CN103814199B - 使用涡轮机的压缩气体能量储存系统 - Google Patents

使用涡轮机的压缩气体能量储存系统 Download PDF

Info

Publication number
CN103814199B
CN103814199B CN201280045853.6A CN201280045853A CN103814199B CN 103814199 B CN103814199 B CN 103814199B CN 201280045853 A CN201280045853 A CN 201280045853A CN 103814199 B CN103814199 B CN 103814199B
Authority
CN
China
Prior art keywords
turbine
gas
energy
chamber
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280045853.6A
Other languages
English (en)
Other versions
CN103814199A (zh
Inventor
艾德文·P·小柏林
史蒂芬·E·克莱恩
阿米尔侯赛英·波莫萨·阿比克娜
丹尼尔·A·方
卡尔·E·斯塔卡夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LightSail Energy Inc
Original Assignee
LightSail Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LightSail Energy Inc filed Critical LightSail Energy Inc
Publication of CN103814199A publication Critical patent/CN103814199A/zh
Application granted granted Critical
Publication of CN103814199B publication Critical patent/CN103814199B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1853Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines coming in direct contact with water in bulk or in sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/42Storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供一种使用压缩气体作为储存介质的能量储存系统。所述能量储存系统包括一台或多台涡轮机,其构造为在气体膨胀和压缩过程中对能量进行转换。可使用一台或多台轴向和离心式涡轮机通过压缩气体来储存能量,并从膨胀气体回收能量。多个孔口/喷嘴可将液体引入气体中作为换热介质。孔口/喷嘴可设置在涡轮机的各表面上和/或通往涡轮机的单独混合腔内。可将所述涡轮机的结构设计为能够减小喷入液体所造成的损坏,例如,所述涡轮机叶片具有可弯曲性和/或由耐冲击材料组成。

