organizations
WO2010051380A1 (en) * 2008-10-29 2010-05-06 Brand Affinity Technologies, Inc. A search and storage engine having variable indexing for information associations
US20100131085A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for on-demand delivery of audio content for use with entertainment creatives
US20100131336A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for searching media assets
US20100131357A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for controlling user and content interactions
US20100131337A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for localized valuations of media assets
US20100144440A1 (en) * 2008-12-04 2010-06-10 Nokia Corporation Methods, apparatuses, and computer program products in social services
US20100217664A1 (en) * 2007-09-07 2010-08-26 Ryan Steelberg Engine, system and method for enhancing the value of advertisements
US20100223351A1 (en) * 2007-09-07 2010-09-02 Ryan Steelberg System and method for on-demand delivery of audio content for use with entertainment creatives
US20100223249A1 (en) * 2007-09-07 2010-09-02 Ryan Steelberg Apparatus, System and Method for a Brand Affinity Engine Using Positive and Negative Mentions and Indexing
US20100250347A1 (en) * 2009-03-31 2010-09-30 Sony Corporation System and method for utilizing a transport structure in a social network environment
US20100250556A1 (en) * 2009-03-31 2010-09-30 Seung-Taek Park Determining User Preference of Items Based on User Ratings and User Features
CN101873310A (en) * 2009-04-27 2010-10-27 索尼公司;索尼电子有限公司 System and method for distributing contextual information in an electronic network
US20100274644A1 (en) * 2007-09-07 2010-10-28 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20100299275A1 (en) * 2009-05-21 2010-11-25 Computer Associates Think, Inc. Content-based social computing
US20100318375A1 (en) * 2007-09-07 2010-12-16 Ryan Steelberg System and Method for Localized Valuations of Media Assets
US20110016121A1 (en) * 2009-07-16 2011-01-20 Hemanth Sambrani Activity Based Users' Interests Modeling for Determining Content Relevance
US20110035674A1 (en) * 2009-08-06 2011-02-10 Oracle International Corporation Recommendations matching a user's interests
US20110035381A1 (en) * 2008-04-23 2011-02-10 Simon Giles Thompson Method
US20110035377A1 (en) * 2008-04-23 2011-02-10 Fang Wang Method
US20110040648A1 (en) * 2007-09-07 2011-02-17 Ryan Steelberg System and Method for Incorporating Memorabilia in a Brand Affinity Content Distribution
US20110047050A1 (en) * 2007-09-07 2011-02-24 Ryan Steelberg Apparatus, System And Method For A Brand Affinity Engine Using Positive And Negative Mentions And Indexing
US20110055040A1 (en) * 2002-10-21 2011-03-03 Ebay Inc. Listing recommendation in a network-based commerce system
US20110072052A1 (en) * 2008-05-28 2011-03-24 Aptima Inc. Systems and methods for analyzing entity profiles
US20110078003A1 (en) * 2007-09-07 2011-03-31 Ryan Steelberg System and Method for Localized Valuations of Media Assets
US20110106632A1 (en) * 2007-10-31 2011-05-05 Ryan Steelberg System and method for alternative brand affinity content transaction payments
US20110131141A1 (en) * 2008-09-26 2011-06-02 Ryan Steelberg Advertising request and rules-based content provision engine, system and method
US7984056B1 (en) * 2007-12-28 2011-07-19 Amazon Technologies, Inc. System for facilitating discovery and management of feeds
US20110225197A1 (en) * 2010-03-09 2011-09-15 Timothy Howes User specific feed recommendations
US20110307294A1 (en) * 2010-06-10 2011-12-15 International Business Machines Corporation Dynamic generation of products for online recommendation
US20120047427A1 (en) * 2009-05-05 2012-02-23 Suboti, Llc System, method and computer readable medium for determining user attention area from user interface events
US20120166631A1 (en) * 2005-07-06 2012-06-28 Dov Moran Device and method for monitoring, rating and/or tuning to an audio content channel
US8285700B2 (en) 2007-09-07 2012-10-09 Brand Affinity Technologies, Inc. Apparatus, system and method for a brand affinity engine using positive and negative mentions and indexing
US20120278262A1 (en) * 2011-04-28 2012-11-01 Jared Morgenstern Suggesting Users for Interacting in Online Applications in a Social Networking Environment
US20120330932A1 (en) * 2010-06-07 2012-12-27 Microsoft Corporation Presenting supplemental content in context
US20130031179A1 (en) * 2010-04-16 2013-01-31 President And Fellows Of Harvard College Social-network method for anticipating epidemics and trends
CN102937954A (en) * 2011-08-16 2013-02-20 同程网络科技股份有限公司 One-stop type travel information searching method
US20130151539A1 (en) * 2011-12-07 2013-06-13 Yanxin Shi Real-Time Online-Learning Object Recommendation Engine
US20130159254A1 (en) * 2011-12-14 2013-06-20 Yahoo! Inc. System and methods for providing content via the internet
US20130239008A1 (en) * 2007-04-05 2013-09-12 Napo Enterprises, Llc System And Method For Automatically And Graphically Associating Programmatically-Generated Media Item Recommendations Related To A User's Socially Recommended Media Items
US20130253994A1 (en) * 2012-03-22 2013-09-26 Yahoo! Inc. Systems and methods for micro-payments and donations
US8554756B2 (en) 2010-06-25 2013-10-08 Microsoft Corporation Integrating social network data with search results
US20130311568A1 (en) * 2010-08-16 2013-11-21 Facebook, Inc. Suggesting connections to a user based on an expected value of the suggestion to the social networking system
US20140074879A1 (en) * 2012-09-11 2014-03-13 Yong-Moo Kwon Method, apparatus, and system to recommend multimedia contents using metadata
US20140089403A1 (en) * 2012-09-27 2014-03-27 Alexander P. Gross System and Method for Qualifying and Targeting Communications using Social Relationships
