CN103793577A - 一种机械加工过程中少切削液加工工艺优化控制方法 - Google Patents

一种机械加工过程中少切削液加工工艺优化控制方法 Download PDF

Info

Publication number
CN103793577A
CN103793577A CN201410063984.8A CN201410063984A CN103793577A CN 103793577 A CN103793577 A CN 103793577A CN 201410063984 A CN201410063984 A CN 201410063984A CN 103793577 A CN103793577 A CN 103793577A
Authority
CN
China
Prior art keywords
cutting
cutting fluid
max
constraint
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410063984.8A
Other languages
English (en)
Other versions
CN103793577B (zh
Inventor
江志刚
周帆
张华�
肖明
鄢威
周敏
冯朝辉
马峰
李弼心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201410063984.8A priority Critical patent/CN103793577B/zh
Publication of CN103793577A publication Critical patent/CN103793577A/zh
Application granted granted Critical
Publication of CN103793577B publication Critical patent/CN103793577B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

本发明提供一种机械加工过程中少切削液加工工艺优化控制方法,步骤如下:设定机械加工设备对工件进行切削加工时机床的加工性能参数;以加工过程中机床设备性能为约束条件,建立以成本、切削液用量为优化目标的多目标优化模型;利用所述的多目标优化模型和约束建立少切削液加工工艺参数优化模型;将多目标评价函数和约束转换为单目标评价函数;对单目标评价函数利用混合遗传算法进行优化,获得切削液用量最小时的切削参数值,完成切削参数优化。该方法使得加工过程中切削液的用量更为精确,降低了制造成本,为机加工过程中少切削液加工工艺规划及工艺改进提供支持。