Description

使用涡轮机的压缩气体能量储存系统
相关申请的交叉引用
本申请案要求2011年9月20日提交的美国临时专利申请61/536,813的优先权,该美国临时专利申请案通过引述全部结合于此,用于各种用途。
背景技术
美国专利申请案第13/010,683号通过引述全部结合于本文中。
发明内容
各实施例大体而言涉及能量储存系统,且具体而言,涉及使用一台或多台涡轮机来压缩和/或膨胀气体的能量储存系统。在各个实施例中,一种压缩气体能量储存系统可包括多台配置为在气体膨胀和压缩过程中转换能量的涡轮机。可使用一台或多台轴向和离心式涡轮机通过压缩气体来储存能量,并从膨胀气体回收能量。多个孔口/喷嘴可将液体引入气体中作为换热介质。孔口/喷嘴可设置在涡轮机的各表面上和/或通往涡轮机的单独混合腔内。可将所述涡轮机的结构设计为能够减小喷入液体所造成的损坏,例如,所述涡轮机叶片具有可弯曲性和/或由耐冲击材料组成。
附图说明
图1是轴向涡轮机的实施例的简化横剖视图;
图2a和图2b是轴向涡轮机的实施例的横剖视图;
图2c是轴向涡轮机的实施例的局部剖面图;
图3是离心式涡轮机的实施例的局部剖面图;
图4是能量储存系统的实施例的示意图;
图5a是轴向涡轮机的实施例的横剖视图,其中显示有孔口位置;
图5b是轴向涡轮机的实施例的平面图,其中显示有孔口位置;
图6是涡轮机和定子的实施例的局部剖面图;
图7是带为设置作为定子的孔口的涡轮机的实施例的局部剖面图;
图8a是孔口的实施例的横剖视图;
图8b是处于孔口位置内的可移除喷嘴的实施例的剖面图;
图9是带为设置在轴内的孔口的涡轮机的实施例的局部剖面图;
图10是离心式涡轮机和孔口位置的实施例的局部剖视图;
图11是离心式涡轮机轴和叶片的实施例的平面图;
图12是涡轮机和混合腔的实施例的局部剖面图;
图13是示例可逆式压缩机/膨胀机装置与各个其他系统元件之间的关系的简化视图;
图14A和图14B例示具有可弯曲性、轻质量叶片的可逆式涡轮机的实施例;
图14C例示具有可弯曲性、轻质量叶片的单向涡轮机的实施例;
图14D例示具有可弯曲性、轻质量叶片的可逆式涡轮机的实施例;
图15A显示基于喷入液体与膨胀气体进行换热来运行的旋转式膨胀机装置的运行;
图15B显示图15A中所示装置基于蒸汽输入进行的选择性运行;
图15C显示基于喷入液体与膨胀气体进行换热来运行的往复式膨胀机装置的运行;
图15D显示图15C中所示装置基于蒸汽输入进行的选择性运行;
图16A-图16C显示包括旋转构件并利用在换热液体内作为气泡存在的气体的可逆式压缩机/膨胀机的实施例的视图;
图17一般性绘示了压缩气体系统与外部元件之间的交互作用;
图18是向终端用户供电的网络的简化示意图;
图19是被纳入供电网络内的能量储存系统的可能的功能的表格;
图20显示可由根据本发明的实施例的压缩气体能量储存和回收系统执行的平整功能的简化视图;
图21显示根据本发明的压缩气体能量储存和回收系统的实施例的简化视图,所述压缩气体能量储存和回收系统与发电资产定位在同一地点;
图21A显示利用马达/发电机组合和压缩机/膨胀机组合的压缩气体能量储存和回收系统的实施例的简化视图;
图21B显示利用专用马达、发电机、压缩机和膨胀机元件的压缩气体能量储存和回收系统的实施例的简化视图;
图21C显示根据本发明的一种利用多节点齿轮传动系统的压缩气体能量储存和回收系统的实施例的简化视图;
图22显示可在本发明的实施例中可使用的一个行星齿轮系统的实施例的简化俯视图;图22A显示图22中所示行星齿轮系统沿线22A-22A'截取的简化剖面图;
图23是列出根据本发明的实施例的能量储存系统的加热和冷却功能的表格;
图24显示根据本发明的一种压缩气体能量储存和回收系统的实施例的简化视图,所述压缩气体能量储存和回收系统与终端用户定位在仪表后面同一地点;
图25绘制功率与时间的关系曲线,其中显示将电网容量从可再生能源转变为长期发电资产的实例;
图25A是包括对能量系统与供电网络的运行进行协调的处理器的系统的简化示意图;
图26A-图26B显示根据本发明的系统的实施例的不同视图,所述系统经配置以接纳不同输入,并产生不同输出;
图27A显示根据本发明的装置的实施例的简化视图;
图27BA-图27BF是气体流过图27A中所示的采用不同构造的装置的高度简化绘示图;
图27C-图27EB是显示系统的实施例采用不同构造时的不同能量通路;
图28显示分配系统的实施例的输入和输出的流程图;
图29显示将能量储存系统的实施例与供电网络的发电和输电资源相结合的示意图;以及
图30绘示根据实施例的能量储存系统和基线联合循环涡轮机装置的能量输出与时间的关系曲线。
具体实施方式
压缩空气能够按与铅酸电池类似的密度储存能量。然而,压缩气体不牵涉到与电池相关的问题,例如寿命有限、材料的可用性或环保问题。
压缩气体储存气体执行对气体进行压缩以储存能量、并通过将气体恢复到低压以回收能量的功能。为减小(例如)系统的尺寸、复杂性和成本,可能需要使用同一设备用于过程的压缩阶段和膨胀阶段两者。在美国专利公开案第2011/0115223号(“公开案”)中可查到上述系统的实例,该美国专利公开案通过引述全部结合于本文中。
应了解,下述概念可能包括在“公开案”中所述的一个或多个概念。例如,可使用气体起泡来代替射流或将其与射流相结合,以实现与膨胀或压缩气体的气-液换热。例如,可将气体引入腔室利用涡轮机的旋转叶片通过液体进行压缩或膨胀。
可采用基于涡轮机的设计在旋转运动与压缩气体之间转换能量。如图1所示,根据一实施例的轴向涡轮机包括至少一个转子2,转子2耦接到轴4。
通常,将转子和轴的部分使用壳体10进行封闭,以保护叶片并容纳气体。壳体10包括第一腔口8和第二腔口6。在例如当所述第一腔口构造为进口腔口时,气体从第一腔口移动通过转子2,使轴4发生旋转。在轴向涡轮机中,气体平行于轴4的轴线流动。
可使用所述系统将电能转换为由压缩气体储存的势能。例如,可通过供应给与轴4耦接的马达-发电机14的电力使轴4发生旋转,从而使轴发生旋转。
根据某些实施例,马达-发电机可包括与轴上所存在的磁性元件进行磁性连通的线圈。轴和磁性元件相对于线圈发生的旋转会基于感应原理在线圈内产生电流。
由于转子上的叶片的形状和定向,叶片作为气翼工作,使得当轴旋转时会产生预定方向上的合力。所述力使空气流过壳体10,这会在进口8处产生真空,并将空气压缩通过出口6。
在将压缩气体储存单元耦接到出口6或下一高压级时,该系统会以压缩气体的形式有效地储存能量。合适的压缩气体储存单元的实例包括人造结构,例如金属或复合材料压力容器。可适合储存压缩气体的替代结构包括枯竭的油田或气田,以及天然存在的地形,例如地下洞穴和多孔地质构成。
在将从涡轮机流来的气体进行储存或传递到下一高压级之前,可对其实施某些过程。例如,如下文中所详述,可将液体引入气体以进行换热。可使气体流经气-液分离器,以从中回收液体供储存和/或再利用。还可使气体流过诸如冷凝器和换热器等结构。
可对图1中所示或本文中所述其他实施例中的系统进行操作,将以压缩气体形式储存的能量转换为电力。具体而言,可将压缩气体从压缩气体储存单元引入进口8,压缩气体作用在转子2上以使轴旋转。马达/发电机的轴的旋转可产生电力。
如下文中所述,可将液体引入,以便与膨胀气体进行换热。相应地,可使膨胀后的气体从涡轮机流经气-液分离器,以从中回收液体供储存和/或再利用。还可使膨胀后的气体在流到下一低压级或大气中之前,流经诸如冷凝器、减噪器和/或换热器。
尽管图1中的具体实施例显示涡轮机构造成选择性地接收来自马达/发电机的能量,以对气体进行压缩供储存,但并不要求如此。根据替代实施例,涡轮机转子可选择性地与能量源而不是马达/发电机进行连通。
例如,在某些实施例中,涡轮机转子可与作为能量源的另一涡轮机连通。在一些实施例中,所述另一涡轮机可为风力涡轮机。可选择性地连通能量进行气体压缩的涡轮机的其他形式还包括燃烧涡轮机,例如使用天然气运行的燃烧涡轮机。可选择性地连通以进行气体压缩的涡轮机的再一形式还包括蒸汽涡轮机。
在某些实施例中,可将来自能量源的能量直接连通到用于压缩气体进行能量储存的涡轮机的转子。例如,可将用于压缩气体的涡轮机的转子定位在与负责驱动所述第一涡轮机的第二涡轮机(风力涡轮机、燃烧涡轮机、蒸汽涡轮机)同一轴上。或者,可通过一或多个连接将能量源与用于压缩气体的涡轮机连通,例如液压连接、电子连接、静电连接、磁性连接或机械连接。
本发明的使用基于涡轮机的系统进行气体压缩和/或膨胀的实施例与各其他设计相比具有一或多个优点。例如,具有往复式活塞的设计可能在活塞的侧壁与壳体的侧壁之间使用密封。所述密封会增加系统的成本和复杂性,并且是可能需要定期进行维修的失效位置。
另外,基于活塞的系统的该额外密封抵靠壳体的侧壁移动可能导致摩擦损失。所述摩擦还会在系统中产生额外的热量。不带往复式活塞与侧壁之间的密封的基于涡轮机的系统可避免上述两种损失。
另外,基于活塞的系统必须承受重复压缩所产生的力,而不会变形到密封失效的程度。相应地,该活塞可具有相当大的质量。因此,要消耗大量的能量来移动该活塞的质量,从而导致系统的效率降低。相反,只需要较小的能量来移动基于涡轮机的系统中的轴。
为实现高度的气体压缩,本发明的实施例可利用多级涡轮机。如图2a中所示的具体实施例,多级轴向涡轮机240具有多个转子202,每一转子都具有多个叶片,所述叶片沿轴204布置。
轴向涡轮机240还可包括设置在转子之间的定子226。尽管转子202与轴一起旋转,但定子226是静止的。将定子226的叶片与转子的叶片对向布置。可将定子耦接到壳体210。
定子用于涡轮机中的多个功能。定子可增大系统中的压力。定子还可使气体保持沿轴向流动。
如图2a中所示,在某些实施例中,壳体210的内侧壁可与轴204的外侧壁彼此平行。在一些实施例中(例如如图2b中所示),壳体210的内侧壁的内直径可沿轴204的轴线减小。
在其他实施例中(例如如图2c中所示),转子202的外直径可沿其轴线变化,以逐渐改变转子与壳体之间的空间。图2c还显示转子202的轴204与发电机211(可为马达/发电机)之间的连通。
应注意,独立、明显的轴/转子组合并不一定对所有实施例都要求如此。在某些实施例中,转子可包括构造成供旋转的整体结构,用于产生电力的磁性元件靠近线圈设置,线圈在转子的包括涡轮机叶片的一端的对向一端定位。线圈可布置成使其轴线指向轴的轴线。
在图2b和2c中所示的具体实施例中,涡轮机腔室的容积沿从左至右的方向减小。容积的减小用于当气体通过每一级压缩时与质量流量匹配。
在某些实施例中,所述系统可包括相对大数量的压缩和/或膨胀级。如果每一级都具有1.1的压力比,300个大气压的顶部压力可利用约60级。涡轮机内级数的范围包括但不限于1-10,1-20,1-30,1-40,1-50或1-60或更多。为了优化所述系统的效率,可将各个转子耦接到以不同速度旋转的多个同心轴。
根据各实施例的可用于压缩能量储存系统中的气体的涡轮机的另一形式是离心式涡轮机。图3显示离心式涡轮机的一实施例的简化视图。
离心式涡轮机330包括设置在涡轮机中心的轴304。将轴耦接到转子332,转子332具有经优化的三维几何形状,以使气体垂直于轴304的旋转轴线径向流过腔室。例如,图3中所示的涡轮机可具有朝向轴304设置的进口腔口,气体从该进口腔口进入腔室。自转的轴304使转子332转动,从而使该系统作为离心机,迫使气体进入腔室的外侧。然后,气体流过设置在腔室的侧壁中的出口334成为压缩气体。
可以将轴向涡轮机与离心式涡轮机的各个组合用于压缩和/或膨胀。可将多个离心式涡轮机与轴向涡轮机彼此串联耦接,以优化不同压力下过程的效率。
在一些实施例中,可按单向方式运行涡轮机进行压缩和膨胀。例如,气体在一个方向上流经离心式涡轮机。
根据某些实施例,可使用双向涡轮机结构。例如,可按双向方式运行轴向涡轮机。
具体实施例可使用单向和双向涡轮机结构两者。图4中所示的多级实施例显示一实例。
在压缩模式下运行时,进口440引入低压气体,并将其提供给离心式涡轮机430。此时,阀门442对压缩气体储存单元444关闭,但在该进口与离心式涡轮机之间打开。提供电力以使离心式涡轮机430旋转,从而压缩气体并将其通过多路阀450输送到轴向涡轮机424的低压力侧。在一些实施例中,可将多个轴向涡轮机串联连接。阀门446在轴向涡轮机的高压侧与压缩气体储存单元444之间打开,使储罐填充压缩气体。
可通过改变阀门状态来实现膨胀过程。具体而言,将阀门446打开,实现压缩气体储存单元与轴向涡轮机的高压侧之间的流体连通。流过轴向涡轮机424的气体驱动该涡轮机产生电力。
然后,使被该级膨胀后的气体经过阀门450、448和442流到离心式涡轮机的进口。进一步膨胀的气体驱动该离心式涡轮机发出更多的电力。然后,膨胀后的气体经由多路阀450到排出腔口452。
在图4中所示的实施例中,阀门448选择性地与储存单元444连通。这可仅利用所述离心式压缩机实现压缩和膨胀两者的多级运行模式。
尽管图4中所示的具体实施例使用离心式涡轮机430作为第一级,但并不要求如此。其他实施例可在压缩和/或膨胀过程中使用串联布置的另一类型的涡轮机。
在一些实施例中,系统可包括一个或多个旁路。这可实现仅使用从多个可用涡轮机中选择的涡轮机进行压缩或膨胀过程。
例如,在压缩过程中,阀门442可在进口440与阀门448之间打开,同时阀门448在阀门442与阀门450之间打开,且阀门450在阀门448与轴向涡轮机424之间打开。此构造将离心式涡轮机430在压缩过程中旁路。类似地,在膨胀过程中,可将阀门452构造成将膨胀后的气体直接排放到出口,从而将离心式涡轮机430旁路。
可将多台涡轮机与一台或多台马达/发电机设置在一根轴上,或者与单独的马达/发电机设置在单独的轴上。例如,在图4中所示的多级实施例中,离心式涡轮机将始终在同一方向上转动,同时轴向涡轮机将在压缩期间在一个方向上转动,在膨胀期间沿反向转动。于是,可将离心式涡轮机430耦接到第一马达/发电机,可将轴向涡轮机424耦接到第二马达/发电机。或者,两台涡轮机都可与一台马达/发电机连通,在轴向涡轮机或者离心式涡轮机上使用机械反向连接,以保持轴彼此在同一方向上旋转。
在各个实施例中,可将同一涡轮机用于气体压缩过程和气体膨胀过程两者。在某些实施例中,可将单独的涡轮机专用于执行这些气体压缩或膨胀功能。
某些实施例的特点是在压缩和/或膨胀期间将气体维持在期望的温度范围内。在一些实施例中,该温度范围提供等温的或近似等温的能量传递。
根据本发明的实施例的运行可具有使被压缩或膨胀的气体的温度范围改变某个数量的特点。根据一个实施例,在压缩循环期间,气体可发生100摄氏度或较小的温度增加、60摄氏度或较小的温度增加、50摄氏度或较小的温度增加、40摄氏度或较小的温度增加、30摄氏度或较小的温度增加、20摄氏度或较小的温度增加、10摄氏度或较小的温度增加、或者5摄氏度或较小的温度增加。
在一些实施例中,在膨胀循环期间,气体可发生100摄氏度或较小、15摄氏度或较小、或者11摄氏度或较小的温度减小。
为实现等温的压缩和膨胀,本发明的实施例可使用液体与该系统中的气体进行换热。可将液体作为换热介质引入气体本身。
在压缩过程中,可将液体增加到在压缩期间受热的气体中,从而从气体吸收热量。相反,在膨胀过程中,可将液体引入在膨胀期间被冷却的气体中,从而向该系统提供热量。可通过在压缩期间引入温度较低的液体、在膨胀期间引入温度较高的液体来提高系统性能。
在利用喷入的液体作为换热介质的实施例中,膨胀气体发生的温度变化可能接近从初始室温到液体的凝固点。在某些实施例中,被喷入进行换热的液体可包括凝固点为0摄氏度的水。
通常,预计根据本发明的实施例被引入完成换热的液体不会在该腔室内发生燃烧。于是,尽管被喷入执行换热的液体可能是可燃的(例如,油、酒精、煤油、柴油或生物柴油),在许多实施例中,预计其不会在腔室内发生燃烧。至少在此方面,根据本发明的实施例进行液体引入可有别于将液体引入涡轮机和马达进行燃烧的情况。
根据本发明的实施例的一系统可包括热能储存部件。例如,系统可将在压缩过程中已受热的液体保存在保温容器中。以后可将此储存的受热液体用于向膨胀过程增加热量,从而增加能量效率。
相反,系统可将在膨胀过程中已冷却的液体保存在保温容器中。以后可将此储存的冷却液体用于在压缩过程期间吸收热量。
在一些实施例中,储热介质可包括被引入气体进行换热的同一液体。在某些实施例中,储热介质可包括自身与被引入的液体进行换热的一不同液体。一实例是将水引入压缩/膨胀气体进行换热,然后水与储存在保温容器内的油进行换热。
图5(a)是一种轴向涡轮机524的实施例的横剖视图,该涡轮机524包括轴504,壳体510和五个转子502。所述涡轮机可包括在转子502之间设置在壳体510的侧壁内位置b1-b4、a1-a4的多个液体孔口。如图所示,可在每个转子之间设置一液体孔口。或者,可每隔一个转子502设置一孔口,例如在位置a1和a3。
各实施例可视某些因素而定来确定孔口的数量和间距。所述因素的一个实例是一具体涡轮机内的转子数量。
可沿壳体510的侧壁将孔口设置成单行,如孔口a1-a4所示。或者,孔口可彼此径向对置,如孔口a1-a4和b1-b4所示。在一些实施例中,将可孔口布置成具体型式,例如图5(b)中所示的交错型式。
返回图5(a),可将一个或多个孔口布置在涡轮机的进口或出口处的转子502的上游或下游,如孔口位置X和Y所示。在各实施例中可沿轴向和周向平面有多个孔口X和Y。视是进行压缩过程还是膨胀过程而定,可将孔口构造成排出热液体或冷液体。
在一具体过程期间,可仅使位于涡轮机一端的孔口工作。例如,在压缩过程中,可使孔口X工作以将较低温液体引入气流,同时孔口Y不工作。
如上文中针对图2a所述,轴向涡轮机可具有设置在转子202旁边的定子226。图6显示带有耦接到轴604的两个转子及一设置在转子之间的定子的轴向涡轮机624。
如图中截面“A”所示,可将孔口直接定位在定子上。可将多个孔口设置在定子的不同表面上,以优化所期望的特性,例如雾化和液体浓度。如截面A所示,可将孔口C1-3和D1-3安装在定子叶片628的前缘和后缘。
在该实施例中,在压缩和膨胀阶段,可将高温或低温液体同时输送到多个孔口。在一些实施例中,在一具体过程期间可仅将液体输送到所选的孔口。可将单个孔口或多个孔口设置在涡轮机的每个定子上,或者每隔一个定子设置,或者每隔两个定子设置,或者定子或定子叶片的任意组合上。
将孔口包含在某些实施例中的各级之间可能会增加涡轮机的长度。例如,包含中间级孔口可能涉及增加各级之间的距离。另外,在一些实施例中,在各级之间可能存在一结构,其用于将引入的液体与空气流隔离。
涡轮机的定子和其他部件可配备有流体通道,以改变涡轮机自身的部件的温度。这可进一步增强所期望的传热。例如,在某些实施例中,定子和/或转子叶片可被冷却。
在该系统中包括液体部件而可能具有的优点可延伸到控制压缩/膨胀气体的热特性之外。例如,当使用水和空气作为液体和气体时,由于湿度和存在的液体水而使流动流体增加的密度可有助于将动量传递给涡轮机。具体而言,液体会增大气-液混合物的质量。由于动量与质量有关,给定容积的空气-水滴混合物与同一容积的空气相比,可传递更大的动量。其结果是,这可增大功率密度。
另外,在某些实施例中,所存在的水可能影响中间加热。例如,当液体没有在级间被分离出来时,在膨胀期间所存在的液体水可用于将热量传递给级间的冷空气。
气体涡轮机的任一给定级的压力比通常较低。相应地,使用中间冷却器和/或中间加热器可实现所期望的涡轮机的热性能。在每一级之间或每一组级之间可存在换热机构。例如,该换热机构可包括液体射流,该液体射流被定向成实质性地避免夹带进入主空气流(例如,被交叉地喷到气体流中),从而将冲刷到涡轮机叶片上的液滴的数量减小到最少。
在一些实施例中,可将多个喷射孔口布置成作为定子。例如,图7显示设置在壳体710的侧壁内且指向转子702的孔口a1、a2、b1和b2。尽管图7中仅显示四个孔口,但可沿壳体的周围设置多个孔口,例如图5b中所示。
在一实施例中,当转子转动以将气体从该图的左侧移动到该图的右侧时,液体被强迫通过孔口a2和b2。射流的力与气体交互作用,使气体朝向轴704,以维持轴向气体流。
尽管图7中所示的孔口朝向转子702成一角度设置,但并不要求如此。在某些实施例中,可垂直于轴704设置孔口,或者在远离运转的转子的方向上倾斜设置。
当轴向涡轮机包括多个转子时,可将作为定子的孔口划分成各组,对于压缩和膨胀过程中的每一者,仅一组孔口运转。例如,当气体从右向左流过涡轮机时,可将一组孔口设置作为定子,当气体从左向右流过涡轮机时,另一组孔口可作为定子。
使液体通过进入涡轮机腔室或混合腔的孔口可按与该同一实施例中的其他孔口、或者其他实施例中存在的孔口不同的方式构造。
例如,如图8a中所示,可通过对要在其中设置孔口的表面的材料进行定形来形成该孔口。于是,表面880可为涡轮机内的侧壁的表面。
可通过在表面880中形成槽口880,并形成与该槽口耦接的空腔884来形成孔口。受压液体、或者受压液体与气体的组合被输送到空腔884,并穿过槽口882来形成涡轮机内的射流羽。表面880可为涡轮机的任何内表面,例如壳体、定子、转子或轴的表面。
如图8b中所示,在表面880内安装的可替换喷嘴中可存在孔口。图8b中所示的喷嘴886包括液体流道888,气体流道890和出口892。液体通过该液体流道输送并与受压气体交汇,这会使液体雾化以将射流羽输送到涡轮机腔室内。可包括气体用于增大压力,液体在该压力下被输送到涡轮机内,以克服涡轮机腔室内的压力。
图8b中的喷嘴886以可分离式耦接到表面880,从而可单独预制具体设计的喷嘴,并将其安装到储存系统内。该可分离式耦接可实现将现成的或定制的喷嘴安装到具体表面内,以及便于维修且易于更换。
在单台涡轮机、混合腔内和/或能量储存系统的不同涡轮机和/或混合腔内可形成各种不同的孔口。例如,涡轮机内的压力可从一侧向另一侧增加。该涡轮机可具有设置在低压侧的第一种孔口以及设置在高压侧的第二种孔口,该第一种孔口设计为在较低压下运行,该第二种孔口设计为在较高压下运行。
可选择孔口来优化压缩和膨胀过程的具体阶段的射流特性。例如,一些孔口较好地适合较高压射流用途。可将此等孔口靠近能量系统的具有较高内部压力的部分设置,同时可将较好地适合较低压用途的孔口定位在该系统的较低压部分。
另外,可按不同的射流特性来选择不同的孔口。此等特性的实例包括但不限于雾化、射流羽的速度、破裂长度、射流型式、射流锥角、扇形角度、与表面的角度(用于扇形射流)以及液滴空间分布。
一个具体的性能特征是液滴尺寸。液滴尺寸可使用DV50,索特平均直径(也称为SMD,D32,d32或D[3,2]),或其他措施测量。孔口/喷嘴的实施例可产生SMD介于约10-200微米范围的液滴。孔口/喷嘴的实施例所产生的液滴尺寸的实例包括但不限于具有SMD为约200微米、150微米、100微米、50微米、25微米和10微米的液滴。
另一性能特征是流量。实施例可产生介于每秒钟约20升和0.01升之间的流量。本发明的孔口/喷嘴的实施例的流量的实例为每秒钟20升、10升、5升、2升、1升、0.5升、0.25升、0.1升、0.05升、0.02升和0.01升。
另一性能特征是破裂长度。喷嘴的实施例输出的液体可具有介于约1-100毫米的破裂长度。来自根据本发明的喷嘴的液体射流的破裂长度的实例包括100mm、50mm、25mm、10mm、5mm、2mm和1mm。
孔口/喷嘴的实施例可产生不同类型的射流型式。各实施例可产生的射流型式的实例包括但不限于中空锥形、实心锥形、流线型、单扇形和多扇形。
孔口/喷嘴的实施例可产生介于约20-180度之间的射流锥角。此射流锥角的实例包括但不限于20°、22.5°、25°、30°、45°、60°、90°、120°、150°和180°。
孔口/喷嘴的实施例可产生介于约20-360度之间射流扇形角。此扇形角的实例包括但不限于20°、22.5°、25°、30°、45°、60°、90°、120°、150°、180°、225°、270°、300°、330°或360°。与表面之间的扇形射流角的实例包括但不限于90°、80°、60°、45°、30°、22.5°、20°、15°、10°、5°或0°。