US20140108395A1 (en) * 2010-02-03 2014-04-17 Gartner, Inc. Methods and systems for modifying a user profile for a recommendation algorithm and making recommendations based on user interactions with items
US20140143720A1 (en) * 2012-11-16 2014-05-22 BFF Biz, LLC Item recommendations
US20140157096A1 (en) * 2012-12-05 2014-06-05 International Business Machines Corporation Selecting video thumbnail based on surrounding context
CN103955535A (en) * 2014-05-14 2014-07-30 南京大学镇江高新技术研究院 Individualized recommending method and system based on element path
US20140214946A1 (en) * 2013-01-30 2014-07-31 Hans van de Bruggen Batch connect
US20140222622A1 (en) * 2011-05-27 2014-08-07 Nokia Corporation Method and Apparatus for Collaborative Filtering for Real-Time Recommendation
US20140280079A1 (en) * 2013-03-13 2014-09-18 Google Inc. Creating Lists of Digital Content
US20140289334A1 (en) * 2013-03-06 2014-09-25 Tencent Technology (Shenzhen) Company Limited System and method for recommending multimedia information
CN104077351A (en) * 2014-05-26 2014-10-01 东北师范大学 Heterogeneous information network based content providing method and system
CN104077417A (en) * 2014-07-18 2014-10-01 中国科学院计算技术研究所 Figure tag recommendation method and system in social network
WO2014155380A1 (en) * 2013-03-24 2014-10-02 Orca Interactive Ltd System and method for topics extraction and filtering
US20140317099A1 (en) * 2013-04-23 2014-10-23 Google Inc. Personalized digital content search
CN104376083A (en) * 2014-11-18 2015-02-25 电子科技大学 Graph recommendation method based on concern relations and multiple user behaviors
US8983974B1 (en) * 2010-02-08 2015-03-17 Google Inc. Scoring authors of posts
US20150088877A1 (en) * 2011-01-20 2015-03-26 Linkedln Corporation Methods and systems for utilizing activity data with clustered events
US9002924B2 (en) 2010-06-17 2015-04-07 Microsoft Technology Licensing, Llc Contextual based information aggregation system
US20150213119A1 (en) * 2014-01-30 2015-07-30 Linkedin Corporation System and method for identifying trending topics in a social network
US20150222676A1 (en) * 2007-12-21 2015-08-06 Jonathan Davar Supplementing User Web-Browsing
US20150242755A1 (en) * 2014-02-25 2015-08-27 John Nicholas And Kristin Gross Trust U/A/D April 13, 2010 Social Content Connection System & Method
US20150319181A1 (en) * 2014-04-30 2015-11-05 Twitter, Inc. Application Graph Builder
US9183172B1 (en) * 2011-06-22 2015-11-10 Amazon Technologies, Inc. Author interactions using online social networks
US20150347413A1 (en) * 2014-05-30 2015-12-03 Facebook, Inc. Systems and methods for providing non-manipulable trusted recommendations
US20150381682A1 (en) * 2014-06-30 2015-12-31 Yahoo! Inc. Podcasts in Personalized Content Streams
US9241015B1 (en) * 2012-02-13 2016-01-19 Google Inc. System and method for suggesting discussion topics in a social network
CN105653626A (en) * 2015-12-28 2016-06-08 深圳市金立通信设备有限公司 Content pushing method and terminal
US20160162585A1 (en) * 2014-12-08 2016-06-09 Samsung Electronics Co., Ltd. Method for providing social media content and electronic device using the same
US9443199B2 (en) 2007-11-02 2016-09-13 Ebay Inc. Interestingness recommendations in a computing advice facility
US9471671B1 (en) * 2013-12-18 2016-10-18 Google Inc. Identifying and/or recommending relevant media content
US9477672B2 (en) 2009-12-02 2016-10-25 Gartner, Inc. Implicit profile for use with recommendation engine and/or question router
US9547698B2 (en) 2013-04-23 2017-01-17 Google Inc. Determining media consumption preferences
EP3171325A1 (en) * 2015-11-23 2017-05-24 Amadeus S.A.S. Systems and methods for making social media user correlations with an external data source
FR3044129A1 (en) * 2015-11-23 2017-05-26 Amadeus Sas
US9754308B2 (en) 2007-11-02 2017-09-05 Ebay Inc. Inferring user preferences from an internet based social interactive construct
US9785888B2 (en) * 2010-05-31 2017-10-10 Sony Corporation Information processing apparatus, information processing method, and program for prediction model generated based on evaluation information
US9990404B2 (en) 2014-01-30 2018-06-05 Microsoft Technology Licensing, Llc System and method for identifying trending topics in a social network
US10061817B1 (en) 2015-07-29 2018-08-28 Google Llc Social ranking for apps

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396258B2 (en) * 2009-01-22 2016-07-19 Google Inc. Recommending video programs
US20110078017A1 (en) * 2009-09-29 2011-03-31 Selina Lam Systems and methods for rating an originator of an online publication
US9621662B1 (en) * 2013-03-04 2017-04-11 Yelp Inc. Surfacing relevant reviews
US9881091B2 (en) * 2013-03-08 2018-01-30 Google Inc. Content item audience selection
US20150379527A1 (en) * 2014-06-30 2015-12-31 Avaya Inc. Derivative network profile for customer interactions
CN104156392B (en) * 2014-07-09 2017-06-13 中电科华云信息技术有限公司 Friends and application of personalized recommendation method and system
CN104298702A (en) * 2014-07-18 2015-01-21 合肥工业大学 Method and system for electronic reading material recommendation on basis of social network information
WO2017044349A1 (en) * 2015-09-07 2017-03-16 Hamedi Jehan Systems and methods for determining recommended aspects of future content, actions, or behavior
US20160078471A1 (en) * 2014-08-28 2016-03-17 Jehan Hamedi Systems and Methods for Determining an Agility Rating Indicating a Responsiveness of an Author to Recommended Aspects for Future Content, Actions, or Behavior
CN104750856B (en) * 2015-04-16 2018-01-05 天天艾米(北京)网络科技有限公司 One kind multi-dimensional cooperative system and method recommended
US20160321364A1 (en) * 2015-04-30 2016-11-03 Ebay Inc. Soft recommendations
US20160378870A1 (en) * 2015-06-24 2016-12-29 International Business Machines Corporation Profile driven presentation content displaying and filtering