Description

一种机械加工过程中少切削液加工工艺优化控制方法
技术领域
本发明涉及机械切削加工领域,尤其涉及一种机加工过程中少切削液加工工艺优化控制方法。
背景技术
切削液在机械加工过程中,起到非常重要作用,带来了突出的负面影响,包括大幅度提高制造成本,严重污染环境,直接危害操作者身体健康,需要清洗处理及相关费用等不利因素,非常有必要开发研究机械加工过程中少切削液加工工艺优化控制方法。然而在现有技术中,并没有相应的方法和工具来对机加工过程中的切削液的使用情况进行整体的分析,无法为机加工过程工艺规划及工艺改进提供支持,也就不能改善切削液的消耗现状,在此背景下,将切削液用量和工艺参数优化相结合,在考虑机械加工过程中制造成本的基础上,减少切削液的用量就显得十分重要了,但现有技术很少涉及到加工过程切削液用量(如切削液流量)为目标的加工工艺优化控制方法。
发明内容
本发明要解决的技术问题在于针对现有技术中的缺陷,提供一种机械加工过程中少切削液加工工艺优化控制方法,该方法以加工成本、切削液量为优化目标,同时根据使用的机床的加工性能参数来建立少切削液加工工艺参数优化模型,为机加工过程中少切削液加工工艺规划及工艺改进提供支持。
本发明解决其技术问题所采用的技术方案是:
一种机械加工过程中少切削液加工工艺优化控制方法,其特征在于,包括以下步骤:
(1)设定机械加工设备对工件进行切削加工时机床的加工性能参数;包括刀具的切削速度为vc、进给量为f、切削深度ap、切削液供给流量L;
(2)以加工过程中机床设备性能为约束条件;建立以成本、切削液用量为优化目标的多目标优化模型;
(3)利用所述的加工工艺参数模型和约束建立少切削液加工工艺参数优化模型;将所述的机械加工优化模型中的多目标评价函数和约束转换为单目标评价函数,以实现多目标的综合;
(4)根据所述的单目标评价函数利用混合遗传算法对所述目标函数进行优化,获得切削液用量最小时的切削速度为vc、进给量为f、切削深度ap、切削液供给流量L所对应的值,完成切削参数优化。
按上述方案,所述步骤(2)中的多目标优化模型中,
加工成本Cw目标函数为:
C w = C m t r + π D lw Δ C m 1000 v c fa p + π D lw Δ a p 1 - q q ( C m t c + C t ) 1000 C v v c 1 - m m f 1 - n n ;
其中,Cm为该工序单位时间内所分担的全场开支,包括工资、设备和管理等工时费用;Ct为在刀具耐用度期间与刀具有关的费用;
Figure BDA0000469623670000022
为工序的切削时间;tr为除换刀时间外的其他辅助工时;tc为工序之间的换刀时间;
Figure BDA0000469623670000023
为刀具耐用度;
用度系数;
切削液用量Mu的目标函数:
M u = ( L a + L n ) π Dl w Δ 1000 v c fa p ;
其中,La为机床切削状态时切削液流量,Ln为机床负载状态时附加切削液流量;
按上述方案,所述步骤(2)中的机床设备性能和加工质量约束条件包括:主轴转速、切削功率、切削力、切削进给量和切削液供给流量;
其取值范围如下:
1)主轴转速约束(即切削速度约束),即:
π Dn min 1000 ≤ v ≤ π Dn max 1000
式中,nmin,nmax分别为机床主轴最低和最高转速;
2)进给量约束,即:
fmin≤f≤fmax
式中,fmin,fmax分别表示机床允许的最小进给量和最大进给量;
3)切削力约束,切削进给力要小于机床主轴最大进给力,即:
C F a p x F f y F v z F K F ≤ F max
式中,Fmax表示最大进给力;KF为切削力修正系数,xF,yF,zF为与工件材料和切削条件有关的系数,可查阅手册得到;
4)切削功率约束,切削功率小于机床最大有效功率,即:
F c v 1000 η ≤ P max
式中,η为机床功率有效系数;Fc为切削力,Pmax为机床最大有效切削功率。
5)切削液供给流量约束,即:
Lmin≤L≤Lmax
式中,Lmin,Lmax分别表示切削液喷嘴允许的最小流量和最大流量;
按上述方案,所述步骤(3)中的少切削液加工工艺参数优化模型为:
f ( X ) = min ( C w , M u , M p ) T X = ( v c , f , a p , L ) s . t . g ( X ) ≤ 0