液滴空间分布代表液体射流孔口/喷嘴的另一性能特征。一种测量液滴空间分布的方式是测量一片材或锥形横截面的角度,该片材或锥形横截面包含有偏离片材的大多数液滴。在孔口/喷嘴设计中,该角度可介于0-90度之间。实施例可能产生的该角度的实例包括但不限于0°、1°、2°、5°、7.5°、10°、15°、20°、25°、30°、45°、60°、75°或90°
根据某些实施例,控制被引入腔室内进行换热的液体的数量可能很重要。理想的数量可视多个因素而定,包括气体和液体的热容、所期望的压缩或膨胀期间的温度变化。
被引入的液体的数量还可视射流孔口/喷嘴所形成的液滴的尺寸而定。被引入的液体数量的一个量度是所有液滴的总表面积与腔室内气体的摩尔数之比率。该比率(平方米/摩尔)可介于约1-250之间或者更大范围。可能适合供本发明的实施例使用的该比率的实例包括1、2、5、10、15、25、30、50、100、125、150、200或250。
某些设计可方便各孔口/喷嘴的预制。某些设计还可实现在给定的表面内使多个孔口/喷嘴彼此接近布置,这可提高性能。
可使用多种不同的喷嘴结构。可能适合根据各个实施例使用的喷嘴结构的实例包括但不限于冲刷喷嘴、旋转盘形雾化器、静电雾化器、压力旋转喷嘴、扇形喷嘴、冲击喷嘴、空气辅助喷嘴、喷嘴和旋转杯形雾化器。
在某些实施例中,可将多个喷嘴器构造成彼此交互作用,以产生具有所期望的性质的射流。例如,一个喷嘴的射流可填充一相邻喷嘴的射流型式的空余部分。
一能量储存系统的某些特征可促使不同的孔口位置和类型。通过喷嘴被喷出的液体视液体的温度而定将具有不同的物理特性,从而可在系统内设置不同的孔口,以基于液体温度来优化射流特征。当液体对于压缩过程和膨胀过程具有不同的温度时,单个系统可具有两组喷嘴,对于每一过程仅一组可运转。另外,孔口的方向和类型可在各组之间变化,以及在一具体组内在系统的具体区域内变化。
如图9中的实施例所示,可将孔口设置在涡轮机轴904的外表面。在此实施例中,液体被送入该轴内的通道内,该自旋轴的离心力起作用,向液体提供力,从而使液体通过孔口喷射。于是,自旋轴904起作用,将液体通过孔口泵送出。该泵作用可减少通过一些其他机构(例如主动通电的泵装置)向液体提供压力的需要。
如图9中所示,可沿该轴的多个位置设置孔口,包括转子902之间的孔口,例如e1和e2,位于该轴的端部的孔口,例如f1和f2。可沿该轴的周围设置多个孔口。如针对图8a和图8b所述,不同的实施例可具有不同的孔口和喷嘴,仅选择的孔口可对压缩或膨胀过程起作用。例如,可通过贯穿该轴的两个不同的通道向两组喷嘴供送液体,从而在压缩或膨胀期间仅向一个通道或另一个通道供应液体。
在能量储存系统中使用离心式涡轮机时,可按类似于轴向涡轮机的方式将不同类型和构造的孔口和喷嘴设置在不同的位置。例如,结合图10中的实施例,可将孔口位置i1-i8设置在该壳体的侧壁内,且可将孔口朝向该涡轮机腔室的入口设置,如位置j1和j2所示。
可按与使用轴向涡轮机的实施例类似的方式,将不同类型的孔口和喷嘴设置在这些位置,以按照不同的液体温度、腔室压力、孔口位置以及压缩和膨胀过程来优化射流特征。
离心式涡轮机可包括多个叶片,所述叶片成形为将气体从进口移动到设置在该壳体的侧壁内的出口。
在一实施例中,转子内的一些叶片可彼此不同地成形。例如,如图11中所示,安装到轴1104的叶片1110可成形为带有与相邻叶片1112对向的曲率。在此构造中,该涡轮机内的湍流得以增大,从而保持更多的液体被吸入。
于是,根据某些实施例,可将涡轮机叶片设计为实现多个用途。尽管它们的主要用途是压缩(或膨胀)流动气体,但叶片的气动表面可将额外的运动传递给空气/水混合物。此运动可维持水滴的分离,从而使它们能够被转移,同时保持大的气-液界接表面,因而保持有效的换热特性。
尽管图11中的叶片是彼此的镜像,叶片形状之间也可具有不太大的差异。例如,交错的叶片可为曲面和平面,或者相邻叶片的仅一部分可彼此不同。每隔一个叶片可能不同,或者每隔两个或三个叶片等可能不同。在一实施例中,仅一个叶片的成形不同于其他叶片。
由于涡轮机转子相对较高的自旋速度,气体流中存在的液滴在碰撞自旋转子时可能使其损坏。尽管单个碰撞导致的损坏很小,但随时间延长由许多碰撞引起的累积损坏可能会缩短普通转子的有效寿命。本发明的实施例可使用一项或多项技术来尽量减少对转子的损坏。
具体碰撞中的能量与碰撞物体的质量成比例。相应地,一项尽量减小转子损坏的技术是引入高度雾化的液体射流。较高程度的雾化会使各液滴较小,从而减小液滴与转子之间的每次碰撞的能量。
上述方法通过减小质量来减小碰撞的能量,因为碰撞能量与液滴的质量成比例。另外,较小的液滴被更快地夹带到空气中,沿着在靠近涡轮机叶片的表面大体上呈切向的流线流动。这可减小液滴速度的法向分量。能量与该速度的平方成比例。
可选择液体被喷射穿过的孔口或喷嘴的类型,以增加雾化。对于与图8b中所示的喷嘴类似的喷嘴,可增大气体通道890内的气体压力以改善雾化。另外,较小的孔口尺寸可导致较高的雾化程度,从而可在一具体系统中使用大量的小喷嘴。
用于减轻对涡轮机损坏的其他技术包括涡轮机叶片和转子本身的设计和材料。例如,一能量储存系统中的转子的叶片可较薄并具有挠性,以更好地吸收能量并在液滴的碰撞下发生局部变形。
另外,尽管许多传统的气体涡轮机的设计需要通过嵌入叶片内的通道进行冷却,以防止过高的温度,但根据本发明的实施例近似等温地运行可便于薄叶片(没有冷却通道)的使用。此薄叶片可具有更有效的气动性能、重量较轻、且成本较低。
在涡轮机中使用薄的、较轻重量的叶片的另一可能的优点在于,较低的叶片必须承受由于高速旋转而产生的较低应力。于是,这又能够在叶片中使用较少的材料。
使用薄的、成本较低的涡轮机叶片的再一可能的优点在于定期维护期间可以进行更换叶片。即使由于液滴撞击叶片产生麻点,一年左右的叶片寿命对于定期更换计划而言也是实际可行的。
运行中的涡轮机叶片会经受很大的离心力和气动力,所以可配置挠性叶片,使它们具有经优化以在自旋时传送气体的形状。挠性材料的实例包括金属,例如钛合金和镍钛合金。
合适的材料还包括热固性复合材料,例如具有环氧基体的碳素纤维和具有聚酯基体的玻璃纤维。材料还可包括热塑性材料,例如聚氨酯、聚酰胺、聚醚醚酮、聚醚酰胺、聚碳酸酯,或者使用纤维(例如玻璃、碳、碳纳米管)加强的另一合适的工程热塑塑料,或者其他市售材料。
在一些实施例中,可将非加强的聚合物用于叶片,或者用于叶片的一部分,以增强被冲击表面的弹性。叶片可包括基材(例如金属)在该基材上形成聚合物以使表面更具有弹性,从而防止由于液滴碰撞造成损坏。
由于同一原因叶片上可涂有弹性材料。该材料可为低模量橡胶或高模量聚合物,例如聚酰胺。在一实施例中,可定期剥离并更换叶片涂层,以延长叶片的寿命。
在某些实施例中,转子叶片可包括高硬度材料,例如陶瓷,包括氧化铝、氧化锆或硅玻璃。高硬度材料可为基材上的涂层,例如类金刚石碳(DLC)。
在一些实施例中,叶片材料可为亲水性。完全润湿的亲水性表面可作为液滴与叶片之间的垫层,并可将叶片与液滴之间的碰撞力分布在比非亲水性表面更大的面积上。
在某些实施例中,叶片材料可为憎水性材料。该涡轮机内的暴露表面使用憎水性材料可防止或减少润湿。这可通过促使液滴弹离表面而不是润湿表面来使更多的液滴保持夹带在气体中。
通常尽可能靠近壳体的侧壁设置涡轮机转子的叶片,以在该转子与壳体之间形成密封或接近密封。叶片和壳体两者都随它们的热膨胀系数(CTE)的变化而膨胀和收缩。
可将传统的涡轮机设计构造为在高温或在宽广的温度范围内运行。于是,对涡轮机叶片可使用具有与壳体或其他部件兼容的CTE的材料,以优化效率,同时防止转子与壳体之间接触/磨蚀。
相形之下,本发明的某些实施例可在气体压缩和/或膨胀期间引入液体来进行气-液换热。这能够实现在等温或接近等温条件下进行气体压缩和/或膨胀。由于预计在此相对较窄的温度范围内运行,能够对涡轮机部件(包括涡轮机叶片)使用具有相对较高CTE的材料。
另外,在高温下和/或宽广温度范围内运行的传统涡轮机面临的另一潜在的问题是不同材料的CTE的差值。例如,不同材料的部件的CTE不匹配会导致当接合处膨胀或收缩时产生泄漏或裂纹,并可导致紧固件在长时间后松动。然而,由于预计一些实施例会在限定的温度范围内运行,涡轮机部件的CTE差值的影响并不显著,所以能够使用种类较广泛的材料。
在一实施例中,可将液体喷嘴构造为在壳体的侧壁上积聚连续的液体。这可合乎期望地在转子与壳体之间产生粘性密封。
类似于液环压缩机的密封机理的方式,被引入进行气-液换热的液体可能会填充涡轮机与壳体之间的小间隙。在一些实施例中,可增大该间隙以减小粘性阻力。
尽管如上所述的实施例都将孔口设置在涡轮机腔室内,但并不要求如此。在一些实施例中,除将液体喷射进入涡轮机自身内,还将液体喷射进入上游的混合腔内,或者将液体喷射进入上游的混合腔内而不是涡轮机自身内。
如图12中所示,可沿混合腔1220的侧壁设置多个孔口g1-g4和h1-h4,混合腔1220耦接到轴向涡轮机1224。此种构造能够使射流液滴在进入涡轮机之前通过气流均匀地分散。
在另一实施例中,可将混合腔耦接到离心式涡轮机上。混合腔1220的侧壁可比涡轮机壳体1210的侧壁具有较大的直径,如图12中所示。在其他实施例中,这些侧壁可具有与壳体1210相同的直径,或者比壳体1210较小的直径。
1.一种从压缩气体回收能量的系统,所述系统包括:
压缩气体储存单元;
第一腔室,其界定在壁内并选择性地与所述压缩气体储存单元流体连通,以接收压缩气体;
第一气翼,其构造为响应于在不发生燃烧的情况下所述压缩气体的膨胀来驱动所述第一腔室内的转子;
一元件,其构造为实现与所述膨胀压缩气体实现气-液换热。
2.根据第1条所述的系统,其中所述第一气翼和所述第一腔室内的所述转子界定轴向涡轮机。
3.根据第1条或第2条所述的系统,其中所述第一气翼和所述第一腔室内的所述转子界定离心式涡轮机。
4.根据第1条、第2条或第3条所述的系统,其中所述元件包括与所述第一腔室流体连通的液体喷射器。
5.根据第1条、第2条、第3条或第4条所述的系统,其中所述液体喷射器通过上游混合腔与所述第一腔室流体连通。
6.根据第1条、第2条、第3条、第4条或第5条所述的系统,进一步包括定位在所述第一气翼的下游并构造为由进一步膨胀的气体驱动的第二气翼。
7.根据第6条所述的系统,进一步包括:
第一液体喷射器,其定位在所述第一气翼的上游,以与所述膨胀气体实现气-液换热;及
第二液体喷射器,其定位在所述第一气翼与所述第二气翼之间,以与所述进一步膨胀的气体实现气-液换热。
8.根据第6条或第7条所述的系统,其中所述第二气翼定位在所述第一腔室内,以界定另一涡轮机级。
9.根据第6条或第7条所述的系统,其中所述第二气翼定位在与所述第一腔室流体连通的第二腔室内,以界定第二涡轮机。
10.根据第1条至第9条中任一条所述的系统,其中所述第一气翼包括挠性材料。
11.根据第1条至第9条中任一条所述的系统,其中所述第一气翼包括第一材料,所述第一材料具有第一热膨胀系统,在大约15摄氏度的温度范围内,所述第一材料与具有所述壁的第二材料匹配,所述第二材料具有第二热膨胀系数。
12.根据第1条至第9条中任一条所述的系统,进一步包括形成于所述第一气翼与所述壁之间的液体密封。
13.根据第1条至第9条中任一条所述的系统,进一步包括与所述转子连通的电气发电机。
14.根据第1条至第13条中任一条所述的系统,其中所述电气发电机包括马达/发电机。
15.根据第1条至第13条中任一条所述的系统,其中所述电气发电机与所述转子通过轴连通。
16.根据第1条至第15条中任一条所述的系统,其中所述转子与能量源选择性地连通,以驱动所述第一气翼来压缩所述腔室内的气体,并使压缩后的气体流动到所述压缩气体储存单元。
17.根据第1条至第16条中任一条所述的系统,其中所述能量源包括马达。
18.根据第1条至第17条中任一条所述的系统,其中所述马达包括马达/发电机。
19.根据第1条至第18条中任一条所述的系统,其中所述能量源包括燃烧涡轮机。
20.根据第1条至第19条中任一条所述的系统,其中所述能量源包括风力涡轮机。
21.根据第1条至第20条中任一条所述的系统,其中所述能量源包括蒸汽涡轮机。
22.根据第1条至第21条中任一条所述的系统,其中所述第一气翼设计为基于随时间的磨损曲线进行定期更换。
23.根据第1条至第22条中任一条所述的系统,其中所述第一气翼包括亲水性材料。
24.根据第1条至第23条中任一条所述的系统,其中所述第一气翼包括憎水性材料。
25.根据第1条至第24条中任一条所述的系统,其中所述第一气翼包括高硬度材料。
26.一种从压缩气体回收能量的方法,所述方法包括:
使压缩气体从压缩气体储存单元流动进入腔室,所述腔室具有气翼,所述气翼耦接到转子;
使所述压缩气体在所述腔室内膨胀,并在不发生燃烧的情况下驱动所述气翼和所述转子旋转;
与在所述腔室内膨胀的所述压缩气体实现气-液换热;
利用所述转子的旋转产生电力。
27.根据第26条所述的方法,其中通过将液体喷射进入所述腔室来实现所述气-液换热。
28.根据第26条或第27条所述的方法,其中通过将液体喷射进入定位在所述腔室上游的混合腔来实现气-液换热。
29.根据第26条至第28条所述的方法,其中通过使所述压缩气体流经液体来实现气-液换热。
30.根据第26条至第29条所述的方法,其中进行气-液换热将膨胀压缩气体的温度维持在离环境温度大约15摄氏度的范围内。
31.根据第26条至第30条中任一条所述的方法,进一步包括:
使膨胀气体从所述气翼流动到第二气翼;
使所述膨胀气体进一步膨胀并驱动所述第二气翼旋转;
与所述进一步膨胀的气体实现气-液换热。
32.根据第26条至第31条中任一条所述的方法,进一步包括:
将所述转子布置成与能量源选择性地连通;
使所述转子旋转所述气翼并压缩所述腔室内的气体;
与在所述腔室内被压缩的所述气体之间实现气-液换热;
使在所述腔室内经过压缩的所述气体流动到压缩气体储存单元,或者流动到下一较高的压力级。
33.根据第26条至第32条中任一条所述的方法,其中所述能量源包括马达。
34.根据第26条至第33条中任一条所述的方法,其中所述能量源包括第二涡轮机。
35.根据第26条至第34条中任一条所述的方法,其中所述第二涡轮机与所述涡轮机通过连接相连通。
通常,预计根据本发明的实施例被引入气体压缩或膨胀腔室完成换热的液体不会在该腔室内发生燃烧。于是,尽管被喷入与压缩或膨胀气体执行换热的液体可能是可燃的(例如,油、酒精、煤油、柴油或生物柴油),但在许多实施例中,预计其不会在该腔室内发生燃烧。至少在此方面,根据各个实施例进行液体引入可有别于将液体引入涡轮机进行燃烧的情况。
图13是例示一种可逆式压缩机/膨胀机装置与各个其他系统元件之间的关系的简化视图。具体而言,可逆式压缩机/膨胀机装置1300与压缩气体储存单元1306选择性流体连通。该可逆式压缩机/膨胀机装置还可与热储存单元1308进行选择性热连通。
在储存运行模式下,可逆式压缩机/膨胀机装置1300被构造作为压缩机运行。将通过连接1303从第一动力源1302(可基于化石燃料的燃烧)接收的动力和/或通过连接1305从第二动力源1304(可基于间歇性可再生能源)接收的动力用于对气体进行压缩,供存储在压缩气体储存单元1306内。
在某些实施例中,一个或多个连接可为机械性质(例如旋转轴)。或者,接收的该动力可通过其他类型的连接(包括但不限于电气、磁性、电磁、液压、气动或热)进行传递。
在产生能量的运行模式中,可逆式压缩机/膨胀机装置1300被构造作为膨胀机运行。压缩气体从储存单元1306流动到装置1300,在装置1300处膨胀并驱动发电机1310来输出电力,例如输出到网络1312。
在某些实施例中,该发电机1310还可与能量源1304之间具有连接1309,以便直接从能量源1304产生电力。于是,实施例可使用现有动力源中已经存在的发电机(例如,风力涡轮机的发电机)。
在某些实施例中,可逆式压缩机/膨胀机1300可基于腔室内可动式构件(例如,活塞)的往复运动来运行。根据其他实施例,可逆式压缩机/膨胀机1300可基于腔室内的可动式构件的旋转来运行。例如,该可逆式压缩机/膨胀机可包括涡轮机,该涡轮机的叶片旋转以压缩气体,以及该涡轮机的叶片又被膨胀气体驱动进行旋转。
如“公开案”中的详细描述,可逆式压缩机/膨胀机可连同引入液体与被压缩或膨胀的气体进行气-液换热一起运行。此气-液换热能够实现在接近环境温度的有限温度范围内发生气体压缩和/或膨胀。
通过避免气体压缩或膨胀时发生大的温度变化,使用气-液换热的实施例能够实现在有利的气动条件下储存和回收能量。另外,在接近环境温度的有限温度范围内进行气体压缩和膨胀可提供额外的优点。
具体而言,传统的燃烧涡轮机通常使用厚叶片。这些叶片厚度可容纳用于输送冷却流体的内部通道,使叶片能够应对高温。例如,燃烧涡轮机的叶片可受到高达1100-1700℃的温度。
所述传统涡轮机叶片可使用具有相对低的热膨胀系数的防腐材料(例如不锈钢)制造,并设计为刚性以维持与涡轮机壳体的内壁之间的紧凑间隙。传统涡轮机叶片所需的复杂结构和严格的温度要求会使它们相对昂贵且难以更换。
相形之下,连同气-液换热一起进行的实现能量储存的气体压缩/膨胀可在接近环境温度的有限温度范围内发生。经受压缩或膨胀的气体可能在环境温度与被引入进行换热的液体的相变温度之间的范围内发生温度变化。
相应地,图14A显示根据一实施例的涡轮机1400的局部简化视图,涡轮机1400包括转子1401和附接的叶片1402。该转子和叶片被构造为在壳体1403内绕轴线A旋转。
在本实施例中,涡轮机叶片利用较少数量的材料加工而成,以降低其成本。因此,如图14A中所示当涡轮机的转子静止或以低速运动时,叶片不一定处于被膨胀气体驱动(或者被驱动以高效地对气体进行压缩)的最佳位置。
然而,当涡轮机转子绕轴线A以一定速率转动时,图14B显示所获得的向心力F使叶片发生弯曲,以处于该最佳叶型。通过这种方式,依靠涡轮机旋转的固有能量提供一结构特征(刚性),从而降低可更换部件(即,叶片)的成本。由于预计涡轮机在相对较窄的温度范围内运行,从而可实现所述特点。
使用挠性涡轮机叶片的一个潜在优点在于能够在涡轮机的寿命内对该叶片进行定期更换。换言之,由于叶片质量减小,其更换费用较小,并方便在为了定期插入叶片/从涡轮机移除叶片时进行的搬运(例如,作为插件或其他模块化形状系数)。对涡轮机叶片定期进行更换可解决由于向涡轮机内定期引入液滴所导致的叶片磨损相关问题。于是,即使由于液滴冲击使叶片产生一些麻点,按照定期计划以较低费用更换质量减小的叶片也可避免将来的失效。
加工出挠性叶片(全部或部分)的材料的实例包括金属,例如铝、不锈钢、钛合金和镍钛合金。其他合适的材料的实例还包括热固性复合材料,例如具有环氧基体的碳素纤维或具有聚酯基体的玻璃纤维。叶片材料还可包括热塑性材料,例如聚氨酯、聚酰胺、聚醚醚酮、聚醚酰胺、聚碳酸酯,或者使用纤维(例如玻璃、碳、碳纳米管)加强的另一合适的工程热塑塑料,或者其他市售材料。
具体实施例可使用双金属材料,例如两种金属的叠层。这些实施例确实可或多或少地弯曲,视温度和材料的热膨胀系数而定。
在一些实施例中,可将非加强的聚合物用于叶片,或者用于叶片的一部分,以增强被冲击表面的弹性。叶片可包括基材(例如金属)在该基材上形成聚合物以使表面更具有弹性,从而防止由于液滴碰撞造成损坏。
由于同一原因叶片上可涂有弹性材料。该材料可为低模量橡胶或高模量聚合物,例如聚酰胺。在一实施例中,可定期剥离并更换叶片涂层,以延长叶片的寿命。
在某些实施例中,转子叶片可包括高硬度材料。根据各实施例,叶片的材料可选自碳复合材料、铝、钛、不锈钢、其他合金、各种塑料或陶瓷,包括氧化铝、氧化锆。
在一些实施例中,叶片材料可为亲水性。润湿的亲水性表面可作为液滴与叶片之间的垫层,将叶片与液滴之间的碰撞力分布在比非亲水性表面更大的面积上。
在某些实施例中,叶片材料或叶片的涂层可为憎水性。该涡轮机内的暴露表面使用憎水性材料可防止或减少润湿。这可通过促使液滴弹离表面而不是润湿表面来使更多的液滴保持夹带在气体中。
图14A至图14B显示涡轮机的一简化的实施例。在许多实施例中,涡轮机可具有相对较大数量的压缩和/或膨胀级。如果每一级都具有1.1的压力比,则300个大气压的顶部压力将利用大约60级。涡轮机内的级数范围包括但不限于1-10、1-20、1-30、1-40、1-50或1-60或更多。为优化该系统的效率,可将各转子耦接到以不同速度旋转的多个同心轴。
图14C显示单向性质的多级涡轮机1430的一实施例。换言之,涡轮机叶片1432构造有气翼叶型,使从低压区1431到高压区1434发生的气体流动能够产生专用的压缩机。
如图14C中进一步指示,该单向涡轮机可通过逆流换热技术与作为专用膨胀机的另一单向涡轮机1435进行热耦接,以形成能够将压缩气体形式的能量储存在压缩气体储存单元1436内的装置。
在图14C中的具体实施例中,逆流式换热器1439实际上包括两个逆流式换热器1439a和1439b,每一逆流换流器都与公共的热储存单元1450进行选择性热连通。可将第一逆流式换热器构造成在给定时刻将来自气体压缩机的输出的热量移动到热储存单元(例如,1标准大气压力的水或油),并可将第二逆流式换热器构造成在稍后时刻将来自该热储存单元的热量返回移动到该膨胀机的气体供应管。
也可使用其他构造,包括一个在气体的同步流之间使用单台逆流式换热器的构造。此实施例可在例如热机的运行模式中使用。
然而,其他实施例可使用可逆式(双向)涡轮机。图14D是可逆式涡轮机1440的该实施例的简化视图。为进行压缩,气体从左侧以低压进入,在右侧以较高压(但较低体积)离开,流动到压缩气体储存单元。为进行膨胀,气体将在反方向上从该压缩气体储存单元流动。
为使可逆式涡轮机高效地工作,涡轮机叶片1442的气翼形状可关于左侧(低压)或右侧(高压)对称。相对较薄的气翼由于其轻质量可做成关于右前缘或左前缘对称。由碳复合材料制成的叶片可具有大的强度但轻的重量。它们可在高RPM下旋转,且不会破裂分开。
1a.一种装置,包括:
腔室,其与压缩气体储存单元选择性流体连通;
元件,其构造成实现在所述腔室内不发生燃烧的情况下与在所述腔室内膨胀的气体实现气-液换热;以及
涡轮机,其在所述腔室内可旋转以通过机械连接将膨胀气体的动力输送出所述腔室,所述涡轮机包括挠性涡轮机叶片,所述挠性涡轮机叶片构造成响应于旋转力而具有一形状。
2a.根据第1a条所述的装置,其中所述挠性涡轮机叶片还构造为被选择性地驱动,以压缩所述涡轮机内的气体。
3a.根据第1a条或第1b条所述的装置,其中所述腔室通过逆流式换热器与所述压缩气体储存单元选择性流体连通。
4a.根据第1a条、第1b条或第1c条所述的装置,进一步包括:
第二腔室,其与压缩气体储存单元选择性流体连通;
第二元件,其构造成与在所述第二腔室内被压缩的气体实现气-液换热;以及
第二涡轮机,其构造成被第二机械连接驱动以在所述第二腔室内旋转,从而使第二挠性涡轮机叶片压缩所述第二腔室内的气体。
5a.根据第1a条至第4a条中任一条所述的装置,其中所述涡轮机包括轴向涡轮机。
6a.根据第1a条至第5a条中任一条所述的装置,其中所述涡轮机包括离心式涡轮机。
7a.根据第1a条至第6a条中任一条所述的装置,其中所述涡轮机包括单向涡轮机。
8a.根据第1a条至第7a条中任一条所述的装置,其中所述涡轮机包括双向涡轮机。
如“公开案”中的长篇幅描述,能量储存系统的某些实施例可与间歇性质的可再生能源(例如风力涡轮机或太阳能捕获装置(例如,基于太阳能热或光伏原理))进行选择性连通。为满足连续(而不是间歇)性质的需求,可将实施例构造成基于替代的能量源进行选择性运行。
