CN103197552B - 一种面向低碳制造的机械加工参数优化控制方法 - Google Patents

一种面向低碳制造的机械加工参数优化控制方法 Download PDF

Info

Publication number
CN103197552B
CN103197552B CN201310081674.4A CN201310081674A CN103197552B CN 103197552 B CN103197552 B CN 103197552B CN 201310081674 A CN201310081674 A CN 201310081674A CN 103197552 B CN103197552 B CN 103197552B
Authority
CN
China
Prior art keywords
cutting
max
represent
speed
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310081674.4A
Other languages
English (en)
Other versions
CN103197552A (zh
Inventor
李聪波
易茜
李丽
刘飞
崔龙国
李鹏宇
李国龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201310081674.4A priority Critical patent/CN103197552B/zh
Publication of CN103197552A publication Critical patent/CN103197552A/zh
Application granted granted Critical
Publication of CN103197552B publication Critical patent/CN103197552B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

为实现本发明目的而采用的技术方案是这样的,一种面向低碳制造的机械加工参数优化控制方法,其特征在于,包括以下步骤:1)设定机械加工设备对工件进行切削加工时,刀具的切削速度为vc、进给量为f;2)建立优化目标函数F(vc,f);3)确定约束条件;4)对所述目标函数进行优化,即获得minF(vc,f)时,所对应的vc和f的值;5)采用步骤4)所获得的切削速度值vc、进给量f对工件进行切削加工。