S . t π Dn min 1000 ≤ v ≤ π Dn max 1000 f min ≤ f ≤ f max C F a p x F f y F v z F K F ≤ F max F v c 1000 η ≤ P max L min ≤ L ≤ L max .
按上述方案,步骤3)中,采用多目标加权和法将多目标优化问题转化为单目标优化问题,以实现多目标的综合;
则该多目标优化的单目标评价函数为:
F ( x ) = Σ i = 1 m λ i F i ( x ) = C w C w * + M u M u *
式中,λi为目标函数加权因子,λi=1Fi(x)*,Fi(x)*为第i个目标函数Fi(x)的单目标优化的目标函数值。
按上述方案,所述通过混合遗传算法获得切削液用量最小时的切削速度为vc、进给量为f、切削深度ap、切削液供给流量L的过程为:
4.1)种群初始化:初始种群是在变量寻优空间中随机抽取,应设定为一个合理的整数N,一般取值范围为20~100。选择二进制对每个变量进行编码,组成一个串,在精度要求下选择适当串长m,以减小遗传算法计算量。
4.2)建立带自适应罚项的适应函数:S(x)=F(x)+H(x)
式中,x为染色体;S(x)为适应函数;F(x)为目标函数;H(x)为惩罚函数;
式中,abi,cbi为第i个未被满足的约束上、下界,r为罚因子。
为了合理设置罚因子,提高算法性能,构造自适应调整罚因子:
若前t代,最好的个体都是可行解时,则减小惩罚因子;反之,则增大惩罚因子;若既有可行解又有非可行解,则保持上一代惩罚因子。
4.3)选择个体,个体被选中的概率为
Figure BDA0000469623670000052
式中,N为种群规模;Fi为个体适值。
4.4)交叉率,交叉算子从总体中随机抽取η个父代个体,将其重组形成η个子代个体插入新群体。为提高搜索能力,设置让交叉率随遗传迭代自适应进行变化,表达如下:
P c ( t + 1 ) = P c ( t ) &times; ( F max - F ) ( F max - F avg ) , F &GreaterEqual; F avg P c ( t ) , F < F avg ;
其中,Fmax为种群中最大适值;Favg为每代种群中的平均适值;F为2个父代中较大的适值;Pc(t)为第t代的交叉率。
4.5)变异率,在遗传算法中,变异过程可以有效防止非成熟收敛的出现,变异概率Pm一般取值范围为0.0001-0.1000。
4.6)判别是否满足停止条件t=t+1,否则,转至步骤4.1),直至输出最优解,即获得min(vc,f,ap,L)。
本发明产生的有益效果是:
1.本发明方法通过对机加工过程中少切削液加工工艺进行优化控制,使得加工过程中切削液的用量更为精确,提高了生产效率,并能够显著降低机械加工的制造成本。
2.本发明建立机床动态运行时切削液用量计算方法,充分考虑了机床加工时段内机床加工和负载状态时切削液的流量,并与实际工艺过程和工艺参数相联系,提高了切削液用量分析结果的准确性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的结构示意图;
图2是本发明实施例的混合遗传算法原理图;
图3为流量适值与进化代数关系曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
安装切削液流量监控装置,采用经过雾化冷却后的切削液来执行对工件的切削加工处理。
如图1所示,一种机械加工过程中少切削液加工工艺优化控制方法,包括以下步骤:
1)设定机械加工设备对工件进行切削加工时,刀具的切削速度为vc、进给量为f、切削深度ap、切削液供给流量L;
2)根据切削过程建立切削参数优化模型。
根据切削过程建立包括加工成本、切削液用量的多目标评价函数,同时,以主轴转速、切削功率、切削力、切削进给量和切削液供给流量作为约束,根据该多目标评价函数和约束,确定出切削参数优化模型。
各目标的建立过程如下:
(1)加工成本 C w : C w = C m ( t m + t r + t c t m T ) + C t t m T ;
C w = C m t r + &pi; D lw &Delta; C m 1000 v c fa p + &pi; D lw &Delta; a p 1 - q q ( C m t c + C t ) 1000 C v v c 1 - m m f 1 - n n ;
其中,Cm为该工序单位时间内所分担的全场开支,包括工资、设备和管理等工时费用;Ct为在刀具耐用度期间与刀具有关的费用;
Figure BDA0000469623670000072