在一些实施例中,可将可逆式压缩机/膨胀机(或专用膨胀机)构造成基于化石燃料的燃烧所提供的热能运行。例如,可使用化石燃料的燃烧来加热水,将水注入气体进行换热。可使用受热的气体随后在该可逆式压缩机/膨胀机内发生的膨胀来驱动发电机,并在没有来自间歇性能量源或储存的压缩气体供应的动力时输出动力。
图15A显示该实施例的简化视图,其中可逆式压缩机/膨胀机1540与压缩气体源连通。该可逆式压缩机/膨胀机还通过射流喷嘴1543与利用化石燃料燃烧能量源1544加热的液体1542(例如,水)液体连通。于是,按照本方式,该可逆式压缩机/膨胀机可选择性地构造作为热机运行。
另外,在某些实施例中,可使用化石燃料的燃烧来将水加热成气体本身进行膨胀(例如,蒸汽)。然后,可将该蒸汽直接引入可逆式压缩机/膨胀机进行膨胀。
图15B显示该实施例的简化视图,其中可逆式压缩机/膨胀机1540与输入蒸汽1546选择性地流体连通,这可由化石燃料燃烧能量源1544的加热引起。该蒸汽可作为蒸汽涡轮机的运行部分产生。在一些实施例中,蒸汽可来自自然源,例如地热活动。
尽管图15A和图15B显示包括作为涡轮机转子形式的旋转构件的装置的使用,该涡轮机转子构造成基于蒸汽膨胀选择性运行,但并不要求如此。可利用蒸汽膨胀进行旋转运动的可动式构件的实例包括但不限于螺杆、瓣轮、导叶、卷轴、内齿轮油泵和准涡轮。
尽管图15A和图15B显示包括构造成基于蒸汽膨胀选择性运行的旋转构件的装置的使用,但并不要求如此。替代实施例可包括基于蒸汽膨胀选择性运行的往复型构件。
相应地,图15C显示该实施例的简化视图,其中往复型可逆式压缩机/膨胀机1551的腔室1550通过射流喷嘴1553与利用化石燃料燃烧能量源1554加热的液体1552液体连通。于是,按照本方式,该可逆式压缩机/膨胀机可选择性地构造作为热机运行。
另外,在某些实施例中,可使用化石燃料的燃烧来将水加热成气体本身进行膨胀(例如,蒸汽)。然后,可将该蒸汽直接引入可逆式压缩机/膨胀机进行膨胀。
图15D显示该实施例的简化视图,其中往复型可逆式压缩机/膨胀机1561与输入蒸汽1562选择性地流体连通,这可由化石燃料燃烧能量源1564的加热引起。该蒸汽可作为蒸汽涡轮机的运行部分产生。在一些实施例中,蒸汽可来自自然源,例如地热活动。
可通过阀门操作来实现蒸汽之间的选择性流体连通。在某些实施例中,阀门可包括双路阀和/或多路阀的网络。按此方式,可将可逆式压缩机/膨胀机选择性地构造成作为蒸汽机运行。
应注意,图15D中的具体实施例固持射流喷嘴元件1563,实现液体与该腔室的连通。尽管在图15D的具体运行模式中未使用,此等喷嘴可在其他运行模式中使用。在一些实施例中,可使用该喷嘴连通来自热水形式的热源(图15中未显示)的热输入,使气体在腔室内膨胀(和/或减小气体在腔室内膨胀时发生的温度下降的数量)。还可使用喷嘴来连通来自热汇的热输入,以减小气体在腔室内被压缩时发生的温度变化(增大)的数量。
9a.一种装置,包括:
腔室,其与储存气体源选择性流体连通,并与蒸汽源选择性流体连通;
元件,其构造为在所述腔室内不发生燃烧的情况下与在所述腔室内膨胀的所述储存气体选择性实现气-液换热;以及
构件,其在所述腔室内可动,以将膨胀的储存气体或蒸汽的动力通过机械连接输送出所述腔室。
10a.根据第9a条所述的装置,其中所述可动式构件被构造为在所述腔室内旋转。
11a.根据第9a条或第10a条所述的装置,其中所述可动式构件包括涡轮机转子。
12a.根据第9a条所述的装置,其中所述可动式构件被构造为在所述腔室内往复运动。
13a.根据第9a条或第12a条所述的装置,其中所述可动式构件包括实心活塞。
14a.根据第9a条至第13a条中任一条所述的装置,其中所述蒸汽源包括化石燃料的燃烧。
15a.根据第9a条至第14a条中任一条所述的装置,其中所述蒸汽源包括蒸汽涡轮机。
16a.根据第9a条至第15a条中任一条所述的装置,其中所述腔室被构造为在接收到指示来自间歇式可再生能源的电力损失的信号时与所述蒸汽源流体连通。
尽管上述某些实施例与引入换热流体作为气体内的液滴相关,但并不要求如此。具体的实施例可使用与换热液体内的气泡之间进行气-液换热。图16A至图16C显示可用于此目的的一实施例的各个视图。
具体而言,图16A是可逆式法兰西斯(Francis)涡轮机1620的实施例的一部分的简化俯视图,该可逆式法兰西斯涡轮机1620可构造为或者作为压缩机运行,或者作为膨胀机运行。法兰西斯涡轮机1620包括转子1622和高压液体侧1626与低压液体侧(在图16B至图16C中显示为1628)之间的叶片1624。轴S与转子1622物理连通,且可与发电机、马达、或马达-发电机(未显示)物理连通。
图16B是图16A沿线A-A′截取的横剖视图,显示被构造作为压缩机运行的实施例。具体而言,轴S被驱动旋转(例如,被马达或马达-发电机),从而导致该转子和附接在该转子上的叶片旋转。此从动旋转使液体从低压部分流动到高压部分。
气体通过起泡器1630被引入低压部分的液体。此气体引入可为借助文丘管式作用的被动式和/或与气体泵(例如为克服通过该起泡器的压力降和水头)组合的主动式。夹带在流经涡轮机的液体内的气泡被叶片的旋转进行压缩,在气泡-液体界接的大表面区域上,气体与周围的液体之间发生换热。
在该气体压缩之后,高压侧的气体与液体在分离器1632中被分离,气体流动到压缩气体储存单元1634。然后,被分离的液体流经换热器1635以去除热量,且然后流到作为马达运行的泵/马达1642,进行液体减压并从其中回收能量。然后,减压后的液体流回到低压侧,以再次接收气泡供压缩。
图16C是图16A沿线A-A′截取的横剖视图,显示被构造作为膨胀机运行的实施例。具体而言,压缩气体从压缩气体储存单元通过起泡器1633作为气泡被引入高压侧的液体。受压空气将驱动法兰西斯涡轮机,泵1642供应一些动力,因为它将水加压到与气体储存相同的压力。
高压液体和其夹带的气泡在如图所示方向上流经法兰西斯涡轮机,驱动叶片、附接的转子和轴以与压缩期间相反的方向旋转。在气泡-液体界接的大表面区域上,膨胀气体与周围的液体发生换热。
在膨胀之后,气体和液体在分离器1640中被分离,膨胀后的气体流出该系统。然后,分离出来的液体被泵/马达1642泵送流过换热器以增加热量,然后流到高压侧以再一步接收气泡进行更多的膨胀。
尽管本具体实施例显示引入涡轮机上游的气体,但并不要求如此。根据某些实施例,可证明在某处将气泡直接引入涡轮机是有益的,例如减少气泡聚集,从而维持具有许多表面区域的小气泡进行换热。可通过壳体和/或通过叶片本身将气泡直接引入涡轮机。
尽管图16A至图16C的具体实施例描述具有离心定向的法兰西斯涡轮机,但并不要求如此。替代实施例可具有其他定向,包括但不限于轴向定向。卡普兰型涡轮机和Deriaz型涡轮机可为可逆式,以进行压缩或膨胀运行。
另外,尽管图16A至图16C的具体实施例介绍可逆式的作为泵被驱动的法兰西斯涡轮机,但并不要求如此。替代实施例可使用专用于进行气体膨胀或压缩的单独装置。专用压缩机可使用离心式或径向式叶轮。专用膨胀机可使用佩尔顿轮(Pelton wheel)。
17a.一种装置,包括:
腔室,其与液体回路选择性流体连通,所述液体回路包括液体;
起泡器,其构造成将气体的气泡从压缩气体储存单元引入所述液体;以及
第一可动式构件,其可旋转,以通过机械连接将在所述液体内膨胀的所述气泡输送出所述腔室,其中所述液体回路的气-液分离器被构造为接收来自所述腔室的气-液混合物。
18a.根据第17a条所述的装置,其中所述可动式构件包括液体涡轮机。
19a.根据第18a条所述的装置,其中所述液体涡轮机包括离心式涡轮机。
20a.根据第17a条所述的装置,其中所述液体涡轮机包括可逆式涡轮机。
21a.根据第20a条所述的装置,其中所述液体涡轮机包括法兰西斯涡轮机。
22a.根据第17a条至第21a条中任一条所述的装置,其中所述液体涡轮机包括专用涡轮机,所述装置进一步包括专用压缩机。
23a.根据第22a条所述的装置,其中所述专用压缩机包括第二起泡器,所述第二起泡器构造为引入气泡供第二腔室内的第二可动式构件进行压缩。
24a.根据第17a条至第23a条中任一条所述的装置,其中所述第一可动式构件包括推进器。
25a.根据第17a条至第23a条中任一条所述的装置,其中所述第一可动式构件包括斗叶。
26a.根据第18a条所述的装置,其中所述液体涡轮机包括轴向涡轮机。
如上所述,根据本发明的压缩气体系统的元件可通过一个或多个连接与其他结构连通,如图17中通用的绘示。压缩气体能量系统1700与外部元件之间的此等连接可包括物理连接1702,例如机械连接、液压连接、磁性连接、电磁连接、电气连接或气动连接。
根据本发明的系统的实施例之间其他可能的连接类型包括热连接1704,热连接1704可包括用于液体、气体和固体材料的导管、管道、泵、阀门、开关、再生器和换热器,包括交叉流式换热器。
如图17中进一步显示,根据本发明的系统的实施例与外部元件之间其他可能的连接类型包括流体连接1706和通信连接1708。前者的实例包括气相或液相的材料流动,并可包括导管、阀门、泵、储蓄池、蓄能器、瓶子、喷射器以及其他结构。
通信连接的实例包括有线或光纤连接1710a和无线通信网络1710b,无线通信网络1710b局域工作,或者在广域内工作。可适合用于根据本发明的实施例的通信网络的实例包括但不限于以太网、控制器局域网(CAN)、无线局域网(WiFi)、蓝牙、数字用户线路(DSL)、专用微波链路、SCADA协议、美国能源部的NASPInet、美国国防部的SIPRNet、IEEE802.11、IEEE802.15.4、帧中继、异步传输模式(ATM)、IEC14908、IEC61780、IEC61850、IEC61790/61968、IEC61334、IEC62056、ITU-T G.hn、SONET、IPv6、SNMP、TCP/IP、UDP/IP、高级计量架构以及智能电网协议。
在一定体积的处于给定压力的空气中储存的功的数量,以及在图17的系统1700中储存的功的数量可如下所述计算。
数量W/V0代表储存容器中单位体积储存的功的数量。这是储存能量密度。可利用以下公式确定该能量密度:
W V 0 = P a · [ 1 + ( P 0 Pa ) [ ln ( P 0 Pa ) - 1 ] ] ; 式中:
W=储存的功;
V0=储存单元的体积;以及
Pa=开式系统中的环境压力,或者闭式系统中的低压;以及
P0=储罐内的压力。
使用体积(单位为升)和压力(单位为大气压,atm)表示此能量密度需要使用以下换算系数:
W V 0 = 101.325 · P a · [ 1 + ( P 0 Pa ) [ ln ( P 0 Pa ) - 1 ] ] ( Joule L ) ; 式中:
W=储存的功(焦耳);
V0=储存单元的体积(升);
Pa=开式系统中的环境压力,或者闭式系统的低压(大气压);以及
P0=储罐内的压力(大气压)。
因此,在以下标准条件下:
V0=1升;
Pa=1个大气压;及
P 0 Pa ≡ γ
W / V 0 = 101.325 [ 1 + r ( ln r - 1 ) ] ( Joule L ) ,
W / V 0 = 0.101325 [ 1 + r ( ln r - 1 ) ] ( kJoule L ) ,
W/V0的倒数代表储存给定数量的能量所需的储罐体积。本公式可使用单位L/kW·h表示如下:
V 0 / W ( L kW · h ) = 3600 / ( W / V 0 ) , 式中
1焦耳=1瓦·秒;
3600焦耳=1瓦·小时;以及
3600千焦=1千瓦·小时
在给定的典型压力下,这可得到如下的结果:
考虑到效率,对上述公式变形如下:
W V 0 = 101.325 · P a · [ 1 + ( P 0 P a ) [ ln ( P 0 P a ) - 1 ] · e ( kJoule L ) , 式中:
e=系统的单向效率。
因此,在一系统中,将压缩空气从300大气压的储存压力(P0)回收到1大气压的最终压力(Pa),效率(e)为0.8,则数量 V 0 / W = 31.45 ( L kW · h ) .
根据本发明的实施例的系统快速回收以压缩气体的形式储存的能量的能力可使这些系统适用于多个作用。多个所述作用都牵涉到将能量系统布置到负责向一个或多个终端用户提供电力的网络内。在后文中,此网络也称为电网。
以下文件出于所有目的以全文引用的方式并入本文中:“用于电网的能量储存:优点和市场潜力评估指南:对美国能源部能量储存系统计划的研究”,Jim Eyer&Garth Corey,报告号:SAND2010-0815,桑迪亚国家实验室(2010年2月)。
图18是对用于电力产生、输送、分配和消耗网络的实施例的通用描述。图18中所示的实施例表示实际电网的大体简化,不应理解为对本发明进行限制。
电力分配网络1801包括发电层1802,其与配电层1804电气连通。来自该输电层的电力流过配电层1805到达消费层1808的各终端用户1806。现在,依次描述电力分配网络的这些层中的每一者。
发电层1802包括多个发电资产1810a、1810b,它们负责生产该网络上的大量电力。该发电资产1810a、1810b的实例可包括燃烧化石燃料的传统电力,例如燃烧煤、天然气或油的电厂。传统电厂的其他实例包括不消耗化石燃料的水电厂、核电厂。发电资产的其他实施还包括替代能量源,例如利用自然温度差(例如地热和海洋深度温度梯度)的能量源、风力涡轮机或太阳能捕获装置(例如光伏(PV)阵列和光热电厂)。
发电层的资产通常将电力以与输电层相比相对较低的电压(<50kV)供给电力。然后,此电力被馈送至输电层进行发送。具体而言,发电资产与输电层之间的界面在下文中被称为汇流排1812。
输电层包括各变压器元件1820a和1820b,它们定位在沿输电线路1822的各个位置。升压变压器1820a靠近发电资产和相应的汇流排定位,并用于增加电力的电压以在输电线路上有效地输送。输电层的电压实例包括大约数百千伏。
在输送线路的另一端,降压变压器1820b用于降低最终分配到各终端用户的电压。输电层的降压变压器的电力输出可在几十千伏的电压范围内。
图18表示高度简化形式的输电层,且电力的输送可利用处于不同电压的数个阶段进行,所述各阶段由输电变电站分界。在输电线路1822与第二输电线1863之间的界接点可存在此输电变电站。
配电层接收来自输电层的电力,且然后将此电力供应给终端用户。一些终端用户1806a直接从一次变电站1830a接收相对高的电压。该一次变电站用于将电压进一步降低到一次配电电压,例如12,000V。
其他终端用户从二次变电站1830b接收较低的电压。馈送线路1832将一次变电站与二次变电站相连,二次变电站将一次配电电压降低到在仪表1834处供应给终端用户的最终电压。此最终电压的实例是120V。
图18提供对可在电力的产生、输送、分配和消耗中使用的电网的物理元件的大体描述。由于所述电网形成公共基础设施的重要部分,并需要来自多个不同地理位置和政治实体的合作,此等电力网络被在许多层次(地方、国家、国际)高度监管。
于是,图18还提供一框架,其对不同监管机构对各网络元件的监管进行分类。例如,可基于将发电网络的一元件分类为电力网络的发电层、输电层、配电层或消费层的资产来进行监管。此监管分类在确定被整合到电力网络内的能量储存系统的性质中起着重要的作用。
根据本发明的某些实施例,可将压缩气体系统纳入电力供应网络的发电层。在某些实施例中,从压缩气体回收的能量可在短期时间内提供稳定的电力。根据一些实施例,从压缩气体回收的能量可供应电力来平滑或平整来自发电资产的可变输出,所述发电资产包括可再生能源,例如风电场。
图8中的电力网络的发电层的各资产可按照要生产的电力的类型进行分类。例如,基荷发电资产通常包括被构造为生产价格最便宜的能量的装置。此基荷发电资产通常以满功率连续运行,以提供最高的效率和经济性。典型的基荷发电资产包括大发电厂,例如核电厂、燃煤电厂、燃油电厂。
负荷跟踪发电资产通常包括更能够对需求随时间的变化作出响应(例如通过开/关,或以增大或减少的容量运行)的装置。该负荷跟踪发电资产的实例包括但不限于蒸汽涡轮机和水力发电厂。
可能要求负荷跟踪发电资产在得到稍微提前(例如30分钟)的通知时提供额外的电力以满足变化的需求。由于负荷跟踪发电资产通常不以满容量连续运行,所以它们的工作效率较低,且它们的电力通常比从基线发电资产得到的电力更贵。
第三类发电资产是峰荷发电资产。峰荷发电资产按间歇式方式使用,以满足最高水平的需求。峰荷发电资产能够在得到相对短期的通知时运行,但效率降低且相应地花费较大。天然气涡轮机是通常被用作峰荷发电资产的装置的一个实例。另一实例是柴油发电机。
尽管它们能够在得到相对短期的通知时提供电力,但即使是峰荷发电资产,其也在能够生产为满足电网的要求所必需的数量和质量的电力之前,需要一些提前的时间。该电力质量要求的实例包括在给定容许范围内的电压稳定性、输出的频率与网络上现已存在的频率进行同步的必要性。
压缩气体能量储存和回收系统的一个潜在特点是在得到短期通知时,它们可用于提供以相对稳定的形式储存的能量。具体而言,可将压缩气体以升高后的压力保存在具有大体积的储存单元内。该储存结构的实例包括但不限于人造结构(例如,储罐或废弃的矿井或油井),或者天然存在的地质构造(例如洞穴、盐穹或其他多孔地形)。
在需要时,可通过致动气体流量阀以提供储存单元与膨胀机装置之间的流体连通来使用以压缩气体形式储存的能量。该简单的阀门致动能够实现将压缩气体中的能量快速转换为机械或电气形式。
例如,如下文中所述,压缩气体在腔室内的膨胀可用于驱动也设置在该腔室内的涡轮机叶片。与该涡轮机的转子关联的轴可与发电机机械连通以产生电力。此构造能够快速地产生稳定的电力,因为不需要燃烧涡轮机的暖机时间特性。空气中的能量立即可用,仅需要克服该系统的惯量以供应满功率。几秒钟就足够了。
以压缩气体形式储存的能量的上述易于获得性与燃烧型装置形成鲜明的对比,燃烧型装置仅在对多个材料流进行监管时才能实现稳定的电力输出。例如,仅在对空气和天然气的流量、这些流量的混合、以及在大体上不变的条件下该混合物的点火进行精确的控制时,天然气涡轮机才能进行稳定地运行。气体涡轮机运行以产生稳定、可靠的输出还需要对燃烧产生的热量进行精心地管理,以产生膨胀气体,膨胀气体转换为自旋涡轮机叶片形式的机械能量。
视发电资产被要求所起的作用而定,发电资产可使用特定的性能特征运行。图19的表格中描述某些此等特征。
根据某些实施例,该压缩气体能量储存和回收系统可与发电资产物理上定位在同一地点,且可通过公共汇流排与电力网络电气连通。或者,发电资产和能量储存和回收系统可通过同一输电线路与电力网络电气连通。
可将根据本发明的压缩气体能量储存和回收系统纳入电力网络的发电层,以对可变性质的可再生能源的输出进行平整。例如,风力涡轮机的输出与吹动的风的数量有关。在相对较短的时间内风速可能升高或下降,从而导致电力输出的相应升高和下降。类似地,太阳能捕获装置的输出与可用日照的数量有关,日照视云量等因素而定,在相对较短时间内变化。
然而,传统上,电力网络已倚靠可提供在时间上大体恒定且可控的输出的能量源,例如化石燃料电厂。可再生能源与电力网络传统上倚靠的那些能量源之间的差异可能对间歇和/或可变性质的可再生能源(例如,太阳能发电和风电)的使用造成障碍。
相应地,根据本发明的压缩气体能量储存和回收系统的实施例可与可再生能源耦接,以对它们向电力网络的输出进行平整。图20显示此平整功能的简化视图。
例如,在图20中显示的时间期间A内,压缩气体能量储存和回收系统提供足够的输出以补偿可再生替代能量源的可变输出与固定值Z之间的差值。可基于(例如)发电资产的业主与网络运营商之间的合同条款来确定所述固定值。
另外,在图20中从时刻B开始的时间期间内,可再生发电资产提供的能量陡然下降,例如由于风或逼近的暴雨锋全部损失。在此情况下,压缩气体能量储存和回收系统可构造为在B之后的时间期间内提供能量,直到在较长的时间内另一发电资产功率缓升到替代能量范围。
相应地,可利用压缩系统能量储存和回收系统的某些实施例来在短时期内提供稳定的电力,从而补偿功率缓升发电资产所需的时间期间。在一具体实施例中,压缩气体能量储存和回收系统可在得到10分钟或更短的提前通知时提供稳定的电力,以补偿气体涡轮机峰荷发电资产的1小时到2小时或较短的功率缓升时间。
以下提供特征时间常数的列表,在该特征时间常数内,要求发电资产在各种情况下运行。这些时间事实上随所需的期望运行以及具体发电机的特征的变化而变化,因此应将其视为导则而不是约束性的限制。容量和输出随环境变化,可从数百千瓦变化到数十兆瓦,且时间从数分钟到数小时。
·峰荷
功率缓升时间–超过小时
输出–正弦1-100兆瓦
容量–2-200兆瓦时
·负荷跟踪
功率缓升时间–连续,步长1-5秒钟
输出-1-100兆瓦
容量–0.5-50兆瓦时
·旋转备用
功率缓升时间–1-10分钟
输出-10-100兆瓦
容量–20-500兆瓦时
·后备非旋转备用
功率缓升时间–1小时
输出-10-100兆瓦
容量–20-500兆瓦时
根据某些实施例,从储存的压缩气体回收的能量可用于提供稳定的电力,以补偿发电资产功率缓升所需的时间。相应地,使能量储存系统与发电资产紧密靠近可有助于方便从电力自储存系统输出到网络上到电力自发电资产输出到网络上的无缝过渡。
尽管在某些情况下是期望的,但不要求将根据本发明的压缩气体能量储存系统与发电资产定位在同一地点。具体而言,通过广域网(例如因特网或公共设施数据采集与监控(SCADA)系统)进行通信的可靠性增大,已降低了使网络的不同元件紧密靠近的需求。
在某些实施例中,可将压缩气体能量储存和回收系统构造为将一信息传递给替代发电资产以开始功率缓升过程。此信息可由广域网(例如因特网或智能电网)传输,此情况下该压缩气体能量储存和回收系统未与替代发电资产在物理上定位在同一地点。
具体而言,将压缩气体储存和回收系统的实施例纳入到电力网络中也显示在图18中。根据某些实施例,可将压缩气体能量储存和回收系统1840b纳入到发电厂中,沿着与发电资产1810a和1810b的同一输电线路定位。在其他实施例中,可将根据本发明的压缩气体能量储存和回收系统1840a与发电资产定位在同一地点,可能在同一汇流排后面。
将压缩气体能量储存和回收系统1840b与发电资产定位在一起可具有某些优点。一个该潜在的优点是通过实现更有效的运行而提供成本优势。
例如,在某些实施例中,压缩气体能量储存和回收系统的压缩机元件可通过物理连接1841与发电资产的运动构件物理连接。这样,如上文中所述,在一具体实施例中,气体涡轮机或风力涡轮机的自旋叶片可通过机械连接、液压连接或气动连接与压缩气体能量储存系统的压缩机物理连通。
此连接提供的直接物理连通可使电力能够在这些元件之间更有效地传输,从而避免与不得不将动力转换为电气形式相关的损失。通过此方式,可利用来自运行的气体涡轮机或风力涡轮机的动力存储压缩气体,以供今后在起输出平整或功率缓升补偿作用时回收。
另外,将压缩气体储存和回收系统与发电资产定位在同一地点可实现它们之间其他能量流量形式的有效连通。例如,能量储存系统的某些实施例可通过热连接1842与定位在同一地点的发电资产进行热连通。于是,在一些实施例中,可利用来自该发电资产的热量来提高压缩气体能量储存系统的压缩气体膨胀效率。
通过此方式,可利用来自光热电厂的废热来提高能量储存系统的腔室内的气体膨胀。在某些情况下,该系统与光热电厂可定位在同一地点。在其他实施例中,可通过细长的导管将压缩气体携带到该发电资产。
将能量储存系统与发电资产定位在同一地点还可通过流体连接1844提供这些元件之间的实际流体连通。例如,当能量储存系统与气体涡轮机发电机定位在同一地点时,流体连接可使该系统储存的压缩气体直接流至该气体涡轮机进行燃烧,从而提高该气体涡轮机的运行效率。
将能量储存系统与发电资产定位在同一地点的另一可能的优点是能够利用现有设备。例如,现有的发电资产通常已包括发电机,其用于将机械能量转换成电力。根据本发明的压缩气体能量储存和回收系统可利用该同一发电机元件来将气体膨胀的运动转换成电力。类似地,压缩气体能量储存和回收系统可利用发电资产与网络(汇流排)的现有界面,以将电力传输至该网络。