Description

一种面向低碳制造的机械加工参数优化控制方法
技术领域
本发明涉及机械切削加工领域,特别是一种以降低碳排放为目标的机械加工设备控制方法。
背景技术
在机械加工的生产过程中,切削用量的选择直接关系到所加工产品的产品质量、生产效率、生产成本等。合理地选择切削用量对提高生产效率、降低生产成本有着非常重要的意义。目前,在大多数企业的生产实际中,切削用量的选择主要依赖于经验或查阅切削用量手册,但按照此种方法所选择的切削用量通常不是最优的,会导致生产率不高、资源浪费和巨大的环境排放。
目前,国内外涉及切削参数优化的新技术层出不穷。但是,现有的技术大部分都是以成本、时间、能耗等作为优化目标,以选择合适的机加工参数来对机械加工设备进行控制。而且,现有技术在建立模型时,极少涉及到加工过程环境影响(如加工过程碳排放)为目标的加工参数优化控制方法。
发明内容
本发明的目的是提供一种以降低碳排放为目标的机械加工设备优化控制方法。
为实现本发明目的而采用的技术方案是这样的,一种面向低碳制造的机械加工参数优化控制方法,其特征在于,包括以下步骤:
1)设定机械加工设备对工件进行切削加工时,刀具的切削速度为vc、进给量为f;
2)建立优化目标函数:
F ( v c , f ) = C p = 0.6747 × { [ P u 0 + A 1 ( 1000 v c πd 0 ) + A 2 ( 1000 v c πd 0 ) 2 ] × T p + ;
1.2 × C F C a sp x F C f y F C K F C v c ( n Fc + 1 ) t m } + 29.6 × t m T t × W t +
T p T c × { 2.85 × ( CC + AC ) + 0.2 × [ ( CC + AC ) / δ ] }
其中, T p = t m + t ct t m T + t ot = πd 0 L w Δ 1000 v c fa sp + t ct πd 0 L w Δx c x - 1 f y - 1 a sp z - 1 1000 C T + t ot , tm是工序切削时间,tct是换刀一次所用时间,tot是除换刀外其它辅助时间,T是刀具耐用度,Lw是加工长度,△是加工余量,n是主轴转速,d0是工件直径,vc是切削速度,f是进给量,asp是切削深度,CT是与切削条件有关的常数,x,y,z是刀具耐用度系数;Pu0是最低空载功率,A1,A2是主轴转速系数;CFc,xFc,yFc,nFc表示与工件材料和切削条件有关的系数,KFc是切削力修正系数;Tt表示刀具寿命,Wt表示刀具重量;Tc为切削液更换周期,CC表示初始切削油用量,AC表示附加切削油用量,δ为切削液浓度。
3)确定约束条件: S . t πd 0 n min 1000 ≤ v c ≤ πd 0 n max 1000 f min ≤ f ≤ f max C F c a sp x F c f y Fc v c n F c K Fc ≤ F max F c v c 1000 η ≤ P max ,
其中,为主轴转速约束(即切削速度约束),nmin,nmax分别表示机床主轴最低和最高转速;fmin≤f≤fmax为进给量约束,fmin,fmax分别表示机床允许的最小进给量和最大进给量;表示切削力约束,Fmax表示最大进给力;表示机床功率约束,η为机床功率有效系数;Pmax为机床最大有效切削功率。
4)对所述目标函数进行优化,即获得minF(vc,f)时,所对应的vc和f的值;
5)采用步骤4)所获得的切削速度值vc、进给量f对工件进行切削加工。上述模型中涉及到的符号、名称及类型列表如下:
表1.1符号类型列表
表1.2符号类型列表
表1.3符号类型列表
值得说明的是,本发明对机械加工设备的进给量和切削速度进行优化控制,以达到降低碳排放之目的。而大部分机械加工设备都会涉及到进给量和切削速度,因此,本发明所公开的方法可以适用于大部分的机械加工设备,如车床、滚齿机等。
机械切削加工中碳排放的来源主要包括:加工过程消耗原材料引起的碳排放Cm、消耗电能引起的碳排放Ce、刀具使用产生的碳排放Ct、切削液使用产生的碳排放Cc和加工过程产生切屑的后期处理引起的碳排放Cs。然而,所述Cm和Cs与被加工工件的原材料有关,与我们所能控制的机械加工设备的参数无关,即不能通过控制机械加工设备对其进行优化。但是所述Ce、Ct和Cc均与机械加工设备的参数相关,能够通过控制机械加工设备对其进行优化。