为工序的切削时间;tr为除换刀时间外的其他辅助工时;tc为工序之间的换刀时间;
Figure BDA0000469623670000073
为刀具耐用度;lw为加工长度;
Figure BDA0000469623670000074
(2)切削液用量目标函数Mu:在机械加工时间段内,机床的状态可分为加工和空载两种状态。机床处于负载时,会产生附加的切削液消耗。则机床总的切削液消耗分为两个部分:切削时切削液流量La,负载时附加切削液流量Ln。机床动态运行时切削液流量平衡方程为:
Lu(t)=La(t)+Ln(t)
机床动态运行时切削液用量方程为:
M u = &Integral; 0 T L u ( t ) dt = &Integral; 0 t m L a ( dt ) + &Integral; 0 t m L n ( t ) dt
机床主轴在某一固定转速运行且负载一定时,其切削液的流量是一恒定值(含有微小波动,可忽略不计),则机床动态运行时切削液用量为:
M u = ( L a + L n ) &pi; Dl w &Delta; 1000 v c fa p
其中,在工程实际应用中,附加切削液流量与切削时切削液流量成近似的线性关系La=εLn,一般负载附加系数ε常常取0.15~0.25的常数。
在机械加工过程中,由于受加工设备等的限制,只能在满足限制条件的范围内取值。确定以下约束条件:
(1)主轴转速约束(即切削速度约束),即:
&pi; Dn min 1000 &le; v &le; &pi; Dn max 1000
式中,nmin,nmax分别为机床主轴最低和最高转速。
(2)进给量约束,即:
fmin≤f≤fmax
式中,fmin,fmax分别表示机床允许的最小进给量和最大进给量。
(3)切削力约束,切削进给力要小于机床主轴最大进给力,即:
C F a p x F f y F v z F K F &le; F max
式中,Fmax表示最大进给力;KF为切削力修正系数,xF,yF,zF为与工件材料和切削条件有关的系数,可查阅手册得到。
(4)切削功率约束,切削功率小于机床最大有效功率,即:
F c v 1000 &eta; &le; P max
式中,η为机床功率有效系数;Fc为切削力,Pmax为机床最大有效切削功率。
(5)切削液供给流量约束,即:
Lmin≤L≤Lmax
式中,Lmin,Lmax分别表示切削液喷嘴允许的最小流量和最大流量。
综上所述,可建立少切削液加工工艺参数优化模型为
f ( X ) = min ( C w , M u , M p ) T X = ( v c , f , a p , L ) s . t . g ( X ) &le; 0
S . t &pi; Dn min 1000 &le; v &le; &pi; Dn max 1000 f min &le; f &le; f max C F a p x F f y F v z F K F &le; F max F v c 1000 &eta; &le; P max L min &le; L &le; L max
3)在求解多目标优化问题时,化多为少的方法是较为常用的方法,即将多目标的优化求解问题转化为单目标的优化求解问题。
本文采用多目标加权和法将多目标优化问题转化为单目标优化问题,以实现多目标的综合:
F ( x ) = &Sigma; i = 1 m &lambda; i F i ( x )
式中,λi为目标函数加权因子,λi=1Fi(x)*,Fi(x)*为第i个目标函数Fi(x)的单目标优化的目标函数值,则多目标优化的目标函数为:该式采用单目标函数值与最优值之间的偏离程度作为目标评价函数。
4)根据所述的单目标评价函数,将罚函数包含到适应度评价中,构造带有能随解的可行性变化而变化的自适应罚因子的适应函数和自适应交叉率,从而使每代的种群中保持部分非可行解,使得遗传搜索可以在可行解和非可行解两边进行,从而得到最优解:遗传算法原理如图2所示,具体过程为:
4.1)种群初始化:初始种群是在变量寻优空间中随机抽取,应设定为一个合理的整数N,一般取值范围为20~100。选择二进制对每个变量进行编码,组成一个串,在精度要求下选择适当串长m,以减小遗传算法计算量。
4.2)建立带自适应罚项的适应函数:S(x)=F(x)+H(x)
式中,x为染色体;S(x)为适应函数;F(x)为目标函数;H(x)为惩罚函数;
Figure BDA0000469623670000093
式中,abi,cbi为第i个未被满足的约束上、下界,r为罚因子。