将能量储存系统定位在网络的发电层中汇流排的后面可实现的另一可能的优点在于所得到的监管监督的形式。作为该发电层的一部分,能量储存系统与该网络的接触相对简单且受限。具体而言,该能量储存系统可通过单一界面与网络接触,且通过该界面的功率潮流的大小和方向将基于该发电机和能量储存系统的预期运行。
将该能量储存系统与发电资产定位在同一地点可进一步增强所述两个元件之间的协调作用。具体而言,压缩气体能量储存系统1840a与定位在同一地点的发电资产之间的通信连接1850可为局部性质,从而可能比较大的区域网络更快且更可靠。
该能量储存系统与发电资产的该紧密靠近可有助于方便电力从储存系统输出到网络上到电力从发电资产输出到网络上之间的无缝过渡。在输出平整作用中,使该能量储存系统与替代间歇性能量源之间紧密靠近可方便该储存系统方便而平滑的介入,以在面对快速变化的条件时生产电力。
尽管在某些情况下是期望的,但不要求将根据本发明的压缩气体能量储存和回收系统与发电资产物理上定位在同一地点。具体而言,通过广域网(例如因特网)进行通信的可靠性增大,已降低了使网络的不同元件紧密靠近的需求。
相应地,图18还显示压缩气体能量储存与回收系统1840b的一实施例,其沿着与发电资产1810a的同一输电线路定位。系统1840b和发电资产1810a可通过有线或无线网络连接1857有效地进行通信。
例如,根据本发明的实施例的压缩气体能量储存和回收系统的一个可能的作用是提供某些形式的替代能量源原本缺少的调速器响应机构。具体而言,涉及流体流量(例如,蒸汽涡轮机)的传统发电机包括调速器装置,其将所测量的发电机的速度与流体流量阀相连。该调速器可按提供负反馈的方式运行,例如,当运行速度太慢时打开该阀门以提高流体流量,且当运行速度太高时关闭该阀门以限制流体流量。
该发电机可设计为具有自动发电控制(AGC)能力。当需要额外的电力来稳定频率、电压或出于其他辅助用途时,AGC使来自系统运行人员要求增大或减小输出的信息能够被直接传输到该调速器。此信号优先于调速器自己对速度和其他条件所作的决定。
然而,某些发电资产缺少固有的AGC能力。例如,风力涡轮机的电力输出的数量基于风对涡轮机叶片的旋转速度。此旋转不能按传统的方式由调速器的动作进行加速以提供额外的电压。
某些形式的太阳能也可能缺少固有的调速器响应机构。例如,可从太阳能热系统的光伏电池阵列的能量的数量通常由日照决定,不一定可容易地增大,以满足额外电力的需求。
相应地,根据本发明的压缩气体能量储存和回收系统的一些实施例可与电力网络的此非调速器发电资产耦接。此储存系统可实质上替代调速器,赋予发电资产AGC能力,并在收到短期通知时响应于系统运行人员的电压稳定要求自动地输出更多的电力。此构造可方便将替代能量源纳入现有的电网基础设施,且不一定需要将能量储存系统与替代发电资产从物理上定位在同一地点。
上述将能量储存系统与发电资产定位在不同的地点在某些情况下可能是有利的。例如,可再生能源的地点在很大程度上由自然资源(例如风或日光)的可用性决定。从而,该替代发电资产可能位于偏远地区,会增大对定位在同一地点的元件(例如,压缩气体能量储存和回收系统)进行检查和维修的费用。将电力从偏远地区输送到需要的地区可能产生额外的费用。相应地,在更容易到达的位置提供该能量储存系统可提高其运行的成本效率。
将压缩气体能量储存和回收系统与发电资产定位在不同的地点还可赋予该系统更大的灵活性。具体而言,运行该位于偏远地点的能量储存系统不一定与任何具体的发电资产相联系。于是,图18中的压缩气体能量储存和回收系统1840b可容易地向网络上供应电力,以在发电资产1810a、发电资产1810b或两者的功率缓升期间提供补偿。
图21显示根据本发明的实施例的压缩气体储存和回收系统的一个实施例的简化方框图。具体而言,压缩气体储存和回收系统2101包括压缩机/膨胀机(C/E)2102,其与气体进口2105流体连通,并与压缩气体储存单元2103流体连通。
图21显示压缩机/膨胀机2102通过连接2107与马达/发电机(M/G)选择性物理连通。在第一运行模式中,马达/发电机2104作为马达运行,使能量能够以压缩气体(例如空气)的形式储存。马达/发电机2104从外部源接收动力,并传递该动力使压缩机/膨胀机2102作为压缩机工作。马达/发电机2104的一个可能的动力源是仪表2108,其通过线路2181与电网2114的配电层的变电站2182电气连通。如下文中进一步详述,电网2114可为除了电力之外还包含信息的智能电网。
在压缩中,马达/发电机2104又通过连接2107将动力传递给压缩机/膨胀机2102,使压缩机/膨胀机2102能够作为压缩机工作。压缩机/膨胀机2102从进口2105接收气体,对该气体进行压缩,并使压缩气体流至储存单元2103。
图21还显示,系统2101也可构造为从第一(可变)替代源2110(例如风力涡轮机)接收能量。此处,压缩机/膨胀机2102显示为通过连接2120与风力涡轮机2110物理连通。该连接可为机械、液压或气动性质。
连接2120提供的风力涡轮机的旋转叶片与压缩机/膨胀机之间的直接连通可实现将能量作为压缩气体进行有效地储存,且能量损失很小。共同在审的美国非临时专利申请案第12/730,549号中描述了组合风力涡轮机-压缩气体储存系统的实施例,所述专利申请案出于所有目的以全文引用的方式并入本文中。在某些实施例中,能量储存系统和替代能量源可共享一公共发电机,如物理连接2121所指示。
在某些实施例中,替代能量储存源可包括单独的发电机,并通过连接2183将电气形式的能量提供给作为马达工作的马达/发电机2104。在某些实施例中,风力涡轮机中的单独发电机可通过连接2183与马达/发电机2104电气连通。
图21进一步显示压缩气体能量储存和回收系统2101还可构造为从第二(可调度)源2150(例如油或天然气管线)接收能量。该系统可依靠此可调度能量源2150来满足供应电力的合同承诺,例如当先前的运行已用完所储存的压缩气体供应时。
具体而言,来自可调度源2150的能量可被元件2164(例如,天然气涡轮机、柴油马达或气体马达)消耗,以通过连接2122驱动马达/发电机2104,从而生产电力并输出到电网上(例如在峰荷需求期间)。来自替代能量源2150的能量也可被元件2164消耗,以通过连接2185驱动压缩机/膨胀机2102以作为压缩机运行,从而压缩气体进行能量回收,例如在非峰荷需求期间。
元件2164也可通过换热器2160与热源2162进行热连通。通过此方式,元件2164运行所产生的热能可在回收来自压缩气体的能量期间提高膨胀的效率。
当元件2164是涡轮机(例如气体涡轮机)时,在某些实施例中,其可在燃烧过程中利用来自储存单元的压缩气体的膨胀。相应地,图21显示元件2164通过流体回路2176和阀门2178与压缩气体储存单元2103选择性流体连通。按此方式利用压缩气体进行燃烧可实现高效地回收储存在该压缩气体中的能量。
在某些实施例中,压缩机/膨胀机2102可包括单独的压缩机和单独的膨胀机,其可构造为经布置以一起作为热机运行。在此实施例中,即使在气体储存单元2103已耗尽后,也可使用来自热源2162的热量来驱动马达/发电机2104。
在某些实施例中,能量储存和回收系统2101也可与另一设施2170定位在同一地点,所述另一设施2170可为大电力用户。此等设施的实例包括但不限于诸如工厂等制造中心(包括半导体制造工厂)、数据中心、医院、港口、机场和/或零售设施,例如购物广场。
设施2170和能量储存和回收系统2101可与电网共享公共界面(例如仪表),尽管电力可通过单独的通道2174在系统2101与设施2170之间输送。电力可通过通道2174从能量储存和回收系统直接传送到所述设施以作为不间断电源(UPS),或者使该设施满足目标,包括但不限于调峰、负荷平整和/或需求响应。在该设施与能量储存系统之间可存在其他连接(此处未显示),例如热连接、流体连接和/或通信连接,以(例如)实现温度控制。
在第二运行模式中,储存在压缩气体中的能量被回收,且压缩机/膨胀机2102作为膨胀机运行。压缩机/膨胀机2102接收压缩气体,并使此压缩气体能够膨胀,从而驱动通过连接2107与作为发电机工作的马达/发电机2104连通的可动式构件。可将来自马达/电动机的电力经汇流排2172和输电线路2112输出到电网上供消耗。
如前文中所述,经受压缩或膨胀的气体将往往经历一些温度变化。具体而言,气体在被压缩时往往温度升高,在膨胀时往往温度降低。
如上所述气体压缩和减压的过程可能经历一些热和机械损失。然而,如果这些过程在近似等温条件下进行,则它们的热损失会降低,且温度变化最小。此近似等温压缩和/或膨胀可利用一个或多个技术(包括但不限于注入液体进行换热)实现。
相应地,系统2101的压缩机/膨胀机装置2102与一个或多个换热器2160流体连通,换热器2160可选择性与热汇或热源2162热连通。在压缩运行模式中,该换热器被布置在与热汇(例如大气)的热连通内,在该热汇处,风扇吹出空气以冷却换热器。在膨胀运行模式中,该换热器被布置在与热源(例如环境空气温度或废热源)的热连通内。该热源可为一结构,例如池塘,其构造为接收并储存元件2164依靠能量源2150产生的热量。
尽管图21中的具体实施例显示能量储存和回收系统是利用压缩气体形式的系统,但本发明并不限于该系统。本发明的替代实施例可利用作为供电网络的发电资产的位于同一汇流排后面、或者与同一输电线路连通的其他形式的能量储存和回收系统。此等其他类型的能量储存和回收系统的实例包括但不限于:抽水蓄能水电、飞轮、电池、超级电容器、热储存、渗透压力储存或超导环。
系统210的各元件与中央控制器或处理器2196连通,而中央控制器或处理器2196又与计算机可读的存储介质2194电子连通。中央控制器或处理器2196还可通过节点2118与2128之间的有线连接2116和/或无线连接与电网2114(例如,智能电网)连通。中央控制器或处理器2196还可与其他信息源(例如因特网2122)连通。
基于储存在计算机可读存储介质2194内的计算机代码形式的指令,控制器或处理器2196可进行工作以控制系统2101的各个元件。该控制可基于从系统内的各个传感器接收到的数据、通过该数据计算的数值和/或控制器或处理器2196从各个源(包括定位在同一地点的源或外部源)接收到的信息。
在某些实施例中,可将该系统的控制器构造为基于从发电资产接收到的指令开始工作。例如,压缩气体储存和回收系统可参与提供电力,以平整来自可再生能源发电资产的间歇式输出。在此情况下,可将控制器构造为接收一指示来自可再生能源发电资产的可变或间歇式输出的信号,并予以响应而产生足够数量的电力。
在某些实施例中,压缩气体能量储存和回收系统可将信号传输给发电资产。例如,参与平整功能的系统可接收可再生能源发电资产的输出长期损失(由于多云或风损失)的指示。在检测到此情况时,可将系统控制器构造为输出一信号,其指令另一发电资产在长时间框架内提供足够的电力补偿。
图21A是一简化方框图,显示根据实施例的组合压缩/膨胀系统的运行的各个系统参数。图21A显示在压缩时马达/发电机2104接收来自外部源的电力并传输该电力(Win),以使压缩机/膨胀机2102作为压缩机工作。压缩机/膨胀机2102接收处于进口压力(Pin)的未压缩气体,将该气体压缩至较大压力供储存(Pst)在利用可动式元件(例如活塞)的腔室内,并使压缩过的气体流到储存单元2103。
图21A还显示,在第二运行模式下,储存在压缩气体中的能量被回收,且压缩机-膨胀机2102作为膨胀机运行。压缩机/膨胀机2102接收来自储存单元2103的处于储存压力Pst的压缩气体,且然后使压缩气体膨胀至腔室内的较低出口压力Pout。此膨胀驱动可动式构件,该可动式构件与作为发电机工作的马达/电动机2104连通。然后,来自压缩机/膨胀机并传递至马达/发电机2104的动力输出(Wout)可输入到电网上消耗。
图21A还显示在压缩气体储存和回收系统与其他元件之间存在可能的物理连接、流体连接、通信连接和/或热连接。
尽管图21和21A已显示带有组合压缩机/膨胀机(C/E)和组合马达/电动机(M/G)的压缩气体储存和回收系统的实施例,本发明并不要求如此。图21B显示一替代实施例,其利用单独、专用的压缩机和膨胀机元件2186和2188,压缩机和膨胀机元件2186和2188分别与单独、专用的马达和发电机元件2187和2189连通。在某些实施例中,这些元件可通过单一公共连接进行物理连通。在其他实施例中,这些元件可通过多个连接进行物理连通。在另一些其他实施例中,可将马达2187和发电机2189组合到单个马达/发电机单元内。
在本实施例及其他实施例中,不需要将从压缩气体的膨胀所回收的能量作为电能送出该系统。在某些运行模式中,从膨胀气体获得的全部数量的能量可被消耗用于其他用途,例如温度控制(如加热或冷却)和/或供压缩机压缩更多气体。
图21C显示根据本发明的实施例的压缩气体储存和回收系统的替代实施例的简化方框图。在图21C的实施例中,专用压缩机(C)2186、专用膨胀机(E)2188、专用马达(M)2187、专用发电机(G)2189都通过多节点齿轮传动系统2199彼此选择性物理连通。美国非临时专利申请案第12/730,549号描述了该齿轮系统的实施例,所述专利申请案出于所有目的以引用的方式并入到本文中。
多节点齿轮传动系统(例如行星齿轮系统)可使所有连接以减法或加法的方式同时运动。例如,当有风吹拂时,可对来自涡轮机连接的能量进行分配,以驱动通往发电机的连接和通往压缩机的连接两者。在另一实例中,当有风吹拂且对能量的需求高,该行星齿轮系统使风力涡轮机的输出与膨胀机连接的输出相组合,以驱动通往发电机的连接。
另外,还可将多节点齿轮传动系统构造为适应非所有数量的连接的运动。例如,图22至图22A中的轴2241的旋转可导致轴2262的旋转或者反之亦然,此时阻止轴2268旋转。类似地,轴2241的旋转可导致仅轴2268的旋转且反之亦然。此构造能够实现将机械能量选择性地在系统的仅两个元件之间传递,例如当风力涡轮机是静止的并希望基于马达的运动来运行压缩机。
本发明的某些实施例可有利地使用行星齿轮系统来实现机械能量在该系统的不同元件之间传递。具体而言,该行星齿轮系统可提供灵活性来适应各个运行模式中连接之间的不同相对运动。
尽管图21C显示具有多节点齿轮传动系统的实施例,但本发明并不要求如此。在替代实施例中,该系统的各元件可通过各个物理连接或通过与非所有数量的其他元件共享的物理连接进行物理连通。
在某些实施例中,压缩气体能量储存和回收系统可利用注入液体来方便压缩和/或膨胀期间的换热。该换热可实现在压缩和/或膨胀过程期间维持温度受控(例如近似等温)条件,从而提高相应的能量储存和回收的效率。
将压缩气体能量储存和回收系统纳入电力网络的发电层可实现现有发电资产在起到原本由于其功率缓升时间而被妨碍的作用中得以利用。例如,发电资产的可能的作用是向能量市场出售电力。
一个上述市场是出售能量,以在长于1小时的时间框架内对供应与需求进行平衡。该实施例可近似实时地调度来自储存系统的电力,以使现有发电资产满足短时的需求波动。这些波动可能因自然原因引起,例如可变可再生能源(例如风电场)供应的电力数量的变化。该波动也可因人为引起,例如能量市场的费率表的变化。
压缩气体能量储存和回收系统的某些实施例可构造为便于发电资产的功率缓升,以在较长时间框架内(例如一天内)向批发电力市场出售电力。于是,本发明的能量储存系统的另一可能作用是可便利发电资产大量的日内套利。
在此作用中,当批发电力昂贵时,发电资产可工作以进行功率缓升,并提供能量供出售。所存在的压缩气体能量储存系统使发电资产能够在得到短期通知时对该大量日内套利的机会作出响应。
来自该储存系统的电力(且随后被来自功率缓升后发电资产的电力替代)可出售到批发能量市场。该压缩气体储存和回收系统可被独立电力生产商(IPP)、发电公用事业企业或一些负荷服务实体(LSE)拥有并运行。
对于功率缓升得到压缩气体能量储存和回收系统补偿的发电资产,其另一可能的作用是每日对可再生能源进行平整。具体而言,该发电资产的快速响应时间能够使需求快速地从可再生能源移开,以更好地匹配负荷和输电可用率。例如,当风逐渐消失时,来自压缩气体的能量可渡过电力网络上的困难,直到气体涡轮机功率缓升以补偿所损失的可再生能源供应。这会增大可靠性,且因此增大可再生能源的价值。
尽管上述说明已与分类为发电层的系统有关,所述系统回收的电力被出售到批发能量市场上,但本发明不限于起此作用。根据替代实施例,能量储存和回收系统可将能量出售给其他类型的市场,此保留处于本发明的范围内。
用于出售从压缩气体回收的电力的替代市场是辅助服务(A/S)
市场。宽泛而言,辅助服务市场大体上表示向网络出售电力,以用于终端用户消耗之外的用途。此等用途包括维持网络的完整性和稳定性,以及网络上所提供的电力的质量。
向辅助服务市场提供能量的能力(容量)通常在少于一天的时间内按市场价格出售。独立系统运行商(ISO)支付用于储备此容量的容量费用。
响应于来自网络的要求,出售实际能量本身,以在一时间内提供电力。当此情况发生时,系统的所有人将获得所出售的能量的市场价值。
存在一个维持容量的辅助市场,以提供网络运行所需的必要备用。换言之,要求网络的运营商能够供应超过现有需求数量的电力,以确保网络能够满足未来的需求。此备用通常计算为一超过供应的百分比。
一种形式的备用是应急备用。应急备用由电力网络响应于某些事件(应急事故)在得到相对短期的通知时召唤,所述事件(应急事故)是未预料到的,但需要为其作出计划。此可能的应急事故包括输电层(例如输电线路)的元件故障、未预料到的需求激增、或在得到短期通知时需要关停发电元件或减小发电元件的输出。
一种形式的应急备用是旋转备用。此旋转备用通常可在得到极短期通知时获得。旋转备用传统上采用如下形式:增大以小于容量的条件运行的发电机组的输出,或者通过中断至某些客户的服务。此备用之所以称为“旋转”,是因为为了在得到短期通知时满足需求,发电资产可能已经在线,并与网络的剩余部分以同步的方式(“旋转”)运行。
另一种形式的应急备用是常设备用。常设备用需要比旋转备用提前较长的时间才可获得,这是因为发电元件没有同步在线。常设备用也可采用中断至某些客户的服务的形式,需要相应地较长的通知时期。
在某些实施例中,其功率缓升时间被根据本发明的压缩气体储存和回收系统补偿的现在发电资产可能能够工作以提供应急备用。此等发电资产会具有在服务提供者要求的时间内提供必要数量的应急电力的容量。功率缓升补偿的各个可能的作用在上文中进行了归纳。
可将压缩气体能量储存和回收系统纳入到供电网络内,一终端用户在仪表后面。此能量储存和回收系统可起供电和/或温度控制作用。在某些实施例中,可利用从压缩气体膨胀回收的能量来对终端用户进行冷却。根据一些实施例,可利用气体的压缩产生的热量供加热。在作为电源工作时,压缩气体能量储存和回收系统可作为终端用户的不间断电源(UPS),和/或可提供电力以使终端用户能够进行调峰和/或参与需求响应程序。
根据本发明的实施例,可将压缩气体能量储存和回收系统纳入到供电网络内一终端用户的仪表后面。在某些实施例中,可利用气体的压缩产生的能量或者从气体的膨胀回收的能量(以及可能从其他热源补充)来提供终端用户的温度控制(例如冷却和/或加热)。
图23所示的表格中列出此温度控制作用的一些参数的实例。
在某些实施例中,位于消费层内的压缩气体能量储存系统可提供电力供应,以满足终端用户的全部或部分需求。此电力供应的实例包括但不限于作为不间断电源(UPS)、作为使终端用户能够参与日常套利(即,日常在价格较低时从网络购买电力)的电力供应、作为使终端用户能够参与需求响应程序的电力供应、作为使终端用户能够将消耗减少到历史峰值水平以下的电力供应、和/或作为在可再生能源(例如风力涡轮机或光伏(PV)阵列)变化或间歇供应期间提供电力的电力供应。
图19所示的表格中列出此电力供应作用的一些参数的实例。
小终端用户的实例包括居民或小企业。中等终端用户的实例包括那些对电力和/或温度控制需求较大的终端用户,例如医院、办公楼、大商店、工厂或数据存储中心。大终端用户可包括由多个实体组成的终端用户,例如大型购物中心、居民小区、科研或行政园区、运输节点(例如机场、港口或铁路线)。
图18显示将压缩气体储存系统的各实施例纳入到电力网络内。图18显示,在某些实施例中,可将压缩气体能量储存和回收系统1840a与终端用户1806a纳入消费层内仪表1834a的后面。在此构造中,在终端用户与能量储存和回收系统之间可存在多个不同类型的连接1850(包括但不限于物理连接、热连接、电气连接、流体连接和/或通信连接)。
图18还显示,在其他实施例中,可将根据本发明的压缩气体能量储存和回收系统1840a与终端用户1806b以及一个或多个本地电源1855两者定位在仪表1834b后面同一地点。此等本地电源的实例包括但不限于风力涡轮机和太阳能捕获装置,例如屋顶光伏(PV)阵列和/或太阳热系统。在此构造中,可在终端用户与能量储存和回收系统之间、终端用户与本地发电机之间、和/或能量储存和回收系统与当地电源之间存在多个不同类型的连接1850(包括但不限于物理连接、电子连接、通信连接、热连接和/或流体连接)。
图24显示根据本发明的实施例的压缩气体储存和回收系统的一个实施例的简化方框图。具体而言,压缩气体储存和回收系统2401包括马达/发电机(M/G)2404,其构造为与终端用户2450和仪表2492电气连通。
马达/发电机(M/G)2404通过物理连接2421和离合器2422与专用压缩机(C)2402选择性物理连通。马达/发电机(M/G)2404还可通过连接2423和离合器2424与专用膨胀机(E)2405选择性物理连通。
专用压缩机(C)2402与气体进口2403选择性流体连通。该专用压缩机的气体出口2447通过逆流式换热器2428和单向阀门2409与压缩气体储存单元2432选择性流体连通。
在某些实施例中,压缩气体储存单元2432可与热源选择性连通。例如,可将压缩气体储存单元定位为与太阳热连通,以便在白天吸收太阳能。在某些实施例中,该储存单元可涂有促进热能吸收的材料,例如黑色油漆。
在某些实施例中,可将压缩气体储存单元定位在光透明屏障(例如玻璃)后面与太阳热连通。该屏障可用于捕捉来自太阳射线的红外线辐射(IR),从而在白天进一步增强对压缩气体的加热。
专用膨胀机(E)的气体进口2449通过逆流式换热器2428和单向阀门2411与压缩气体储存单元2432选择性流体连通。该专用膨胀机与气体出口2407选择性流体连通。
如上文中所述,本发明的实施例使用与所引入的液体之间的换热,利用气体在受控的温度变化条件下的压缩和膨胀来实现有效的能量储存和回收。在某些实施例中,这些受控的温度条件可导致近似等温的气体压缩和膨胀。
存在于该系统内的热能可通过多个热连接传递。根据本发明的实施例的热连接可包括构造成各个组合的一个或多个元件,以实现热能从一个物理位置到另一个物理位置的传递。热连接的可能热元件的实例包括但不限于液体流动导管、气体流动导管、热管、换热器、回路式热管和热虹吸管。
例如,该专用压缩机可通过热连接2461与热汇2462选择性热连通。该热连通可实现呈来自压缩气体的热量形式的热能传递。
该专用膨胀机可通过热连接2464与热源2488选择性热连通。该热连通可实现呈来自膨胀气体的凉爽形式的热能传递。
该专用压缩机包括热连接2463,其构造为传递呈来自压缩气体的热量形式的热能。该呈热量形式的热能可通过开关2484选择性流出该系统,或者通过热连接2482流至终端用户。在某些实施例中,热连接2482可传递呈压缩气体本身形式的热量。在某些实施例中,热连接可传递呈已与压缩后气体进行换热的流体形式的热量。