US20170005963A1 (en) * 2015-06-30 2017-01-05 International Business Machines Corporation Social dark data
CN105959365A (en) * 2016-04-26 2016-09-21 中国联合网络通信集团有限公司 Application recommendation method and application recommendation device
US20170353603A1 (en) * 2016-06-03 2017-12-07 Facebook, Inc. Recommending applications using social networking information

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493703B1 (en) * 1999-05-11 2002-12-10 Prophet Financial Systems System and method for implementing intelligent online community message board
US20040103092A1 (en) * 2001-02-12 2004-05-27 Alexander Tuzhilin System, process and software arrangement for providing multidimensional recommendations/suggestions
US20040210661A1 (en) * 2003-01-14 2004-10-21 Thompson Mark Gregory Systems and methods of profiling, matching and optimizing performance of large networks of individuals
US20060004713A1 (en) * 2004-06-30 2006-01-05 Korte Thomas C Methods and systems for endorsing local search results
US20060143236A1 (en) * 2004-12-29 2006-06-29 Bandwidth Productions Inc. Interactive music playlist sharing system and methods
US20070050354A1 (en) * 2005-08-18 2007-03-01 Outland Research Method and system for matching socially and epidemiologically compatible mates
US20070073837A1 (en) * 2005-05-24 2007-03-29 Johnson-Mccormick David B Online multimedia file distribution system and method
US20070203790A1 (en) * 2005-12-19 2007-08-30 Musicstrands, Inc. User to user recommender
US20070208729A1 (en) * 2006-03-06 2007-09-06 Martino Paul J Using cross-site relationships to generate recommendations
US20070214133A1 (en) * 2004-06-23 2007-09-13 Edo Liberty Methods for filtering data and filling in missing data using nonlinear inference
US20070265870A1 (en) * 2006-04-19 2007-11-15 Nec Laboratories America, Inc. Methods and systems for utilizing a time factor and/or asymmetric user behavior patterns for data analysis
US20070266048A1 (en) * 2006-05-12 2007-11-15 Prosser Steven H System and Method for Determining Affinity Profiles for Research, Marketing, and Recommendation Systems
US20070266026A1 (en) * 2006-03-06 2007-11-15 Murali Aravamudan Methods and systems for selecting and presenting content based on user preference information extracted from an aggregate preference signature
US7509295B2 (en) * 2003-12-08 2009-03-24 International Business Machines Corporation Computer implemented method for analyzing a collaborative space
US7856658B2 (en) * 2005-06-20 2010-12-21 Lijit Networks, Inc. Method and system for incorporating trusted metadata in a computing environment

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265065A (en) 1991-10-08 1993-11-23 West Publishing Company Method and apparatus for information retrieval from a database by replacing domain specific stemmed phases in a natural language to create a search query
US6078914A (en) * 1996-12-09 2000-06-20 Open Text Corporation Natural language meta-search system and method
US6460034B1 (en) * 1997-05-21 2002-10-01 Oracle Corporation Document knowledge base research and retrieval system
US6317722B1 (en) * 1998-09-18 2001-11-13 Amazon.Com, Inc. Use of electronic shopping carts to generate personal recommendations
US6266649B1 (en) 1998-09-18 2001-07-24 Amazon.Com, Inc. Collaborative recommendations using item-to-item similarity mappings
US6513031B1 (en) * 1998-12-23 2003-01-28 Microsoft Corporation System for improving search area selection
US6405190B1 (en) 1999-03-16 2002-06-11 Oracle Corporation Free format query processing in an information search and retrieval system
JP4743740B2 (en) 1999-07-16 2011-08-10 マイクロソフト インターナショナル ホールディングス ビー.ブイ. To create an automated alternative content recommendation and system
US7107269B2 (en) 2000-06-13 2006-09-12 Lucent Technologies Inc. Methods and apparatus for providing privacy-preserving global customization
US6675159B1 (en) * 2000-07-27 2004-01-06 Science Applic Int Corp Concept-based search and retrieval system
US20030126227A1 (en) * 2001-12-31 2003-07-03 Koninklijke Philips Electronics N.V Method of populating an explicit profile
US8352499B2 (en) * 2003-06-02 2013-01-08 Google Inc. Serving advertisements using user request information and user information
US8140388B2 (en) * 2003-06-05 2012-03-20 Hayley Logistics Llc Method for implementing online advertising
US7890363B2 (en) * 2003-06-05 2011-02-15 Hayley Logistics Llc System and method of identifying trendsetters
US7885849B2 (en) * 2003-06-05 2011-02-08 Hayley Logistics Llc System and method for predicting demand for items
US7685117B2 (en) * 2003-06-05 2010-03-23 Hayley Logistics Llc Method for implementing search engine
US8103540B2 (en) * 2003-06-05 2012-01-24 Hayley Logistics Llc System and method for influencing recommender system
US7689432B2 (en) * 2003-06-06 2010-03-30 Hayley Logistics Llc System and method for influencing recommender system & advertising based on programmed policies
US7069308B2 (en) 2003-06-16 2006-06-27 Friendster, Inc. System, method and apparatus for connecting users in an online computer system based on their relationships within social networks
US7680770B1 (en) 2004-01-21 2010-03-16 Google Inc. Automatic generation and recommendation of communities in a social network
US20050246391A1 (en) * 2004-04-29 2005-11-03 Gross John N System & method for monitoring web pages
US20050246358A1 (en) * 2004-04-29 2005-11-03 Gross John N System & method of identifying and predicting innovation dissemination
US20060004627A1 (en) 2004-06-30 2006-01-05 Shumeet Baluja Advertisements for devices with call functionality, such as mobile phones
US20060218153A1 (en) 2005-03-28 2006-09-28 Voon George H H Building social networks using shared content data relating to a common interest