为了合理设置罚因子,提高算法性能,构造自适应调整罚因子:
Figure BDA0000469623670000094
若前t代,最好的个体都是可行解时,则减小惩罚因子;反之,则增大惩罚因子;若既有可行解又有非可行解,则保持上一代惩罚因子。
4.3)选择个体,个体被选中的概率为
Figure BDA0000469623670000101
式中,N为种群规模;Fi为个体适值。
4.4)交叉率,交叉算子从总体中随机抽取η个父代个体,将其重组形成η个子代个体插入新群体。为提高搜索能力,设置让交叉率随遗传迭代自适应进行变化,表达如下:
P c ( t + 1 ) = P c ( t ) &times; ( F max - F ) ( F max - F avg ) , F &GreaterEqual; F avg P c ( t ) , F < F avg ;
其中,Fmax为种群中最大适值;Favg为每代种群中的平均适值;F为2个父代中较大的适值;Pc(t)为第t代的交叉率。
4.5)变异率,在遗传算法中,变异过程可以有效防止非成熟收敛的出现,变异概率Pm一般取值范围为0.0001-0.1000。
4.6)判别是否满足停止条件t=t+1,否则,转至步骤4.1),直至输出最优解,即获得min(vc,f,ap,L)。
本发明中,根据机加工领域中工艺参数优化特点,以主轴转速、切削功率、切削力、进给量、切削液供给流量为约束,建立少切削液机加工切削参数模型,然后采用上述方法对模型进行求解,获得切削液用量最小时的切削速度为vc、进给量为f、切削深度ap、切削液供给流量L,从而能够有效的实现少切削液加工的目的。
为了验证本发明实施可行性,针对某机床厂CK7815数控车床,采用本发明少切削液工艺优化控制方法,通过试验、相关文献手册和机床设计参数,得到机床部分参数及加工工艺参数,完成优化目标和约束函数。
1.试验条件
加工工件技术要求:工件直径D=100mm;工件材料为45钢;加工长度lw=150mm;切削深度ap=1mm;加工余量Δ=1.5mm;刀具材料:硬质合金;工件表面张力σ=40mN/m;刀具参数:主偏角kr=45°,前角λ0=20°;刀具成本Ct=100元;辅助时间tr=0.8min;换刀时间tc=0.5min;工时成本Cm=1.0元/min。
2.数控车床规格参数
切削用到的通用参数:
①刀具寿命参数Cv=64136;
Figure BDA0000469623670000111
②机床性能参数nmin=100r/min;nmax=1500r/min;Fmax=5000;CF=1600;KF=1.0;xF=0.1;yF=0.6;zF=-0.2;fmin=0.1;fmax=3.0;Pmax=15KW;η=0.8;v min=0.22m/s;v max=3.85m/s;Lmin=15L/min;Lmax=50L/min;
&pi; Dn min 1000 &le; v &le; &pi; Dn max 1000 f min &le; f &le; f max C F a p x F f y F v z F K F &le; F max F v c 1000 &eta; &le; P max L min &le; L &le; L max
3.工艺优化参数
①确定约束条件:切削速度0.52m/s≤vc≤7.85m/s;进给量0.1mm/r≤f≤3.0mm/r;f0.6×vc -0.2≤3.125;f0.6×vc 0.8≤7.5;0L/min≤L≤50L/min;
②混合遗传算法优化参数:初始种群数N=100;最大遗传代数100;初始罚因子r(1)=1;交叉率Pc1=0.95;变异率Pm=0.06;δ=0.5;φ=2;
4.数控车削优化结果
根据优化模型需要,采用单目标函数值与最优值之间的偏离程度作为目标评价函数。
F ( x ) = C w C w * + M u M u *
利用Matlab软件中的GA工具箱编程实现优化计算,得到一组数控车削优化参数。数值优化结果见表1所示,
Figure BDA0000469623670000122
以成本为主要目标进行优化时,刀具磨损较小,vc较低,加工工时较多,切削液用量较多;以切削液用量为主要目标进行优化时,vc较高,刀具磨损严重,成本较高;以成本和切削液用量为优化目标时,由于加工成本、切削液用量目标之间进行了合理折衷,优化结果介于两者之间。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (5)