该专用膨胀机包括热连接2473,其构造为传递呈来自膨胀气体的凉爽形式的热能。该呈凉爽形式的热能可通过开关2481选择性流出该系统,或者通过热连接2480流至终端用户。在某些实施例中,热连接2473可传递呈膨胀气体本身形式的凉爽。在某些实施例中,热连接可传递呈已与膨胀后气体进行换热的流体形式的凉爽。
在某些实施例中,热连接2480和2482可构造为与终端用户内的现有采暖、通风和空气调节(HVAC)系统界接。此标准HVAC系统的实例包括但不限于从如下制造商获得:AAON、Addison ProductsCompany、Allied Thermal Systems、American Standard、Armstrong、Bard、Burnham、Carrier、Coleman、Comfortmaker、Goodman、Heil、Lennox、Nordyne、Peake Industries Limited、Rheem、Trane和YorkInternational。
住宅HVAC系统的实例性类型可包括空气调节器、热泵、整体式气电、整体式热泵、整体式空气调节器、整体式双燃料、空气处理器和炉膛。商用HVAC系统的实例性类型可包括组合式户外机组、包括使用制冷剂的组合式屋顶机组、使用R-22制冷剂的组合式屋顶机组以及100%专用户外空气机组。商用HVAC系统组合式室内机组包括室内独立机组、水源热泵和组合式终端空气调节器。
商用HVAC系统还可呈组合分体式系统的形式。实例包括分体式系统(6-130吨)、分体式系统(1.5-5吨)、冷凝器、无管道系统、炉膛和盘管。
冷冻机的实例包括但不限于空气冷却冷冻机、水冷却冷冻机、无冷凝器冷冻机,并可包括冷凝器和其他冷冻机部件。
空气侧设备可包括但不限于空气处理器、空气终端盘管、风机盘管、热量/能量加回收单元、感应机组、地板下空气分配系统以及机组通风器。加热设备的实例包括但不限于锅炉和炉膛。
在许多实施例中,热连接可包括作为流体流动的环路或回路之一部分的流体回路。在某些实施例中,由于直接或间接加热终端用户而被冷却(或直接或间接冷却终端用户而被加热)的流体可返回到该系统。
于是,在某些实施例中,从压缩机出来的经加热的液体可在暴露到热汇(其可为需要加热的终端用户)中之后被循环返回到压缩机。类似地,从膨胀机出来的经冷却的液体可在暴露到热源(其可为需要冷却的终端用户)中之后被循环返回到膨胀机。在两种情况下,可通过一个或多个换热器结构来发生热暴露。
在某些实施例中,从膨胀机出来的经冷却的气体可在暴露到呈需要冷却的终端用户形式的热源之后被循环返回到压缩机。从压缩机出来的经加热的气体可在暴露到呈需要加热的终端用户形式的热汇之后被循环返回到膨胀机。在此等情况下,可通过一个或多个换热器结构来发生热暴露。
再次,该热连接不需要包括单个元件。可利用各种换热器使热能从流经液体导管的液体传递到流经气体导管的气体(反之亦然)。可将此换热器定位在多个不同的位置,从最初换热的地点到终端用户的里面。在某些实施例中,热连接的一个或多个部件可包括热管,流体在其中发生气相与液相之间的变化。
根据本发明的系统的实施例在电网中的运行可由中央处理器进行协调,该中央处理器接收输入并基于控制算法产生输出。现在,结合图25至图25A介绍此运行的实例。
图25绘制供电网络的各个元件的电力输出随时间的变化曲线。第一元件是可再生能源(例如风电场),其输出视自然力而定是可变的。第二元件是根据本发明实施例的系统。
其电力输出在图25中显示的第三元件是短期发电资产。此短期发电资产可构造为在得到短期通知时提供电力,但效率较低和/或费用相对较高。此短期发电资产的实例是柴油发电机,或者甚至另一能量储存装置。
其电力输出在图25中显示的第四元件是较长期发电资产。此较长期发电资产可构造为以相对较低的成本提供足够的电力,但需要较长期的通知。此较长期发电资产的实例是天然气涡轮机。
这些各个元件的运行可通过中央处理器进行协调,以维持网络上稳定的电力供应,同时确保有效地利用可用资源。图25A显示系统2500的简化视图,系统2500包括处理器2502,处理器2502与供电网络和能量储存装置电子连通,该系统进一步包括计算机可读的存储介质2504,计算机可读的存储介质2504与该处理器电子连通,且其上存储有代码,该代码配置为使该处理器:
-接收与所预计的供电网络的负荷变化、或者供电网络可用的发电容量变化相关的输入2506;
-根据控制算法处理该输入;
-传递第一信号2508,或者自动地使能量储存装置运行以输出电力,或者建议操作人员指令能量储存装置运行以输出电力;以及
-传递第二信号2510,或者自动地使供电网络的发电资产进行功率缓升,或者建议操作人员指令供电网络的发电资产进行功率缓升。
根据某些实施例,该输入可源于供电网络,例如需求响应命令。在一些实施例中,该输入可源于该仪表,例如指示消费接近或超过历史峰值。
在某些实施例中,该输入可为所预计的在供电网络的可再生发电资产处风能或太阳能的变化。该输入可包括指示负荷变化的环境温度变化,或者可包括预测对供电网络产生破坏的天气扰动。
在某些实施例中,可将能量储存装置构造为直接向位于该供电网络的仪表后面的用户输出电力。根据具体实施例,可将能量储存装置构造为将电力输出到供电网络上,例如通过变压器输出到配电或输电层,或者通过汇流排输出到发电层。
在某些实施例中,能量储存系统可储存电气形式的能量,例如电池或电容器组。在一些实施例中,可将能量储存装置构造为当存在驱动物理连接(例如曲轴)的液体时利用压缩气体的膨胀产生电力。具体实施例可引入液体,使用旋转运动将其喷射,然后冲击在偏斜表面上。
根据一些实施例,该计算机可读存储介质可进一步包括存储在其上的代码,该代码使处理器传递信号2512,以响应于指示发电资产功率缓升完成的信号2514,或者自动地停止能量储存装置的运行,或者建议操作人员指令能量储存装置停止运行。
根据具体实施例的系统可具有计算机可读存储介质,该计算机可读存储介质进一步包括存储在其上的代码,以传递信号2516或者自动地使能量储存装置补充,或者建议操作人员指令能量储存装置补充。
返回图25中所示的具体实例,在时间间隔A上可再生能源提供在预计范围R内变化的电力输出。在此同一时间间隔A上,根据一实施例的系统提供足够的电力来补偿该变化的电力输出,从而将电力维持在水平Z。这里,Z可代表电网上的总电力,或者该总电力的一部分(例如,来自风电场的根据合同确定的承诺电力)。相应地,在时间期间A上,既不需要使用短期发电资产,也不需要使用长期发电资产。
在时刻B,中央处理器收到指示来自可再生发电资产的电力长期损失的信息。例如,可再生发电资产可传递指示符合实质性风损失的历史趋势的风速变化模式。此历史趋势还可能受到其他因素影响,例如一年中的时间、一天中的时间、风力涡轮机的具体地理位置、以及当前和将来天气活动的气象模型。一个可能的风预测建模来源是纽约奥尔巴尼的True Wind Solutions LLC。
相应地,在时刻B,处理器向短期发电资产发送信号,指令其开始进行功率缓升以提供电力,从而替代可再生发电资产的电力。由于此功率缓升不是瞬时的,处理器还通知压缩气体储存系统准备维持甚至增大其输出,以补偿短期发电资产的功率缓升期间。
按照预测,在时刻C,风速下降到阈值T以下,在此之下没有电力从风力涡轮机发出。在该时刻C,压缩气体能量储存系统承担整个负荷Z。
根据本发明的实施例的系统提供电力的能力可能最终受到一个或多个因素限制,包括其发电机的规格、其储存容量的规格、以及其现有储存容量的当前状态。另外,该系统可按高于长期发电资产的成本的特定成本提供电力。这些信息作为该处理器的输入。作为响应,在时刻C,中央处理器通知长期发电资产准备开机启动,以满足较长期的负荷。
在时刻D,短期发电资产已暖机并开机启动,且快速开始产生电力以满足时刻E的全部需求。在从D到E的时间内,压缩气体储存系统相应地逐渐减小其输出。
到时刻F,已达到长期发电资产的延长的功率缓升时间,该资产现在也开机启动,并开始提供增加的电力以满足负荷。在从F到G的时间内,短期发电资产相应地逐渐减小其输出。
图25中的过渡(自电网主要从可再生能源接收电力,到其从较长期发电资产接收电力)由中央处理器基于从各个源接收的信息进行协调。该过渡以来自可用资源的令人称心的效率完成,而不会危及网络上电力的稳定性。
图25中显示的具体过渡表示高度简化的情况。例如,在任何给定时刻,多个各种类型的发电资产(即,可变(可再生)、基线、峰荷、负荷跟踪)会提供电力以满足需求。此外,多个储存设备将部署在网络中不同的位置,在任何给定时刻有不止一个储存设备被用于满足需求。
图25中所示的具体情形的简化还在于,其仅显示启动资源来满足需求。在这些事件的变形中,风速可能意外地恢复,继续可靠地供电。在此情形中,该处理器基于此新收到的信息指令/建议暂停发电资产的功率缓升,或者适合让可再生能源提供目前可用的可靠供电的措施。
图25中所示的情形的简化在于,将总负荷显示为不变的。实际中,电网上的负荷随时间发生可预测(例如,每天的模式、定期维护)和不可预测(暴风损失、非定期维护)的变化。处理器能够快速地响应此变化条件(表现为变化的输入形式)能有助于操作人员的决策过程。
图25中的情形的简化在于,其仅代表一个具体的事件链(损失来自可再生资源的可用发电容量)。当然,还可能发生无数的其他事件,其受到包括但不限于以下因素的影响:
·天气模式;
·需求模式;
·能源定价结构/协议;
·输电和/或配电资产的可用率;
·其他互联电网的条件。
当然,本发明并不限于用于可再生能源,或者不限于具体的能量储存系统。而是,本发明的实施例可采用中央处理器来控制(或向个人用户提出控制决策的建议)供电网络的各资产以协调各种类型的能量储存的活动,其中压缩气体仅是一个实例。于是,根据替代实施例,中央处理器可执行控制算法,将包括电池的储存系统与电网的非可再生发电资产进行整合,(例如)以满足变化的需求。
至中央处理器所执行的该控制算法的输入的实例包括但不限于:
·现有/预计的将来负荷;
·来自发电资产的电力的价格;
·发电资产的功率缓升时间;
·可用的储存容量;
·储存充电要求;
·发电资产的状态(即,旋转,备用);
·电力的市场(零售、A/S)价格;
·可再生电源的状态(即,目前/将来的气象条件);
·输电容量。
基于至控制算法的输入作出的决策或向操作人员建议的决策的实例包括但不限于:
·启动/关停发电资产;
·储能设备释能/充能;
·改变输电/配电路径;及
·从批发或辅助服务市场购买电力;
·减小/改变需求;
在减小/改变需求方面,能量储存装置可执行本功能,而不需通过汇流排或变压器向网络实际输出电力。具体而言,与终端用户一起定位在仪表后面的能量储存装置可向该终端用户输出动力(以电气或其他形式)。来自该储存装置的此动力输出可有效地替代用户从电网提取的电力,从而减小供电网络上的负荷。
根据本发明的设备、方法和系统的实施例可实现不同形式的能量之间的转换。例如,图26A到图26B显示一系统的实施例的视图。图26A显示不同类型的能量至系统2602的输入2600,系统2602具有本文中所述的一个或多个特征。图26A还显示各种形式能量的来自该系统的相应输出2604。图26A进一步显示在输入与输出之间将压缩气体可选地储存在储存单元2605中。
先前已显示并描述根据本发明的压缩/膨胀系统的具体实施例。图26B显示与能量源2610和能量终点端2612连通的该系统2602(包括可选的压缩气体储存2605)的一般性图示。
具体而言,能量源2610、系统2602和能量终点端2612与热网2650热连通。此网络传输热能,并可包括元件,例如液体流动导管、气体流动导管、热管、保温容器、换热器(包括逆流式换热器)、回路式热管、热虹吸管、热源和热汇。图26B特别显示包括热源2652和热汇2654的热网,其分别包括低品位热源和外部环境。
图26B还显示能量源2610、系统2602和能量终点端2612与流体网络2660连通。此网络传输流体,包括气体、液体和/或它们的混合物,并可包括元件,例如储罐或储罐、液体流动导管、气体流动导管、泵、通风孔、液体流动阀、气体流动阀、开关、液体喷射器、气体分布器、混合器、蓄能器和分离器。
上文中已提到各种类型的分离器。视具体实施例而定,可使用气-液分离器和/或液体-液体分离器。气-液分离器设计的实例包括立式、卧式和球型。分离器的液体收集段可包括诸如进口分流器等元件,该进口分流器包括分流器挡板、切向挡板、离心机、弯管、波浪破坏器、旋涡破坏器、除沫板、静止井和脱湿器。
图2B进一步显示能量源2610、系统2602和能量终点端2612与物理网络2670连通。此网络传递物理能量,并可包括机械元件,所述机械元件构造为将直线运动转换为旋转运动,或者旋转运动转换为直线运动,例如轴(包括曲轴)。物理网络的机械部件的其他实例包括螺杆、活塞、齿轮(包括多节点齿轮传动系统,例如行星齿轮),以及马达。
物理网络还可液压或气动元件,包括活塞、蓄能器、气体腔室、液体腔室、气体导管、液体导管、液压马达、液压变压器、气动马达以及所属领域已知的其他元件。
图26B最后显示能量源2610、系统2602和能量终点端2612与电气网络2680连通。此网络传递电能,并可包括元件,例如电阻器、晶体管、电容器、电感器、变压器、电池、绝缘体、二极管、放大器、电源、母线、仪表、汇流排、滤流器、功率调节设备以及所属领域已知的任何无数电气部件中的任何部件。
图27A显示根据本发明的设备的实施例的简化示意图,所述设备可布置为各种构造以提供不同的功能。具体而言,图27A显示系统2700,系统2700包括两个腔室2702、2704,腔室2702、2704容纳与轴相连的转子和叶片,所述轴耦接到马达/发电机2760。
根据某些实施例(例如,转子的旋转对于压缩和膨胀而言处于同一方向),该轴可为公共轴。或者,该轴可为独立的,并通过一个或多个中间连接2799与马达/发电机相连。该中间连接的实例包括但不限于离合器、多节点齿轮传动系统和机械换向连接(例如,转子的旋转对于压缩和膨胀而言处于相反方向)。
图27A显示每一腔室具有相应的开口2770、2772、2774、2776,气体通过所述开口经气体/液体流动网络2798流至/流自该腔室,气体/液体流动网络2798可包括元件,包括但不限于例如气体流动导管、液体流动导管、阀门、泵、蓄能器、换热器、脉动阻尼瓶、冷凝器、气-液混合腔室以及气-液分离器。该气体/液体流动网络的气-液分离器可与各气体-气体换热器2716、2720热连通,以及与相应腔室流体连通以在其中完成气-液换热。
图27A进一步显示所述腔室通过气体导管网络和多路阀2706、2708、2710和2712彼此之间、与储罐之间、与该系统的各个腔口之间选择性流体连通。此多路阀的运行及气体/液体流动网络2798及其阀门部件的运行可由中央处理器2790基于计算机可读存储介质2792中存在的代码进行协调。
图27A进一步显示各个热节点2725、2728、2730、2732、2734、2736和2740。此等热节点可包括一个或多个外部热源、或一个或多个外部热汇。此等可能的外部热源的实例包括但不限于光热构造、地热现象、以及接近的放热工业过程。此等可能的外部热汇的实例包括但不限于环境(尤其在高海拔和/或纬度)、地热现象(例如雪或水深度热梯度)。在这些不同节点传递至/自该系统的热能可影响该系统的运行。
下表显示图27A中的装置的不同构造。
图27BA至图27BF是气体通过图27A中的装置的各种构造流动的高度简化图示。例如,在构造1中,(图27BB)两个腔室都作为压缩机。气体被从周围环境、储罐或另一较低压级吸入。然后,通过在压缩期间或之前向空气中喷到液体中来对气体近似等温地压缩。将一定数量的液体引入腔室内可控制压缩气体的排放温度。在被加热的压缩气体进入储罐或第二级之前或之后,将热量从其中取出。
在构造2(图27BB)中,两个腔室都作为膨胀机。将压缩气体从储罐和/或另一压缩气体源(例如高压级)馈入腔室。压缩气体的压力驱动与其连通的物理连接和/或电气发电机。此过程产生冷气体和凉液体,所述冷气体和凉液体可直接或间接用于空气调节、制冷或冷却。
在构造3(图27BC)中,一个腔室作为压缩机,另一个作为膨胀机。工作气体在闭式回路中。气体在压缩机中被压缩,产生热气体和热液体。然后,压缩气体被馈入膨胀机内。被喷入膨胀机内的液体或者压缩气体可被外部热源预热,以产生净的可输送机械能量。膨胀机产生驱动压缩机,或者产生各种形式的能量(例如,电气/机械/液压/气压能量)所需的动力。
在构造3中,气体可通过逆流式换热器流动。该逆流式换热器可用于对压缩气体进行预热,并对膨胀气体进行冷却。
在构造4(图27BD)中,一个腔室作为压缩机,另一个作为膨胀机。气体被从周围环境、储罐或另一级吸入。然后,该气体被近似等温地压缩。可从加热后的压缩气体中提取热量,或者可在气体流被馈入膨胀机之前,向气体流中加入额外的热量。可利用外部热源对喷入膨胀机内的液体进行预热。膨胀机产生驱动压缩机所需的动力,或者产生一种或多种形式的输出能量(例如,电气/机械/液压/气动能量)。
某些实施例可以上述构造中任一者连续运行,或者在各构造之间间歇式切换。例如,各构造之间的该间歇式操作会需要对多路阀的状态进行电子控制,例如使气体在特定时间流入和/流自储存单元。
另外,根据实施例的系统可以上述构造的组合运行。例如,图27BE显示在一组合有压缩机和热机功能的替代构造中,气体流过图27A中的系统的简化视图。
在某些该组合构造中,可将多路阀构造为对多个输入进行组合,或者提供多个输出。在图27BE的组合构造中,多路阀的其中一个不仅向作为膨胀机的(右手侧)腔室输出压缩气体,而且向储罐输出压缩气体。
图27BF显示在一组合有膨胀机和热机功能的替代构造中,气体流过图27A中的系统的简化视图。在此构造中,多路阀的其中一个不仅从作为压缩机的(左手侧)腔室接收压缩气体,而且从储罐接收压缩气体。右手侧腔室从此组合数量的压缩气体的膨胀中回收能量。
尽管图27BE到图27BF显示气体流动通道为敞开式的构造的组合,但本发明的实施例并不限于此方法。替代实施例可采用与气体在闭式回路中流动相结合的压缩气体流动至/自储罐,如同图27BC中的方式。
在构造的某些实施例中,可使用启动器来启动压缩机动作。
本发明的实施例不限于压缩气体膨胀至环境压力,且在某些情况下,可将气体膨胀到大气压之上或之下。本发明的其他实施例不限于从环境温度开始压缩气体,且在某些情况下,供压缩的进气可高于或可低于环境温度。
另外,本发明不仅于图27A中显示的具体设备,可以对其进行变化。例如,在一些实施例中,该系统可带有额外的换热器运行,或者没有换热器。在具体实施例中,该系统可与一个或多个类似的系统并联或串联运行。
将系统的实施例连接到各不同的网络中的一个或多个,能够实现将在各个源与终点端之间流动的能量转换为不同的形式。图27C至图27EB中的表格显示此能量转换的过程和路径。
本发明中作为热机运行并接收热能形式的输入的实施例可用于替代或补充传统的依靠朗肯循环的类型。例如,可将根据本发明的实施例纳入基于燃烧或核的电厂内,以取代或补充朗肯循环蒸汽涡轮机。
本系统不限于接收或输出任何单一形式的能量。而是,该系统可包括对不同形式的输入能量进行组合的能力和/或将输出能量分配到众多形式内。图28中绘示此分配的简化形式。
具体而言,可如图所示对压缩气体、受热气体/液体、冷却气体/液体和/或电能形式的输入进行组合,以最终产生压缩气体形式的能量。可选地,可将该压缩气体储存供今后进行回收。
在压缩气体膨胀时(不论是立即膨胀,还是在储存一段时间后膨胀),可对从该压缩气体释放的能量在多个形式的输出之间分配。例如,可在以热量形式释放的能量与非热量形式释放的能量之间进行分配。可通过控制膨胀气体发生的温度变化的大小(例如,喷入的液体的数量)来确定上述分配。
在某些情况下(例如热浪),可能需要大量热量形式的能量。于是,可以实质性非等温的方式来对压缩气体进行膨胀,所得到的冷却气体被用于吸收来自用户的热量。此非等温膨胀可通过控制被引入膨胀腔室进行换热的液体的数量来实现。
相反,当需要大量的非热量输出时,可在等温或近似等温的条件下发生膨胀。此能量回收会导致高效的能量回收。在气体与喷入的液体之间进行的热量传递可实现热能呈液体形式输出。
另一分配是非热能。如图28所示,可在电气形式的输出与机械/液压/气动形式的输出之间分配非热能。例如,旋转轴或其他物理连接可与齿轮传动系统(例如,多节点齿轮传动系统,如行星齿轮系统)连通,以使一些非热输出能量驱动电气发电机产生电力。
图28显示(此处为)热能的另一分配。具体而言,可将来自膨胀气体的该热能在受热气体和/或液体和/或冷却气体和/或液体之间分配。气体膨胀产生的能量在不同输出之前的分配可参照图27BA至图27EB中显示的各个路径完成。
尽管上述说明的某些方面已着重于动力的储存、产生和转换,根据本发明的系统的主要重点可在于温度控制,所附加的优点是减小对来自电网的电力的消耗。该电力节省可通过如下方式实现:1)利用对气体和/或分离的液体进行冷却/加热所需的电力;2)对气体的储存和膨胀进行时间偏移,以利用经济因素,例如价格和需求。
视具体实施例而定,纳入能量储存系统的可逆式压缩机/膨胀机装置可提供一些潜在的优点。例如,压缩气体的膨胀所产生的电力可用于使间歇式可再生能源向电网的输出变得稳定。换言之,可对压缩气体进行膨胀,以实现当自然条件不利于发电时(例如,没有风吹动,或者云干扰太阳能收集),能够进行发电。
如上文中结合图13所述,可结合带有现有电气发电机的电源来使用可逆式压缩机/膨胀机装置。在某些实施例中,使用可逆式压缩机/膨胀机装置还可用于减小与可再生能源相关的电气发电资源和/或输电资源的尺寸,且因此减小其成本。
例如,图29显示将能量储存系统2900的实施例与供电网络2906的发电资源2902和输电资源2904相结合的简化视图。如图29所示,由于可使用能量储存,使得具有最大1MW的电力输出但容积因数仅为1/3的风力涡轮机2908能够利用运行输出为1/3MW的发电机在持续的时间内向电网提供电力。此较小的发电机可较便宜地购买,且运行和维护更有成本效益。
此外,相对于可再生资源的峰值电力输出减小发电机的尺寸可减小(可能很珍贵的)输电资产的消耗。例如,可减小通往/来自汇流排2910的输电线路的尺寸,和/或将过剩的输电容量腾出来以分配给其他用途。
使用可逆式压缩机/膨胀机装置还可用于提供发电资产的运行效率。例如,在提供固定的电力输出时,发电资产(例如联合循环涡轮机)通常以最高的效率运行。
相形之下,如“公开案”中所述,作为能量储存系统之一部分运行的可逆式压缩机/膨胀机可至少基于引入腔室供压缩的一数量的气体,或导入腔室供膨胀的一数量的压缩气体而可调节。于是,如图30中所示,联合循环发电资产可以峰值效率运行以提供基线电力来满足负荷,同时压缩气体能量储存系统的可逆式压缩机/膨胀机调大或调小,以提供足够的额外电力来满足由于需求波动而产生的负荷变化。
当负荷实际下降到基线负荷之下时(例如,T′>时间>T),可利用联合循环发电资产的过剩电力输出来运行压缩机,以储存气体供将来膨胀。该能量储存系统的可调性能够使该膨胀发生,同时联合循环电厂继续维持基线电力输出。
27a.一种装置,包括:
一元件,其构造为在腔室内与气体实现气-液换热;
机械连接,其选择性构造为将动力传输至所述腔室内,以使可旋转构件在所述腔室内对气体进行压缩,所述机械连接被构造为当负荷下降到低于基线时与基线发电资产进行选择性连通。
28a.根据第27a条所述的装置,其中当所述负荷上升到高于所述基线时:
所述腔室被构造为与压缩气体储存单元进行选择性流体连通;以及
所述机械连接被构造为将所述腔室内膨胀的气体的动力传输到所述腔室之外至电气发电机。
29a.根据第27a条或第28a条所述的装置,其中所述机械连接与间歇式可再生能源选择性连通,以使所述可旋转构件压缩所述腔室内的气体。
30a.根据第27a条、第28a条或第29a条所述的装置,其中所述可旋转构件包括涡轮机。
31a.根据第30a条所述的装置,其中所述涡轮机包括气体涡轮机。
32a.根据第30a条所述的装置,其中所述涡轮机包括液体涡轮机。
33a.根据第29a条所述的装置,其中所述可旋转构件包括叶片。