综上所述,本发明设定了机械切削加工过程碳排放量为:Cp=Ce+Ct+Cc。只要通过求解上述模型,获得Cp最小时相应的机械加工参数,并采用该参数对机械加工设备进行控制,即可实现降低碳排放的目的。
需要进一步说明的是,所述Ct、Ce和Cc的构成。
1、电能引起的碳排放
所述Ce=Fe×Ee,式中,Fe表示电能的碳排放因子(kgCO2/kwh),Ee表示加工过程电能消耗量(kwh)。
1)关于电能碳排放因子Fe
电能碳排放因子与电网的构成有着密切的关系,不同的电网的碳排放因子不同。中国发改委应对气候变化司每年都会公布中国几大电网的碳排放因子的数据,表1是公布的09年的中国几大电网的排放因子。本发明的技术思想是需要采用所要优化控制设备所在电网的碳排放因子,但为了简便起见,在计算电能碳排放时采用表1中几大电网排放因子的平均值0.6747作为电能碳排放因子Fe,在本技术应用过程中可能会根据官方数据进行调整。
表2电能碳排放因子表
2)加工过程电能消耗量Ee的确定
在数控机床加工过程时间段Tp内,机床的状态可分为加工和空载两种状态。经过研究,在机床由空载状态(Pc=0)变为加工状态(Pc≠0)时,即系统处于负载时,会产生附加损耗功率Pa。机床总的输入功率Pi分为三部分:空载功率Pu、切削功率Pc、附加载荷损耗功率Pa。机床动态运行时功率平衡方程如下式:Pi(t)=Pu(t)+Pc(t)+Pa(t)。
机床在实际运行过程中,由于切削力的变化,电压的波动及其它随机因素的影响,机床的运行状态随时都处在不断变化之中。因此,机床的实际运行过程是一动态过程。根据机床动态运行时的功率平衡方程可得到机床动态运行时能量平衡方程如下式: E e = ∫ 0 T p P i ( t ) dt = ∫ 0 T p P u ( t ) dt + ∫ 0 t m P c ( t ) dt + ∫ 0 t m P a ( t ) dt .
对于一台机床来说,当其主轴在某一固定的转速下稳态运行且负载一定时,其总的输入功率、空载功率、切削功率、附加载荷功率是一恒定值(含有微小波动,可忽略不计),则上述机床动态运行能量平衡方程可以转化为下式:Ee=Pi×Tp=Pu×Tp+Pc×tm+Pa×tm
实际加工过程中,机床空载功Pu率与传动路线长短、润滑状况及主轴转速有着密切的关系,在传动路线及润滑状况相同的情况下,机床空载功率与主轴转速n近似成二次函数变化关系,如下式所示:Pu=f(Pu0,A1,A2)=Pu0+A1n+A2n2,式中:Pu0是最低空载功率,A1,A2是主轴转速系数,最低空载功率和主轴转速系数的确定方法如下:
首先,由机床功率测试仪测试得到机床主轴各转速下的主转动系统空载功率测试数据如下表3所示;
表3数控车床主轴转速与主传动系统空载功率对应表
主轴转速(r/min) 150 300 450 600 750 900 1050 1200 1350 1500
机床主转动系统空载功率(W) 80 120 150 173 210 230 275 300 345 365
其次,根据表中数据和最小二乘法,有最后,由即可求出Pu0,A1,A2的值分别为40.6,0.227,-0.667×10-6
实际加工过程中,切削功率Pc简化计算如下:Pc=10-3×Fc×vc,其中式中:Fc表示切削力,vc表示切削速度,KFc表示切削力修正系数,CFc,xFc,yFc,nFc表示与工件材料和切削条件有关的系数,可查阅切削用量手册得到。
对于负载时的附加载荷损耗功率Pa,其附加损耗机理十分复杂,一般无法通过理论计算准确获得其函数关系,本发明采用近似值,即附加载荷损耗与载荷成近似的线性比例关系,可用如下公式表示:Pa=bmPc,在工程实际应用中,负载载荷损耗系数bm常常凭经验取0.15-0.25的常数。本发明计算时取值为0.2。
综上,可得切削速度为vc时,加工过程能耗Ee为:
E e = [ P u 0 + A 1 ( 1000 v c πd 0 ) + A 2 ( 1000 v c πd 0 ) 2 ] × T p + 1.2 × C F C a sp x F C f y F C K F C v c ( n F c + 1 ) t m .