1.一种机械加工过程中少切削液加工工艺优化控制方法,其特征在于,包括以下步骤:
(1)设定机械加工设备对工件进行切削加工时机床的加工性能参数;包括刀具的切削速度为vc、进给量为f、切削深度ap、切削液供给流量L;
(2)以加工过程中机床设备性能为约束条件,建立以成本、切削液用量为优化目标的多目标优化模型;
(3)利用上述加工工艺参数模型和约束建立少切削液加工工艺参数优化模型;将所述的机械加工优化模型中的多目标评价函数和约束转换为单目标评价函数,以实现多目标的综合;
(4)利用混合遗传算法对所述单目标评价函数进行优化,获得切削液用量最小时的切削速度为vc、进给量为f、切削深度ap、切削液供给流量L所对应的值,完成切削参数优化。
2.根据权利要求1所述的优化控制方法,其特征在于,所述步骤(2)中的多目标优化模型中,
加工成本Cw目标函数为:
C w = C m t r + &pi; D lw &Delta; C m 1000 v c fa p + &pi; D lw &Delta; a p 1 - q q ( C m t c + C t ) 1000 C v v c 1 - m m f 1 - n n
其中,Cm为该工序单位时间内所分担的全场开支,包括工资、设备和管理等工时费用;Ct为在刀具耐用度期间与刀具有关的费用;
Figure FDA0000469623660000021
为工序的切削时间;tr为除换刀时间外的其他辅助工时;tc为工序之间的换刀时间;
Figure FDA0000469623660000022
为刀具耐用度;lw为加工长度;Δ为加工余量;n为主轴转速;D为工件直径;vc为切削速度;f为进给量;ap为切削深度;Cv为与切削条件有关的常数;
Figure FDA0000469623660000023
为刀具耐用度系数;
切削液用量Mu的目标函数:
M u = ( L a + L n ) &pi; Dl w &Delta; 1000 v c fa p ;
其中,La为机床切削状态时切削液流量,Ln为机床负载状态时附加切削液流量。
3.根据权利要求1或2所述的优化控制方法,其特征在于,所述步骤(2)中的机床设备性能约束条件包括:主轴转速、切削功率、切削力、切削进给量和切削液供给流量;
其取值范围如下:
1)主轴转速约束:
&pi; Dn min 1000 &le; v &le; &pi; Dn max 1000
式中,nmin,nmax分别为机床主轴最低和最高转速;
2)进给量约束:
fmin≤f≤fmax
式中,fmin,fmax分别表示机床允许的最小进给量和最大进给量;
3)切削力约束,切削进给力要小于机床主轴最大进给力,即:
C F a p x F f y F v z F K F &le; F max
式中,Fmax表示最大进给力;KF为切削力修正系数,xF,yF,zF为与工件材料和切削条件有关的系数,可查阅手册得到;
4)切削功率约束,切削功率小于机床最大有效功率,即:
F c v 1000 &eta; &le; P max
式中,η为机床功率有效系数;Fc为切削力,Pmax为机床最大有效切削功率;
5)切削液供给流量约束,即:
Lmin≤L≤Lmax
式中,Lmin,Lmax分别表示切削液喷嘴允许的最小流量和最大流量。
4.根据权利要求3所述的优化控制方法,其特征在于,所述步骤(3)中的少切削液加工工艺参数优化模型为:
f ( X ) = min ( C w , M u , M p ) T X = ( v c , f , a p , L ) s . t . g ( X ) &le; 0
S . t &pi; Dn min 1000 &le; v &le; &pi; Dn max 1000 f min &le; f &le; f max C F a p x F f y F v z F K F &le; F max F v c 1000 &eta; &le; P max L min &le; L &le; L max .
5.根据权利要求4所述的优化控制方法,其特征在于,所述步骤3)中,采用多目标加权和法将多目标优化问题转化为单目标优化问题,以实现多目标的综合;
则该多目标优化的单目标评价函数为:
F ( x ) = &Sigma; i = 1 m &lambda; i F i ( x ) = C w C w * + M u M u *
式中,λi为目标函数加权因子,λi=1Fi(x)*,Fi(x)*为第i个目标函数Fi(x)的单目标优化的目标函数值。
CN201410063984.8A 2014-02-25 2014-02-25 一种机械加工过程中少切削液加工工艺优化控制方法 Expired - Fee Related CN103793577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410063984.8A CN103793577B (zh) 2014-02-25 2014-02-25 一种机械加工过程中少切削液加工工艺优化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410063984.8A CN103793577B (zh) 2014-02-25 2014-02-25 一种机械加工过程中少切削液加工工艺优化控制方法