Claims (18)

1.一种从压缩气体回收能量的系统,所述系统包括:
压缩气体储存单元;
第一腔室,其界定在壁内并选择性地与所述压缩气体储存单元流体连通,以接收压缩气体;
第一气翼,其构造为用于在不发生燃烧的情况下响应所述压缩气体的膨胀来驱动所述第一腔室内的转子;
元件,其构造为实现与膨胀的压缩气体进行气-液换热,
其中所述元件包括与所述第一腔室流体连通的液体喷射器。
2.根据权利要求1所述的系统,其中所述第一气翼和所述第一腔室内的所述转子界定轴向涡轮机。
3.根据权利要求1所述的系统,其中所述第一气翼和所述第一腔室内的所述转子界定离心式涡轮机。
4.根据权利要求1所述的系统,其中所述第一气翼和所述第一腔室内的所述转子界定涡轮机,并且其中所述涡轮机包括单向涡轮机。
5.根据权利要求1所述的系统,其中所述第一气翼和所述第一腔室内的所述转子界定涡轮机,并且其中所述涡轮机包括双向涡轮机。
6.根据权利要求1所述的系统,其中所述第一腔室通过换热器与所述压缩气体储存单元选择性流体连通。
7.根据权利要求6所述的系统,其中所述换热器与热储存单元选择性热连通。
8.根据权利要求7所述的系统,其中所述热储存单元包括处于大气压力下的液体水。
9.根据权利要求1所述的系统,其中所述液体喷射器通过上游混合腔与所述第一腔室流体连通。
10.根据权利要求1所述的系统,进一步包括定位在所述第一气翼的下游并构造为由进一步膨胀的气体驱动的第二气翼。
11.根据权利要求10所述的系统,进一步包括:
第一液体喷射器,其定位在所述第一气翼的上游,以实现与所述膨胀气体进行气-液换热;以及
第二液体喷射器,其定位在所述第一气翼与所述第二气翼之间,以实现与所述进一步膨胀的气体进行气-液换热。
12.根据权利要求11所述的系统,其中所述第二气翼定位在所述第一腔室内,以界定另一涡轮机级。
13.根据权利要求1所述的系统,其中所述第一气翼包括易弯曲性材料。
14.根据权利要求1所述的系统,其中所述第一气翼设计为基于随时间的磨损曲线进行定期更换。
15.根据权利要求1所述的系统,进一步包括与所述转子连通的电气发电机。
16.根据权利要求1所述的系统,其中所述转子与能量源选择性连通,以驱动所述第一气翼来压缩所述腔室内的气体,并使压缩后的气体流动到所述压缩气体储存单元。
17.根据权利要求16所述的系统,其中所述能量源包括马达、燃烧涡轮机、风力涡轮机或蒸汽涡轮机。
18.根据权利要求1所述的系统,进一步包括控制系统,所述控制系统构造为:
接收信号;以及
基于所述接收的信号,控制阀门使压缩气体流动到所述第一腔室内,以使与所述转子连通的发电机向供电网络供应电力,以补偿产生发电资产的缓升阶段。
CN201280045853.6A 2011-09-20 2012-09-19 使用涡轮机的压缩气体能量储存系统 Expired - Fee Related CN103814199B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161536813P 2011-09-20 2011-09-20
US61/536,813 2011-09-20
PCT/US2012/056155 WO2013043754A1 (en) 2011-09-20 2012-09-19 Compressed gas energy storage system using turbine