US20070027931A1 (en) * 2005-07-29 2007-02-01 Indra Heckenbach System and method for organizing repositories of information and publishing in a personalized manner
US20070136247A1 (en) 2005-10-21 2007-06-14 Frank Vigil Computer-implemented system and method for obtaining customized information related to media content
US7668821B1 (en) 2005-11-17 2010-02-23 Amazon Technologies, Inc. Recommendations based on item tagging activities of users
US8166061B2 (en) 2006-01-10 2012-04-24 Aol Inc. Searching recent content publication activity
US8504575B2 (en) 2006-03-29 2013-08-06 Yahoo! Inc. Behavioral targeting system
WO2008011454A3 (en) 2006-07-18 2008-10-02 Chacha Search Inc Anonymous search system using human searchers
WO2008019007A3 (en) 2006-08-04 2008-09-04 Thefind Inc Method for relevancy ranking of products in online shopping
US8965874B1 (en) * 2006-08-04 2015-02-24 Google Inc. Dynamic aggregation of users
US7827208B2 (en) 2006-08-11 2010-11-02 Facebook, Inc. Generating a feed of stories personalized for members of a social network
US7689682B1 (en) * 2006-08-16 2010-03-30 Resource Consortium Limited Obtaining lists of nodes of a multi-dimensional network

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493703B1 (en) * 1999-05-11 2002-12-10 Prophet Financial Systems System and method for implementing intelligent online community message board
US20040103092A1 (en) * 2001-02-12 2004-05-27 Alexander Tuzhilin System, process and software arrangement for providing multidimensional recommendations/suggestions
US20040210661A1 (en) * 2003-01-14 2004-10-21 Thompson Mark Gregory Systems and methods of profiling, matching and optimizing performance of large networks of individuals
US7509295B2 (en) * 2003-12-08 2009-03-24 International Business Machines Corporation Computer implemented method for analyzing a collaborative space
US20070214133A1 (en) * 2004-06-23 2007-09-13 Edo Liberty Methods for filtering data and filling in missing data using nonlinear inference
US20060004713A1 (en) * 2004-06-30 2006-01-05 Korte Thomas C Methods and systems for endorsing local search results
US20060143236A1 (en) * 2004-12-29 2006-06-29 Bandwidth Productions Inc. Interactive music playlist sharing system and methods
US20070073837A1 (en) * 2005-05-24 2007-03-29 Johnson-Mccormick David B Online multimedia file distribution system and method
US7856658B2 (en) * 2005-06-20 2010-12-21 Lijit Networks, Inc. Method and system for incorporating trusted metadata in a computing environment
US20070050354A1 (en) * 2005-08-18 2007-03-01 Outland Research Method and system for matching socially and epidemiologically compatible mates
US20070203790A1 (en) * 2005-12-19 2007-08-30 Musicstrands, Inc. User to user recommender
US20070208729A1 (en) * 2006-03-06 2007-09-06 Martino Paul J Using cross-site relationships to generate recommendations
US20070266026A1 (en) * 2006-03-06 2007-11-15 Murali Aravamudan Methods and systems for selecting and presenting content based on user preference information extracted from an aggregate preference signature
US20070265870A1 (en) * 2006-04-19 2007-11-15 Nec Laboratories America, Inc. Methods and systems for utilizing a time factor and/or asymmetric user behavior patterns for data analysis
US20070266048A1 (en) * 2006-05-12 2007-11-15 Prosser Steven H System and Method for Determining Affinity Profiles for Research, Marketing, and Recommendation Systems

Cited By (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078770A1 (en) * 2000-04-28 2003-04-24 Fischer Alexander Kyrill Method for detecting a voice activity decision (voice activity detector)
US20090018922A1 (en) * 2002-02-06 2009-01-15 Ryan Steelberg System and method for preemptive brand affinity content distribution
US20090024409A1 (en) * 2002-02-06 2009-01-22 Ryan Steelberg Apparatus, system and method for a brand affinity engine using positive and negative mentions
US8712868B2 (en) 2002-10-21 2014-04-29 Ebay Inc. Listing recommendation using generation of a user-specific query in a network-based commerce system
US20110055040A1 (en) * 2002-10-21 2011-03-03 Ebay Inc. Listing recommendation in a network-based commerce system
US9892156B2 (en) 2005-06-20 2018-02-13 Paypal, Inc. System to generate related search queries
US20060288000A1 (en) * 2005-06-20 2006-12-21 Raghav Gupta System to generate related search queries
US9183309B2 (en) 2005-06-20 2015-11-10 Paypal, Inc. System to generate related search queries
US8200687B2 (en) 2005-06-20 2012-06-12 Ebay Inc. System to generate related search queries
US20120166631A1 (en) * 2005-07-06 2012-06-28 Dov Moran Device and method for monitoring, rating and/or tuning to an audio content channel
US9077581B2 (en) * 2005-07-06 2015-07-07 Sandisk Il Ltd. Device and method for monitoring, rating and/or tuning to an audio content channel
US20100017398A1 (en) * 2006-06-09 2010-01-21 Raghav Gupta Determining relevancy and desirability of terms
US8954424B2 (en) 2006-06-09 2015-02-10 Ebay Inc. Determining relevancy and desirability of terms
US8200683B2 (en) 2006-06-09 2012-06-12 Ebay Inc. Determining relevancy and desirability of terms
US8312036B2 (en) * 2006-09-29 2012-11-13 Apple Inc. Recommended systems
US20080082479A1 (en) * 2006-09-29 2008-04-03 Apple Computer, Inc. Head-to-head comparisons
US20080082565A1 (en) * 2006-09-29 2008-04-03 Apple Computer, Inc. Recommended systems
US7979462B2 (en) 2006-09-29 2011-07-12 Apple Inc. Head-to-head comparisons
US20080243877A1 (en) * 2007-04-02 2008-10-02 International Business Machines Corporation Promoting content from one content management system to another content management system
US8095873B2 (en) * 2007-04-02 2012-01-10 International Business Machines Corporation Promoting content from one content management system to another content management system