2、刀具使用碳排放
刀具引起的碳排放主要刀具制备过程的碳排放在使用过程的分摊,与机加工参数有关,具体计算方法如下:
1)刀具碳排放因子
确定Ft,需知道刀具制备过程的能耗情况,对于刀具制备过程能耗问题,通常考虑刀具生产工艺过程的能耗情况。通过实验,刀片制造过程能耗(MJ)为1—2MJ(平均为1.5MJ)
结合上述电能的碳排放因子(全国平均)0.6747kgCO2/kwh(1kwh=3.6MJ),计算可得刀具的碳排放因子为:29.6kgCO2/kg。
2)刀具寿命Tt确定
刀具寿命Tt是指一把新刀具到报废为止所经历的切削时间,其中可能包含多次重磨(重磨次数以N表示)时间,所以刀具寿命等于刀具耐用度和(N+1)的乘积。即:Tt=(N+1)T。
对于刀具耐用度T,可根据泰勒广义刀具的耐用度计算公式求得:其中,vc是切削速度,f是进给量,asp是切削深度,CT是与切削条件有关的常数(本发明CT=64136),x,y,z是刀具耐用度系数。
3)切削时间其中:Lw是加工长度,△是加工余量,n是主轴转速,d0是工件直径,vc是切削速度,f是进给量,asp是切削深度。
4)Wt为刀具质量,本发明可以取常用车刀单个刀片的平均质量9.5g。
3、切削液使用碳排放
如果是干切削,本部分为0。
本发明建模时,切削液引起的碳排放主要考虑两部分:纯的矿物油制备引起的碳排放(Co)和切削液废弃后处理引起的碳排放(Cw)。由于切削液更换周期一般较长,对某具体的加工过程来说,切削液引起的碳排放计算方法与刀具碳排放一样,采用在其更换周期内按时间标准折算到加工过程的方法,则由切削液引起的碳排放计算如下:其中:Co=Fo×(CC+AC)、Cw=Fw×[(CC+AC)/δ]。
进一步,上述公式中,Fo表示纯矿物油排放因子(kgCO2/L),Fw表示废切削液处理碳排放因子(kgCO2/L),CC表示初始切削油用量,AC表示附加切削油用量,δ为切削液浓度;Tc为切削液更换周期。
1)切削液碳排放因子
对于切削液碳排放因子,分为两部分考虑:一是配置切削液所需的纯的矿物油制备碳排放因子Fo;二是废切削液处理的碳排放因子Fw。对于纯的矿物油制备碳排放因子Fo,其碳排放因子计算公式如下:其中:EEo是矿物油的内含能值(GJ/L),ECo是矿物油的缺省碳含量(kg C/GJ)。一般油类物质内含能值为41868-42705KJ/kg(本发明取平均42287KJ/kg),油类物质缺省碳排放因子为20kgC/GJ,常温常压下油类物质的密度为0.86-0.98g/cm3(本发明取平均值0.92g/cm3),计算可得矿物油的碳排放因子为:2.85kgCO2/L。
对于废切削液处理碳排放因子Fw,由于本发明主要涉及水基切削液,水基切削液一般浓度较低,主要成分是水。为方便计算,可采用废水处理的碳排放因子代替废切削液处理的碳排放因子。废水处理碳排放因子的确定方法可参考现有技术资料(如《2006年IPCC国家温室气体清单指南》),取值为:0.2kgCO2/L。
2)切削液用量及更换周期的确定
切削液使用周期内往往存在蒸发、渗漏等现象,从而造成切削液不断减少,并需添加入纯矿物油及水以保证切削液的浓度。初始切削油用量CC、附加切削油用量AC、切削液浓度δ以及切削液的更换周期Tc可通过实际生产经验数据获得,均为常数。
通常情况下,切削参数的取值要受到所选机床设备主轴转速、进给量、最大切削力、最大切削功率、加工质量等条件的限制,只能在满足限制条件的范围内取值。因此,本发明还需要确定约束条件:
1)主轴转速约束(即切削速度约束)
数控机床都有确定的主轴转速即切削速度约束,切削参数的选择要满足主轴转速的约束,即:
πd 0 n min 1000 ≤ v c ≤ πd 0 n max 1000
式中,nmin,nmax分别表示机床主轴最低和最高转速。
2)进给量约束
进给量必须在机床允许的最小进给量fmin和最大进给量fmax之间。即:
fmin≤f≤fmax
式中,fmin,fmax分别表示机床允许的最小进给量和最大进给量。
3)切削力约束
车削加工过程中,切削进给力不能超过机床主轴所允许的最大进给力,即:
C F c a sp x F c f y Fc v c n F c K Fc ≤ F max
其中:Fmax表示最大进给力;KFc表示切削力修正系数,CFc,xFc,yFc,nFc表示与工件材料和切削条件有关的系数,可查阅切削用量手册得到。
4)功率约束
机床功率应小于规定的最大有效切削功率。即:
F c v c 1000 η ≤ P max
式中,η为机床功率有效系数;Fc为切削力,Pmax为机床最大有效切削功率。
综上分析,本发明的数学模型是典型的约束优化问题,其数学模型如下:
minF(vc,f)=(minCp)
S . t πd 0 n min 1000 ≤ v c ≤ πd 0 n max 1000 f min ≤ f ≤ f max C F c a sp x F c f y Fc v c n F c K F c ≤ F max F c v c 1000 η ≤ P max ;
单纯形法、复合形法、惩罚函数法、序列二次规划法、可行方向法(可列举)等均是传统的处理约束最优化问题的方法。本发明所公开的方法在应用过程中,可以先根据实际情况确定模型中的参数,然后采用上述方法对模型进行求解,进而获得碳排放量最小时的切削速度值vc、进给量f,最终通过控制机械加工设备来实现降低碳排放的目的。
附图说明
本发明的装置可以通过附图给出的非限定性实施例进一步说明。
图1为本发明一个实施例中所加工成的工件;
图2为本发明一个实施例中求得优化值流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明范围内。
本实施例采用数控车床加工某机床主轴上一段车削外圆过程,是一种常见零部件,如图1所示,毛坯的直径d0为Φ50mm.加工分两次走刀,第一次车至Φ46mm,第二次车至Φ38mm。选取第一刀来计算其切削过程碳排放,即将直径为50mm的毛坯车削至46mm,其中,asp=2mm,Lw=75mm。数控车床规格参数及计算所需相关参数如下表中所示:
表4数控车床规格参数
表7.1实施例中相关参数值
表7.2实施例中相关参数值
表7.3实施例中相关参数值
表7.4实施例中相关参数值
包括以下步骤:
1)设定机械加工设备对工件进行切削加工时,刀具的切削速度为vc、进给量为f;
2)建立优化目标函数:
C p = 0.6747 × { [ 40.6 + 0.227 × ( 1000 v c 3.14 × 50 ) - 0.667 × 10 - 6 ( 1000 v c 3.14 × 50 ) 2 ] × ( 11.8 v c - 1 f - 1 + 9.3 × 10 - 3 v c 4 f 0.75 + 48 ) / 3600
+ 1.2 × 10 - 3 × 2795 × 2 1 × f 0.75 × 1 × v c ( - 0.15 + 1 ) × 3.14 × 50 × 75 × 2 1000 v c f × 2 } + 29.6 × 3.14 × 50 × 75 × 2 1000 v c f × 2 × v c 5 f 1.75 × 2 0.75 2 × 64136 × 15 × 10 - 3 ;
+ 11.8 v c - 1 f - 1 + 9.3 × 10 - 3 v c 4 f 0.75 + 48 2 × 30 × 24 × 3600 × { 2.85 × ( 8.5 + 4.5 ) + 0.2 × [ ( 8.5 + 4.5 ) / 0.05 ] }
3)确定约束条件:
S . t 0.2 ≤ v c ≤ 3.7 0.1 ≤ f ≤ 3.4 f 0.75 × v c - 0.15 ≤ 1.61 f 0.75 × v c 0.85 ≤ 2.02 ;
4)对所述目标函数进行优化,即获得minF(vc,f)时,所对应的vc和f的值分别为1.262m/s、1.954mm/r;
本实施例采用复合形法进行求解,步骤如图2所示。
5)采用步骤4)所获得的切削速度值vc、进给量f对工件进行切削加工,实际碳排放量为43.97g。
作为对比,保证本实施例中其他条件不变,仅仅根据机械加工手册选择切削速度为vc=2.04m/s,进给量为f=0.5mm/r,将与本实施例相同的毛坯加工过程。代入步骤2)所述的目标函数,实际碳排放量为57.47g。