Publications (2)

Publication Number Publication Date
CN103814199A CN103814199A (zh) 2014-05-21
CN103814199B true CN103814199B (zh) 2016-08-24

Family

ID=47914837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280045853.6A Expired - Fee Related CN103814199B (zh) 2011-09-20 2012-09-19 使用涡轮机的压缩气体能量储存系统

Country Status (5)

Country Link
US (1) US20130192216A1 (zh)
EP (1) EP2751411B1 (zh)
CN (1) CN103814199B (zh)
CA (1) CA2849436A1 (zh)
WO (1) WO2013043754A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
WO2009126784A2 (en) 2008-04-09 2009-10-15 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
JP2014522460A (ja) 2011-05-17 2014-09-04 サステインエックス, インコーポレイテッド 圧縮空気エネルギー貯蔵システムにおける効率的二相熱移送のためのシステムおよび方法
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
US8726629B2 (en) 2012-10-04 2014-05-20 Lightsail Energy, Inc. Compressed air energy system integrated with gas turbine
WO2014161065A1 (en) * 2013-04-03 2014-10-09 Sigma Energy Storage Inc. Compressed air energy storage and recovery
CH708072A1 (it) * 2013-05-17 2014-11-28 Swiss Green Systems Sagl Dispositivo per la produzione di energia elettrica.
KR102256476B1 (ko) * 2013-07-04 2021-05-27 한화에어로스페이스 주식회사 가스 터빈 시스템
WO2015006666A1 (en) 2013-07-11 2015-01-15 Eos Energy Storage, Llc Mechanical-chemical energy storage
EP2952736A3 (en) * 2014-05-15 2016-02-24 Charles Martin Chavez Madson Wind turbine, arrangement of a plurality of wind turbines, reserve tank for storing compressed air as well as wind turbine and compressed gas storage system for producting electrical energy
US9382817B2 (en) * 2014-05-23 2016-07-05 Google Inc. Providing power to a data center
US9641048B1 (en) * 2015-03-25 2017-05-02 Neil Rawlinson Renewable energy leverage generator systems, apparatus, and methods
JP6373794B2 (ja) * 2015-05-08 2018-08-15 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
WO2016189289A1 (en) 2015-05-27 2016-12-01 Michael Crowley Near isothermal machine
US10283227B2 (en) * 2015-12-10 2019-05-07 Westinghouse Electric Company Llc System usable in nuclear environment for providing breathing gas
JP6630834B2 (ja) * 2016-02-12 2020-01-15 シーメンス アクティエンゲゼルシャフト 始動電動機を有するガスタービンセクション
CN107546890B (zh) 2016-06-28 2021-07-16 特灵国际有限公司 谐波分流的电机、方法、ac电机系统及可变速驱动系统
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10826357B2 (en) 2017-06-28 2020-11-03 Trane International Inc. Harmonic shunting electric motor with faceted shaft for improved torque transmission
WO2019196994A1 (en) * 2018-04-12 2019-10-17 Vestas Wind Systems A/S Wind turbine drivetrain component with low friction radial shaft seal
CN108487945A (zh) * 2018-04-17 2018-09-04 动能(北京)科技发展有限公司 一种利用压缩空气对峰谷电进行发电的装置
US10886739B2 (en) 2018-05-31 2021-01-05 Trane International Inc. Systems and methods for grid appliances
CN108592136B (zh) * 2018-07-13 2023-10-31 大连亨利测控仪表工程有限公司 一种火电厂灵活性改造双缸解耦深度调峰系统
US11916422B2 (en) 2019-01-31 2024-02-27 General Electric Company Battery charge and discharge power control in a power grid
FR3099795B1 (fr) * 2019-08-07 2021-10-08 Ifp Energies Now Système et procédé de stockage et de récupération d’énergie par compression et détente isotherme de l’air
CN115485459A (zh) 2019-11-16 2022-12-16 马耳他股份有限公司 泵送热电储存系统
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
EP4193041A1 (en) 2020-08-12 2023-06-14 Malta Inc. Pumped heat energy storage system with district heating integration
US11614037B2 (en) 2021-01-26 2023-03-28 General Electric Company Method and system for bleed flow power generation
US11744047B2 (en) * 2021-02-23 2023-08-29 Caeli, LLC Air energy storage powered uninterruptible power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166028A (ja) * 1995-10-26 1997-06-24 Abb Manag Ag 排熱回収および圧縮中に中間冷却を行う開放ガスタービン
CN101023253A (zh) * 2004-05-08 2007-08-22 埃吉尔斯·斯波尔特 具有形成在蓄水层中的地下蓄热器的空气压缩蓄热发电站

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197700A (en) * 1976-10-13 1980-04-15 Jahnig Charles E Gas turbine power system with fuel injection and combustion catalyst
US4199961A (en) * 1978-02-13 1980-04-29 Roldiva, Inc. Method and apparatus for continuously freezing and melting a fluid mixture
JPS56132477A (en) * 1980-03-21 1981-10-16 Mitsubishi Electric Corp Energy storing and supplying equipment
US5074114A (en) * 1990-05-14 1991-12-24 Stirling Thermal Motors, Inc. Congeneration system with a stirling engine
US5368444A (en) * 1993-08-30 1994-11-29 General Electric Company Anti-fretting blade retention means
US5634340A (en) * 1994-10-14 1997-06-03 Dresser Rand Company Compressed gas energy storage system with cooling capability
GB9621405D0 (en) * 1996-10-14 1996-12-04 Nat Power Plc Apparatus for controlling gas temperature
GB0007927D0 (en) * 2000-03-31 2000-05-17 Npower A gas compressor
CN1668843A (zh) * 2002-07-08 2005-09-14 科林·里甘 从流水产生动力的装置和方法
TR200502164T2 (tr) * 2002-09-09 2008-02-21 S�Nan Akmandor �Brah�M T
US8072089B2 (en) * 2003-05-29 2011-12-06 Krouse Wayne F Fluid energy apparatus and method
US7393181B2 (en) * 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
US7174715B2 (en) * 2005-02-02 2007-02-13 Siemens Power Generation, Inc. Hot to cold steam transformer for turbine systems
FR2922608B1 (fr) * 2007-10-19 2009-12-11 Saipem Sa Installation et procede de stockage et restitution d'energie electrique a l'aide d'une unite de compression et detente de gaz a pistons
US20100314878A1 (en) * 2009-06-16 2010-12-16 Dewitt Monte Douglas Direct Generation of Steam Motive Flow by Water-Cooled Hydrogen/Oxygen Combustion
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8347628B2 (en) * 2009-08-18 2013-01-08 Gerard Henry M Power generation directly from compressed air for exploiting wind and solar power
US20110094231A1 (en) * 2009-10-28 2011-04-28 Freund Sebastian W Adiabatic compressed air energy storage system with multi-stage thermal energy storage
US20110094212A1 (en) * 2009-10-28 2011-04-28 Gabor Ast Compressed air energy storage system with reversible compressor-expander unit
US20110100010A1 (en) * 2009-10-30 2011-05-05 Freund Sebastian W Adiabatic compressed air energy storage system with liquid thermal energy storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166028A (ja) * 1995-10-26 1997-06-24 Abb Manag Ag 排熱回収および圧縮中に中間冷却を行う開放ガスタービン
CN101023253A (zh) * 2004-05-08 2007-08-22 埃吉尔斯·斯波尔特 具有形成在蓄水层中的地下蓄热器的空气压缩蓄热发电站

Also Published As

Publication number Publication date
EP2751411A1 (en) 2014-07-09
CA2849436A1 (en) 2013-03-28
EP2751411A4 (en) 2015-03-04
WO2013043754A1 (en) 2013-03-28
US20130192216A1 (en) 2013-08-01
CN103814199A (zh) 2014-05-21
EP2751411B1 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
CN103814199B (zh) 使用涡轮机的压缩气体能量储存系统
US8739533B2 (en) Solar augmented wind turbine for stable and dispatchable utility scale power generation
Ebrahimi et al. Combined cooling, heating and power: decision-making, design and optimization
EP2378100B1 (en) System and method of using a compressed air storage system with a gas turbine
Yu et al. A review of compressed-air energy storage
CN106567748B (zh) 非绝热气体膨胀的压缩空气储能系统
CN205779057U (zh) 一种闭式冷电联供储能系统
CN101410617A (zh) 使用管道输送和存储风生成的能量的改进方法
US20180292097A1 (en) Passive energy storage systems and related methods
EP3899212B1 (en) Automatic wind and photovoltaic energy storage system for uninterrupted electricity generation and energy autonomy
CN103216334B (zh) 耦合动力智能式冷热电联供系统及联供方法
CN105863753A (zh) 一种闭式冷电联供储能系统
CN107820534A (zh) 储能的改进
CN206972326U (zh) 一种新型蓄冷液化空气储能发电系统
Chen et al. Optimization of operation strategies for a combined cooling, heating and power system based on adiabatic compressed air energy storage
Liang et al. Liquid air energy storage technology: a comprehensive review of research, development and deployment
Li et al. Current Status and Prospects of Gas Turbine Technology Application
CN209510523U (zh) 风力光热发电设备
CN209857027U (zh) 一种牲畜排泄物综合利用发电装置
CN101334221A (zh) 巨能风力热泵与热电厂联产系统
Hansen et al. Land Based Gas Turbines for Power Production
CN109083811A (zh) 风力光热发电设备和方法
CN209925091U (zh) 一种热流式发电装置
CN115018123A (zh) 基于最优风险区间的多能耦合微能源网鲁棒优化调度方法
Goñi et al. New design alternatives for a hybrid photovoltaic and doubly-fed induction wind plant to augment grid penetration of renewable energy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20170919