US20130239008A1 (en) * 2007-04-05 2013-09-12 Napo Enterprises, Llc System And Method For Automatically And Graphically Associating Programmatically-Generated Media Item Recommendations Related To A User's Socially Recommended Media Items
US20100106730A1 (en) * 2007-04-30 2010-04-29 Aminian Mehdi Method of intermediation within a social network of users of a service/application to expose relevant media items
US20080294607A1 (en) * 2007-05-23 2008-11-27 Ali Partovi System, apparatus, and method to provide targeted content to users of social networks
US8051040B2 (en) * 2007-06-08 2011-11-01 Ebay Inc. Electronic publication system
US8606811B2 (en) 2007-06-08 2013-12-10 Ebay Inc. Electronic publication system
US20080306938A1 (en) * 2007-06-08 2008-12-11 Ebay Inc. Electronic publication system
US20090049540A1 (en) * 2007-08-18 2009-02-19 Khalil Ayman S Method and system for providing targeted web feed subscription recomendations calculated through knowledge of ip addresses
US8452764B2 (en) 2007-09-07 2013-05-28 Ryan Steelberg Apparatus, system and method for a brand affinity engine using positive and negative mentions and indexing
US9633505B2 (en) 2007-09-07 2017-04-25 Veritone, Inc. System and method for on-demand delivery of audio content for use with entertainment creatives
US20100274644A1 (en) * 2007-09-07 2010-10-28 Ryan Steelberg Engine, system and method for generation of brand affinity content
US7809603B2 (en) 2007-09-07 2010-10-05 Brand Affinity Technologies, Inc. Advertising request and rules-based content provision engine, system and method
US20100114719A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg Engine, system and method for generation of advertisements with endorsements and associated editorial content
US8548844B2 (en) 2007-09-07 2013-10-01 Brand Affinity Technologies, Inc. Apparatus, system and method for a brand affinity engine using positive and negative mentions and indexing
US20100318375A1 (en) * 2007-09-07 2010-12-16 Ryan Steelberg System and Method for Localized Valuations of Media Assets
US20100076838A1 (en) * 2007-09-07 2010-03-25 Ryan Steelberg Apparatus, system and method for a brand affinity engine using positive and negative mentions and indexing
US20100223249A1 (en) * 2007-09-07 2010-09-02 Ryan Steelberg Apparatus, System and Method for a Brand Affinity Engine Using Positive and Negative Mentions and Indexing
US20100076822A1 (en) * 2007-09-07 2010-03-25 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20100223351A1 (en) * 2007-09-07 2010-09-02 Ryan Steelberg System and method for on-demand delivery of audio content for use with entertainment creatives
US8285700B2 (en) 2007-09-07 2012-10-09 Brand Affinity Technologies, Inc. Apparatus, system and method for a brand affinity engine using positive and negative mentions and indexing
US20110040648A1 (en) * 2007-09-07 2011-02-17 Ryan Steelberg System and Method for Incorporating Memorabilia in a Brand Affinity Content Distribution
US20100131337A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for localized valuations of media assets
US20100131357A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for controlling user and content interactions
US20100114704A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg System and method for brand affinity content distribution and optimization
US20100114693A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg System and method for developing software and web based applications
US20100217664A1 (en) * 2007-09-07 2010-08-26 Ryan Steelberg Engine, system and method for enhancing the value of advertisements
US20100114863A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg Search and storage engine having variable indexing for information associations
US20110078003A1 (en) * 2007-09-07 2011-03-31 Ryan Steelberg System and Method for Localized Valuations of Media Assets
US20100114701A1 (en) * 2007-09-07 2010-05-06 Brand Affinity Technologies, Inc. System and method for brand affinity content distribution and optimization with charitable organizations
US8751479B2 (en) 2007-09-07 2014-06-10 Brand Affinity Technologies, Inc. Search and storage engine having variable indexing for information associations
US20100131085A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for on-demand delivery of audio content for use with entertainment creatives
US20100131336A1 (en) * 2007-09-07 2010-05-27 Ryan Steelberg System and method for searching media assets
US8725563B2 (en) 2007-09-07 2014-05-13 Brand Affinity Technologies, Inc. System and method for searching media assets
US20100114690A1 (en) * 2007-09-07 2010-05-06 Ryan Steelberg System and method for metricizing assets in a brand affinity content distribution
US20090070192A1 (en) * 2007-09-07 2009-03-12 Ryan Steelberg Advertising request and rules-based content provision engine, system and method
US20110047050A1 (en) * 2007-09-07 2011-02-24 Ryan Steelberg Apparatus, System And Method For A Brand Affinity Engine Using Positive And Negative Mentions And Indexing
US20110106632A1 (en) * 2007-10-31 2011-05-05 Ryan Steelberg System and method for alternative brand affinity content transaction payments
US20090112715A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20100076866A1 (en) * 2007-10-31 2010-03-25 Ryan Steelberg Video-related meta data engine system and method
US20090113468A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for creation and management of advertising inventory using metadata
US9294727B2 (en) 2007-10-31 2016-03-22 Veritone, Inc. System and method for creation and management of advertising inventory using metadata
US20090112714A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20090112717A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Apparatus, system and method for a brand affinity engine with delivery tracking and statistics
US20090112700A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for brand affinity content distribution and optimization