Claims (1)

1.一种面向低碳制造的机械加工参数优化控制方法,其特征在于,包括以下步骤:
1)设定机械加工设备对工件进行切削加工时,刀具的切削速度为vc、进给量为f;
2)建立优化目标函数:
min F ( v c , f ) = C p = 0.6747 × { [ P u 0 + A 1 ( 1000 v c π d 0 ) + A 2 ( 1000 v c π d 0 ) 2 ] × T p + 1.2 × C F C a sp x F C f y F C K F C v c ( n F c + 1 ) t m } + 29.6 × t m T t × W t + T p T c × { 2.85 × ( CC + AC ) + 0.2 × [ ( CC + AC ) / δ ] } ;
其中, T p = t m + t ct t m T + t ot = π d 0 L w Δ 1000 v c fa sp + t ct π d 0 L w Δ v c x - 1 f y - 1 a sp z - 1 1000 C T + t ot , tm是工序切削时间,tct是换刀一次所用时间,tot是除换刀外其它辅助时间,T是刀具耐用度,Lw是加工长度,△是加工余量,n是主轴转速,d0是工件直径,vc是切削速度,f是进给量,asp是切削深度,CT是与切削条件有关的常数,x,y,z是刀具耐用度系数;Pu0是最低空载功率,A1,A2是主轴转速系数;CFc,xFc,yFc,nFc表示与工件材料和切削条件有关的系数,KFc为切削力修正系数;Tt表示刀具寿命,Wt表示刀具重量;Tc为切削液更换周期,CC表示初始切削油用量,AC表示附加切削油用量,δ为切削液浓度;
3)确定约束条件: S . t π d 0 n min 1000 ≤ v c ≤ π d 0 n max 1000 f min ≤ f ≤ f max C F c a sp x F c f v Fc v c n F c K Fc ≤ F max F c v c 1000 η ≤ P max ,
其中,为主轴转速约束,即切削速度约束,nmin,nmax分别表示机床主轴最低和最高转速;fmin≤f≤fmax为进给量约束,fmin,fmax分别表示机床允许的最小进给量和最大进给量;表示切削力约束,Fmax表示最大进给力;表示机床功率约束,η为机床功率有效系数;Pmax为机床最大有效切削功率;Fc表示切削力;
4)对所述目标函数进行优化,即获得minF(vc,f)时,所对应的vc和f的值;
5)采用步骤4)所获得的切削速度值vc、进给量f对工件进行切削加工。
CN201310081674.4A 2013-03-15 2013-03-15 一种面向低碳制造的机械加工参数优化控制方法 Expired - Fee Related CN103197552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310081674.4A CN103197552B (zh) 2013-03-15 2013-03-15 一种面向低碳制造的机械加工参数优化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310081674.4A CN103197552B (zh) 2013-03-15 2013-03-15 一种面向低碳制造的机械加工参数优化控制方法