Publications (2)

Publication Number Publication Date
CN103793577A true CN103793577A (zh) 2014-05-14
CN103793577B CN103793577B (zh) 2017-02-15

Family

ID=50669239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410063984.8A Expired - Fee Related CN103793577B (zh) 2014-02-25 2014-02-25 一种机械加工过程中少切削液加工工艺优化控制方法

Country Status (1)

Country Link
CN (1) CN103793577B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267693A (zh) * 2014-09-22 2015-01-07 华中科技大学 一种机械加工能量效率的切削参数优化方法
CN104880991A (zh) * 2015-03-18 2015-09-02 重庆大学 面向能效的多工步数控铣削工艺参数多目标优化方法
CN106339356A (zh) * 2016-08-16 2017-01-18 上海交通大学 钻头钻削分段数据拟合方法
CN109839895A (zh) * 2019-01-24 2019-06-04 温州大学 一种刀具几何结构参数和加工工艺参数共同优化的方法
CN109992881A (zh) * 2019-03-29 2019-07-09 东北大学 一种面向step-nc制造特征的智能非线性工艺规划方法
CN111105069A (zh) * 2019-11-18 2020-05-05 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 数控加工工艺参数优化方法、装置、系统及计算机设备
CN111859698A (zh) * 2020-07-28 2020-10-30 佛山科学技术学院 一种基于天牛须算法的机床加工节能优化方法
CN117148741A (zh) * 2023-11-01 2023-12-01 张家港Aaa精密制造股份有限公司 轴承加工参数智能调控方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197552B (zh) * 2013-03-15 2015-08-12 重庆大学 一种面向低碳制造的机械加工参数优化控制方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267693A (zh) * 2014-09-22 2015-01-07 华中科技大学 一种机械加工能量效率的切削参数优化方法
CN104267693B (zh) * 2014-09-22 2016-08-17 华中科技大学 一种机械加工能量效率的切削参数优化方法
CN104880991A (zh) * 2015-03-18 2015-09-02 重庆大学 面向能效的多工步数控铣削工艺参数多目标优化方法
CN106339356A (zh) * 2016-08-16 2017-01-18 上海交通大学 钻头钻削分段数据拟合方法
CN109839895A (zh) * 2019-01-24 2019-06-04 温州大学 一种刀具几何结构参数和加工工艺参数共同优化的方法
CN109992881A (zh) * 2019-03-29 2019-07-09 东北大学 一种面向step-nc制造特征的智能非线性工艺规划方法
CN111105069A (zh) * 2019-11-18 2020-05-05 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 数控加工工艺参数优化方法、装置、系统及计算机设备
CN111105069B (zh) * 2019-11-18 2023-08-08 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 数控加工工艺参数优化方法、装置、系统及计算机设备
CN111859698A (zh) * 2020-07-28 2020-10-30 佛山科学技术学院 一种基于天牛须算法的机床加工节能优化方法
CN111859698B (zh) * 2020-07-28 2024-04-30 佛山科学技术学院 一种基于天牛须算法的机床加工节能优化方法
CN117148741A (zh) * 2023-11-01 2023-12-01 张家港Aaa精密制造股份有限公司 轴承加工参数智能调控方法及系统
CN117148741B (zh) * 2023-11-01 2024-02-13 张家港Aaa精密制造股份有限公司 轴承加工参数智能调控方法及系统

Also Published As

Publication number Publication date
CN103793577B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN103793577A (zh) 一种机械加工过程中少切削液加工工艺优化控制方法
CN104615077B (zh) 基于田口法的数控铣削加工工艺参数高效节能优化方法
CN104267693B (zh) 一种机械加工能量效率的切削参数优化方法
CN103198186B (zh) 基于特征的飞机结构件切削参数优化方法
CN109240202B (zh) 一种面向低碳的铣削加工刀具路径优化方法
CN105785912B (zh) 面向能耗的型腔数控铣削加工刀具组合优选方法
CN111563301A (zh) 一种薄壁件铣削加工参数优化方法
CN105259791B (zh) 一种基于通用切削能耗模型的加工参数优化方法
CN107193258A (zh) 面向能耗的数控加工工艺路线与切削参数优化模型与方法
CN108319223A (zh) 一种面向绿色制造的螺纹车削工艺参数优化方法
CN105844356A (zh) 基于自适应遗传算法的机床切削用量能耗优化方法
CN108389001A (zh) 一种基于step-nc的智能非线性工艺规划方法
CN103839115B (zh) 一种面向能效提升的机械加工工艺链优化方法
CN103593719A (zh) 一种基于板坯与合同优化匹配的轧制节能方法
CN102183892A (zh) 甲醇三塔精馏系统的变负荷能耗优化控制方法
CN104699890A (zh) 一种城网配变重过载短期预警模型的建模方法
CN107248047A (zh) 基于加工过程状态熵动态计算的加工过程状态评价方法
CN105975701A (zh) 一种基于混合模糊模型的并行调度拆卸路径生成方法
CN110221580A (zh) 一种基于主轴数据仿真的进给速度优化方法
CN103500251A (zh) 数控铣削中刀具切削用量的优化加工方法
CN102521442B (zh) 基于特征样本的飞机结构件神经网络加工时间预测方法
CN104536387B (zh) 一种液晶电视机的生产装配过程的优化调度方法
CN105243505A (zh) 一种梯级水电站联合发电调度出力控制表编制方法
CN106169101A (zh) 一种基于结构分解的能源需求预测方法
CN109947588A (zh) 一种基于支持向量回归法的NAND Flash位错误率预测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170215

Termination date: 20200225

CF01 Termination of patent right due to non-payment of annual fee