US20090112692A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20090299837A1 (en) * 2007-10-31 2009-12-03 Ryan Steelberg System and method for brand affinity content distribution and optimization
US9854277B2 (en) 2007-10-31 2017-12-26 Veritone, Inc. System and method for creation and management of advertising inventory using metadata
US20090112698A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for brand affinity content distribution and optimization
US20090112718A1 (en) * 2007-10-31 2009-04-30 Ryan Steelberg System and method for distributing content for use with entertainment creatives
US9754308B2 (en) 2007-11-02 2017-09-05 Ebay Inc. Inferring user preferences from an internet based social interactive construct
US9443199B2 (en) 2007-11-02 2016-09-13 Ebay Inc. Interestingness recommendations in a computing advice facility
US9467487B2 (en) * 2007-12-21 2016-10-11 Jonathan Davar Computing device that provides a user with a web-supplement
US20150222676A1 (en) * 2007-12-21 2015-08-06 Jonathan Davar Supplementing User Web-Browsing
US20160381096A1 (en) * 2007-12-21 2016-12-29 Jonathan Davar Supplementing User Web-Browsing
US20090172127A1 (en) * 2007-12-28 2009-07-02 International Business Machines Corporation System and methods for recommending network content based upon social networking
US7984056B1 (en) * 2007-12-28 2011-07-19 Amazon Technologies, Inc. System for facilitating discovery and management of feeds
US8589418B1 (en) 2007-12-28 2013-11-19 Amazon Technologies, Inc. System for facilitating discovery and management of feeds
US20090234691A1 (en) * 2008-02-07 2009-09-17 Ryan Steelberg System and method of assessing qualitative and quantitative use of a brand
US20090228354A1 (en) * 2008-03-05 2009-09-10 Ryan Steelberg Engine, system and method for generation of brand affinity content
US7822753B2 (en) * 2008-03-11 2010-10-26 Cyberlink Corp. Method for displaying search results in a browser interface
US20090234828A1 (en) * 2008-03-11 2009-09-17 Pei-Hsuan Tu Method for displaying search results in a browser interface
US8255402B2 (en) 2008-04-23 2012-08-28 British Telecommunications Public Limited Company Method and system of classifying online data
US8825650B2 (en) * 2008-04-23 2014-09-02 British Telecommunications Public Limited Company Method of classifying and sorting online content
US20110035377A1 (en) * 2008-04-23 2011-02-10 Fang Wang Method
US20110035381A1 (en) * 2008-04-23 2011-02-10 Simon Giles Thompson Method
WO2009140085A3 (en) * 2008-05-15 2010-02-18 Yahoo, Inc. Method and apparatus for utilizing social network information for showing reviews
US8407286B2 (en) 2008-05-15 2013-03-26 Yahoo! Inc. Method and apparatus for utilizing social network information for showing reviews
WO2009140085A2 (en) * 2008-05-15 2009-11-19 Yahoo, Inc. Method and apparatus for utilizing social network information for showing reviews
US20090287774A1 (en) * 2008-05-15 2009-11-19 Kunal Punera Method and Apparatus for Utilizing Social Network Information for Showing Reviews
US9123022B2 (en) 2008-05-28 2015-09-01 Aptima, Inc. Systems and methods for analyzing entity profiles
US20110072052A1 (en) * 2008-05-28 2011-03-24 Aptima Inc. Systems and methods for analyzing entity profiles
US9594825B2 (en) 2008-05-28 2017-03-14 Aptima, Inc. Systems and methods for analyzing entity profiles
US20090307053A1 (en) * 2008-06-06 2009-12-10 Ryan Steelberg Apparatus, system and method for a brand affinity engine using positive and negative mentions
US20100107189A1 (en) * 2008-06-12 2010-04-29 Ryan Steelberg Barcode advertising
US20090319603A1 (en) * 2008-06-23 2009-12-24 Microsoft Corporation Content management using a website
US8396924B2 (en) 2008-06-23 2013-03-12 Microsoft Corporation Content management using a website
WO2010014664A1 (en) * 2008-07-29 2010-02-04 Brand Affinity Technologies, Inc. Apparatus, system and method for a brand affinity engine with delivery tracking and statistics
US20100030746A1 (en) * 2008-07-30 2010-02-04 Ryan Steelberg System and method for distributing content for use with entertainment creatives including consumer messaging
US20100057719A1 (en) * 2008-09-02 2010-03-04 Parashuram Kulkarni System And Method For Generating Training Data For Function Approximation Of An Unknown Process Such As A Search Engine Ranking Algorithm
WO2010027917A1 (en) * 2008-09-02 2010-03-11 Conductor, Inc. System and method for generating training data for function approximation of an unknown process such as a search engine ranking algorithm
US20100107094A1 (en) * 2008-09-26 2010-04-29 Ryan Steelberg Advertising request and rules-based content provision engine, system and method
US20110131141A1 (en) * 2008-09-26 2011-06-02 Ryan Steelberg Advertising request and rules-based content provision engine, system and method
US20100114692A1 (en) * 2008-09-30 2010-05-06 Ryan Steelberg System and method for brand affinity content distribution and placement
US8176046B2 (en) * 2008-10-22 2012-05-08 Fwix, Inc. System and method for identifying trends in web feeds collected from various content servers
US20100100537A1 (en) * 2008-10-22 2010-04-22 Fwix, Inc. System and method for identifying trends in web feeds collected from various content servers
WO2010051380A1 (en) * 2008-10-29 2010-05-06 Brand Affinity Technologies, Inc. A search and storage engine having variable indexing for information associations
WO2010063878A1 (en) * 2008-12-04 2010-06-10 Nokia Corporation Methods, apparatuses, and computer program products in social services
US20100144440A1 (en) * 2008-12-04 2010-06-10 Nokia Corporation Methods, apparatuses, and computer program products in social services
US9773043B2 (en) 2008-12-10 2017-09-26 Gartner, Inc. Implicit profile for use with recommendation engine and/or question router