Publications (2)

Publication Number Publication Date
CN103197552A CN103197552A (zh) 2013-07-10
CN103197552B true CN103197552B (zh) 2015-08-12

Family

ID=48720218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310081674.4A Expired - Fee Related CN103197552B (zh) 2013-03-15 2013-03-15 一种面向低碳制造的机械加工参数优化控制方法

Country Status (1)

Country Link
CN (1) CN103197552B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103488843B (zh) * 2013-09-29 2016-07-06 合肥工业大学 一种液压机上横梁参数的低碳化设计系统及设计方法
CN103729525B (zh) * 2014-01-26 2016-08-17 重庆大学 一种滚齿加工方法
CN103793577B (zh) * 2014-02-25 2017-02-15 武汉科技大学 一种机械加工过程中少切削液加工工艺优化控制方法
CN104200270B (zh) * 2014-06-23 2017-09-01 重庆大学 一种基于差异演化算法的滚齿工艺参数自适应调整方法
CN104281090A (zh) * 2014-09-30 2015-01-14 华中科技大学 一种数控机床系统的功率建模方法
CN104880991A (zh) * 2015-03-18 2015-09-02 重庆大学 面向能效的多工步数控铣削工艺参数多目标优化方法
CN106094729B (zh) * 2016-07-14 2018-07-17 西安交通大学 一种基于制造特征的零件机械加工过程碳排放量化方法
CN106777660A (zh) * 2016-12-08 2017-05-31 贵州大学 一种构建切削参数低碳优化模型的方法
CN107368912B (zh) * 2017-06-12 2020-06-19 西安交通大学 一种面向低碳制造的加工中心刀具决策方法
CN107092194A (zh) * 2017-06-27 2017-08-25 贵州大学 一种构建基于碳效益的车削参数优化模型的方法
CN108133091B (zh) * 2017-12-13 2020-05-22 西安交通大学 一种基于刀具状态建立机床碳排放优化模型的方法
CN107918814A (zh) * 2017-12-14 2018-04-17 上海电机学院 一种面向低碳工艺规划的制造资源配置方法
CN108171005A (zh) * 2017-12-28 2018-06-15 北京市产品质量监督检验院 一种板式家具生产过程碳排放的分析方法
CN108319223A (zh) * 2018-02-06 2018-07-24 合肥工业大学 一种面向绿色制造的螺纹车削工艺参数优化方法
CN111105069B (zh) * 2019-11-18 2023-08-08 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 数控加工工艺参数优化方法、装置、系统及计算机设备
CN113110288B (zh) * 2021-04-23 2022-09-27 重庆大学 一种滚齿机床机械加工系统集成优化设计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903474A (en) * 1996-11-08 1999-05-11 University Of Kentucky Research Foundation Optimization of machining with progressively worn cutting tools
CN102621932A (zh) * 2012-05-02 2012-08-01 重庆大学 一种数控机床服役过程的能量消耗预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903474A (en) * 1996-11-08 1999-05-11 University Of Kentucky Research Foundation Optimization of machining with progressively worn cutting tools
CN102621932A (zh) * 2012-05-02 2012-08-01 重庆大学 一种数控机床服役过程的能量消耗预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A new operational framework to job shop scheduling for reducing carbon emissions";Qian Yi 等;《8th IEEE International Conference on Automation Science and Engineering》;20120824;全文 *
"基于Petri网的机床制造过程碳排放建模与量化方法";李先广 等;《计算机集成制造系统》;20121231;第18卷(第12期);全文 *
"基于粒子群算法的数控加工切削参数优化";刘海江 等;《同济大学学报(自然科学版)》;20080630;第36卷(第6期);全文 *
"数控车削中切削用量的多目标优化";沈浩 等;《兰州理工大学学报》;20051031;第31卷(第5期);全文 *

Also Published As

Publication number Publication date
CN103197552A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
CN103197552B (zh) 一种面向低碳制造的机械加工参数优化控制方法
CN102621932B (zh) 一种数控机床服役过程的能量消耗预测方法
CN104517033B (zh) 一种面向能量效率的数控加工工艺参数多目标优化方法
CN104597838B (zh) 一种高温合金整体叶轮环形深窄槽车加工方法
CN104880991A (zh) 面向能效的多工步数控铣削工艺参数多目标优化方法
CN104281090A (zh) 一种数控机床系统的功率建模方法
CN108319223A (zh) 一种面向绿色制造的螺纹车削工艺参数优化方法
CN107991995A (zh) 基于工艺试验数据模型的钛合金数控铣削工艺参数优化方法
CN102184276B (zh) 一种切削加工中进给速度的优化方法
CN103885387B (zh) 数控机床快速进给功率和能耗的获取及控制方法
Denkena et al. Energy efficient machining with optimized coolant lubrication flow rates
CN104028782A (zh) 航空发动机机匣端面深窄槽的车削加工方法
CN106424969B (zh) 一种考虑刀具偏心的插铣动态切削力精确预测方法
CN105312965A (zh) 一种铣削加工刀具破损监测方法
CN102298360A (zh) 一种自动生成数控加工代码系统
CN103390078A (zh) 一种大模数、少齿数齿轮齿形模拟及加工方法
CN103500251A (zh) 数控铣削中刀具切削用量的优化加工方法
Zhao et al. Specific energy consumption prediction model of CNC machine tools based on tool wear
CN106777877A (zh) 一种基于隐含碳能的机床装备产品碳排放量化方法
Rentsch et al. Artificial intelligence for an energy and resource efficient manufacturing chain design and operation
US20190041833A1 (en) Production plant with control of the production and/or consumption rate
CN104227098A (zh) 扩压器铣削方法
CN205600297U (zh) 一种采用微量润滑系统的机器人钻铣装置
CN104191171A (zh) 用于承受冲击载荷的轴承座的加工方法
CN111299610B (zh) 一种用于环形槽加工的变进给切削方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150812

Termination date: 20160315