US20100250347A1 (en) * 2009-03-31 2010-09-30 Sony Corporation System and method for utilizing a transport structure in a social network environment
CN101854312A (en) * 2009-03-31 2010-10-06 索尼公司;索尼电子有限公司 System and method for utilizing a transport structure in a social network environment
US8301624B2 (en) * 2009-03-31 2012-10-30 Yahoo! Inc. Determining user preference of items based on user ratings and user features
US20100250556A1 (en) * 2009-03-31 2010-09-30 Seung-Taek Park Determining User Preference of Items Based on User Ratings and User Features
US8909626B2 (en) 2009-03-31 2014-12-09 Yahoo! Inc. Determining user preference of items based on user ratings and user features
CN101873310A (en) * 2009-04-27 2010-10-27 索尼公司;索尼电子有限公司 System and method for distributing contextual information in an electronic network
US9891779B2 (en) * 2009-05-05 2018-02-13 Oracle America, Inc. System, method and computer readable medium for determining user attention area from user interface events
US20120047427A1 (en) * 2009-05-05 2012-02-23 Suboti, Llc System, method and computer readable medium for determining user attention area from user interface events
US20100299275A1 (en) * 2009-05-21 2010-11-25 Computer Associates Think, Inc. Content-based social computing
US20110016121A1 (en) * 2009-07-16 2011-01-20 Hemanth Sambrani Activity Based Users' Interests Modeling for Determining Content Relevance
US8612435B2 (en) 2009-07-16 2013-12-17 Yahoo! Inc. Activity based users' interests modeling for determining content relevance
US20110035674A1 (en) * 2009-08-06 2011-02-10 Oracle International Corporation Recommendations matching a user's interests
US9477672B2 (en) 2009-12-02 2016-10-25 Gartner, Inc. Implicit profile for use with recommendation engine and/or question router
US20140108395A1 (en) * 2010-02-03 2014-04-17 Gartner, Inc. Methods and systems for modifying a user profile for a recommendation algorithm and making recommendations based on user interactions with items
US9442989B1 (en) 2010-02-08 2016-09-13 Google Inc. Scoring authors of posts
US9846728B1 (en) 2010-02-08 2017-12-19 Google Inc. Scoring authors of posts
US8983974B1 (en) * 2010-02-08 2015-03-17 Google Inc. Scoring authors of posts
US20150026148A1 (en) * 2010-03-09 2015-01-22 Yahoo! Inc. User specific feed recommendations
US9747374B2 (en) * 2010-03-09 2017-08-29 Excalibur Ip, Llc User specific feed recommendations
US8832099B2 (en) * 2010-03-09 2014-09-09 Yahoo! Inc. User specific feed recommendations
US20110225197A1 (en) * 2010-03-09 2011-09-15 Timothy Howes User specific feed recommendations
US20130031179A1 (en) * 2010-04-16 2013-01-31 President And Fellows Of Harvard College Social-network method for anticipating epidemics and trends
US9785888B2 (en) * 2010-05-31 2017-10-10 Sony Corporation Information processing apparatus, information processing method, and program for prediction model generated based on evaluation information
US20120330932A1 (en) * 2010-06-07 2012-12-27 Microsoft Corporation Presenting supplemental content in context
US20110307294A1 (en) * 2010-06-10 2011-12-15 International Business Machines Corporation Dynamic generation of products for online recommendation
US9002924B2 (en) 2010-06-17 2015-04-07 Microsoft Technology Licensing, Llc Contextual based information aggregation system
US9979994B2 (en) 2010-06-17 2018-05-22 Microsoft Technology Licensing, Llc Contextual based information aggregation system
US9679068B2 (en) 2010-06-17 2017-06-13 Microsoft Technology Licensing, Llc Contextual based information aggregation system
US8554756B2 (en) 2010-06-25 2013-10-08 Microsoft Corporation Integrating social network data with search results
US20130311568A1 (en) * 2010-08-16 2013-11-21 Facebook, Inc. Suggesting connections to a user based on an expected value of the suggestion to the social networking system
US20150088877A1 (en) * 2011-01-20 2015-03-26 Linkedln Corporation Methods and systems for utilizing activity data with clustered events
US9805127B2 (en) * 2011-01-20 2017-10-31 Linkedin Corporation Methods and systems for utilizing activity data with clustered events
US20120278262A1 (en) * 2011-04-28 2012-11-01 Jared Morgenstern Suggesting Users for Interacting in Online Applications in a Social Networking Environment
US20140222622A1 (en) * 2011-05-27 2014-08-07 Nokia Corporation Method and Apparatus for Collaborative Filtering for Real-Time Recommendation
US9183172B1 (en) * 2011-06-22 2015-11-10 Amazon Technologies, Inc. Author interactions using online social networks
CN102937954A (en) * 2011-08-16 2013-02-20 同程网络科技股份有限公司 One-stop type travel information searching method
US9773063B2 (en) * 2011-12-07 2017-09-26 Facebook, Inc. Real-time online-learning object recommendation engine
US20130151539A1 (en) * 2011-12-07 2013-06-13 Yanxin Shi Real-Time Online-Learning Object Recommendation Engine
US20130159254A1 (en) * 2011-12-14 2013-06-20 Yahoo! Inc. System and methods for providing content via the internet
US9241015B1 (en) * 2012-02-13 2016-01-19 Google Inc. System and method for suggesting discussion topics in a social network
US20130253994A1 (en) * 2012-03-22 2013-09-26 Yahoo! Inc. Systems and methods for micro-payments and donations
US9495416B2 (en) * 2012-09-11 2016-11-15 Korea Institute Of Science And Techonology Method, apparatus, and system to recommend multimedia contents using metadata
US20140074879A1 (en) * 2012-09-11 2014-03-13 Yong-Moo Kwon Method, apparatus, and system to recommend multimedia contents using metadata
US20140089403A1 (en) * 2012-09-27 2014-03-27 Alexander P. Gross System and Method for Qualifying and Targeting Communications using Social Relationships
US20140143720A1 (en) * 2012-11-16 2014-05-22 BFF Biz, LLC Item recommendations
US20140157096A1 (en) * 2012-12-05 2014-06-05 International Business Machines Corporation Selecting video thumbnail based on surrounding context
US20140214946A1 (en) * 2013-01-30 2014-07-31 Hans van de Bruggen Batch connect
US9407719B2 (en) * 2013-01-30 2016-08-02 Linkedin Corporation Batch connect
US20160373549A1 (en) * 2013-01-30 2016-12-22 Linkedin Corporation Batch connect
US20140289334A1 (en) * 2013-03-06 2014-09-25 Tencent Technology (Shenzhen) Company Limited System and method for recommending multimedia information
US20140280079A1 (en) * 2013-03-13 2014-09-18 Google Inc. Creating Lists of Digital Content
WO2014155380A1 (en) * 2013-03-24 2014-10-02 Orca Interactive Ltd System and method for topics extraction and filtering
US9547698B2 (en) 2013-04-23 2017-01-17 Google Inc. Determining media consumption preferences
US20140317099A1 (en) * 2013-04-23 2014-10-23 Google Inc. Personalized digital content search
US9471671B1 (en) * 2013-12-18 2016-10-18 Google Inc. Identifying and/or recommending relevant media content
US9990404B2 (en) 2014-01-30 2018-06-05 Microsoft Technology Licensing, Llc System and method for identifying trending topics in a social network
US10013483B2 (en) * 2014-01-30 2018-07-03 Microsoft Technology Licensing, Llc System and method for identifying trending topics in a social network
US20150213119A1 (en) * 2014-01-30 2015-07-30 Linkedin Corporation System and method for identifying trending topics in a social network
US20150242755A1 (en) * 2014-02-25 2015-08-27 John Nicholas And Kristin Gross Trust U/A/D April 13, 2010 Social Content Connection System & Method
US20150319181A1 (en) * 2014-04-30 2015-11-05 Twitter, Inc. Application Graph Builder
US9866586B2 (en) 2014-04-30 2018-01-09 Twitter, Inc. Facilitating cross-platform content access
US9825987B2 (en) * 2014-04-30 2017-11-21 Twitter, Inc. Application graph builder
CN103955535A (en) * 2014-05-14 2014-07-30 南京大学镇江高新技术研究院 Individualized recommending method and system based on element path
CN104077351A (en) * 2014-05-26 2014-10-01 东北师范大学 Heterogeneous information network based content providing method and system
US20150347413A1 (en) * 2014-05-30 2015-12-03 Facebook, Inc. Systems and methods for providing non-manipulable trusted recommendations
US20150381682A1 (en) * 2014-06-30 2015-12-31 Yahoo! Inc. Podcasts in Personalized Content Streams
US9661100B2 (en) * 2014-06-30 2017-05-23 Yahoo! Inc. Podcasts in personalized content streams
CN104077417A (en) * 2014-07-18 2014-10-01 中国科学院计算技术研究所 Figure tag recommendation method and system in social network
CN104376083A (en) * 2014-11-18 2015-02-25 电子科技大学 Graph recommendation method based on concern relations and multiple user behaviors
US20160162585A1 (en) * 2014-12-08 2016-06-09 Samsung Electronics Co., Ltd. Method for providing social media content and electronic device using the same
US10061817B1 (en) 2015-07-29 2018-08-28 Google Llc Social ranking for apps
EP3171325A1 (en) * 2015-11-23 2017-05-24 Amadeus S.A.S. Systems and methods for making social media user correlations with an external data source
FR3044129A1 (en) * 2015-11-23 2017-05-26 Amadeus Sas
CN105653626A (en) * 2015-12-28 2016-06-08 深圳市金立通信设备有限公司 Content pushing method and terminal

Also Published As

Publication number Publication date Type
US20150178304A1 (en) 2015-06-25 application
US20140081754A1 (en) 2014-03-20 application
US20140081965A1 (en) 2014-03-20 application
US9275170B2 (en) 2016-03-01 grant
US20140081756A1 (en) 2014-03-20 application
US20140081943A1 (en) 2014-03-20 application
US9507878B2 (en) 2016-11-29 grant
US20140081755A1 (en) 2014-03-20 application
US9275171B2 (en) 2016-03-01 grant
US20140081757A1 (en) 2014-03-20 application
US9646109B2 (en) 2017-05-09 grant
US20140081960A1 (en) 2014-03-20 application
US9652557B2 (en) 2017-05-16 grant
US20140089103A1 (en) 2014-03-27 application

Similar Documents

Publication Publication Date Title
Ricci et al. Recommender systems: introduction and challenges
Mostafa More than words: Social networks’ text mining for consumer brand sentiments
US7181438B1 (en) Database access system
Jindal et al. Opinion spam and analysis
Hu et al. Demographic prediction based on user's browsing behavior
US5754938A (en) Pseudonymous server for system for customized electronic identification of desirable objects
US7464086B2 (en) Metatag-based datamining
US20100017262A1 (en) Predicting selection rates of a document using click-based translation dictionaries
US20060279799A1 (en) System and method for retrieving and displaying information relating to electronic documents available from an informational network
US8352499B2 (en) Serving advertisements using user request information and user information
US20090076887A1 (en) System And Method Of Collecting Market-Related Data Via A Web-Based Networking Environment
US20070288602A1 (en) Interest-based communities
US20050114198A1 (en) Using concepts for ad targeting
IJntema et al. Ontology-based news recommendation
US20100235311A1 (en) Question and answer search
US20070266025A1 (en) Implicit tokenized result ranking
US20060026147A1 (en) Adaptive search engine
US20090265332A1 (en) System and Methods for Evaluating Feature Opinions for Products, Services, and Entities
US20070250501A1 (en) Search result delivery engine
US20090037355A1 (en) Method and Apparatus for Context-Based Content Recommendation
US20110225043A1 (en) Emotional targeting
US20080071872A1 (en) Document Distribution Recommender System & Method
US20060282328A1 (en) Computer method and apparatus for targeting advertising
US20060287920A1 (en) Method and system for contextual advertisement delivery
US20090019013A1 (en) Processing a content item with regard to an event

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHN NICHOLAS AND KRISTIN GROSS TRUST U/A/D APRIL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GROSS, JOHN NICHOLAS;REEL/FRAME:025204/0115

Effective date: 20101027