CN103778293B - 基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法 - Google Patents

基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法 Download PDF

Info

Publication number
CN103778293B
CN103778293B CN201410031176.3A CN201410031176A CN103778293B CN 103778293 B CN103778293 B CN 103778293B CN 201410031176 A CN201410031176 A CN 201410031176A CN 103778293 B CN103778293 B CN 103778293B
Authority
CN
China
Prior art keywords
stress
strain
printed circuit
circuit board
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410031176.3A
Other languages
English (en)
Other versions
CN103778293A (zh
Inventor
胡薇薇
刘晨艳
孙宇锋
赵广燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201410031176.3A priority Critical patent/CN103778293B/zh
Publication of CN103778293A publication Critical patent/CN103778293A/zh
Application granted granted Critical
Publication of CN103778293B publication Critical patent/CN103778293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

基于梁结构的多层印制电路板镀通孔应力‑应变模型建立方法,步骤如下:1,将多层印制电路板镀通孔简化为轴对称的梁结构,基于梁结构建立假设条件;2,把焊盘结构看做环形圆板并受均布载荷,设焊盘内径简支和外径自由的边界条件;3,基于焊盘均布载荷的假设列写焊盘力学常微分方程,求解挠度的通解表达式;4,利用边界条件确定通解表达式中的四个待定系数,结合位移连续条件列出载荷与挠度、承载力和热应变的关系;5,结合边界条件确定应力最大处的径向、环向和轴向应力,利用米塞斯等效应力计算公式计算等效应力;6,根据镀层材料的线弹性和线塑性应力‐应变关系,给出多层印制电路板镀通孔弹性和塑性范围内的应变解析表达式。

Description

基于梁结构的多层印制电路板镀通孔应力-应变模型建立 方法
技术领域:
本发明涉及一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,利用弹性薄板内径简支和外径自由的基本力学方程和边界条件对多层印制电路板镀通孔应力-应变分布情况进行分析,得到多层印制电路板镀通孔应力-应变解析模型,该方法属于电子产品失效物理模型建模领域。
背景技术:
印制电路板是现在电子设备中不可或缺的组成部分,为了缩小电子元件之间的互连线,多层封装结构得到了广泛的应用。用于为不同板层提供电连接,镀通孔成为印制电路板的关键组件,镀通孔的可靠性已经成为印制电路板可靠性问题的关键因素。
镀通孔可靠性评估对于镀通孔设计、提高可靠性有很重要的作用。对镀通孔进行可靠性评估目前主要有数值分析法(如有限元)和解析法。利用有限元评估的方法虽然针对性强,但对工程实际来说过于复杂,且运算时间较长,不适宜大规模推广使用。因此,很多研究人员都致力于采用失效物理的方法建立镀通孔解析模型的研究。已有的镀通孔应力-应变解析模型包括印制电路协会(Institute of Printed Circuits,IPC)模型、镀通孔应力分布模型、米尔曼(Mirman)模型、马里兰中心(CALCE)模型。IPC模型将镀通孔简化为一维杆结构,结构简单便于计算,但不满足边界自由条件和位移连续条件。镀通孔应力分布模型考虑了铜树脂界面剪切力,使估算结果更符合实际情况,但模型不包含板层数和焊盘因素影响。CALCE模型将镀通孔类比于串并联弹簧,考虑了多层板和焊盘因素,但不满足边界条件。Mirman模型将焊盘简化为梁结构,考虑外部焊盘的影响,但是并没有给出焊盘中的力。
鉴于此,本发明针对多层印制电路板镀通孔,考虑多层板结构和外部焊盘因素,利用弹性薄板内径简支和外径自由的基本力学方程和边界条件对其应力-应变分布情况进行分析,用于快速评估多层印刷电路板镀通孔的寿命。
发明内容:
1、目的:本发明的目的是提供一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法。它针对多层印制电路板镀通孔结构,利用弹性薄板内径简支和外径自由的基本力学方程和边界条件对多层印制电路板镀通孔应力-应变分布情况进行分析,并给出最大应力和应变的解析结果。本发明旨在建立多层印制电路板镀通孔应力-应变模型,用于快速评估多层印制电路板镀通孔的寿命。
2、技术方案:本发明是通过以下技术方案实现的。
首先引入几个基本定义。
定义1:多层印制电路板:以多层绝缘基板为基础材料加工成一定尺寸的板,提供电子元器件电气连接。
定义2:镀通孔:通过孔壁上的金属镀层实现内部和外部导电模式之间,或两者的电气连接孔。
定义3:应力:材料发生形变时其内部产生了大小相等但方向相反的反作用力抵抗外力,分布内力在一点的集度即为应力。
定义4:von Mises等效应力:基于剪切应变能的一种等效应力
定义5:屈服应力:在材料拉伸或压缩过程中,当应力达到一定值时,应力有微小的增加,而应变则急剧增长的现象称为屈服,使材料发生屈服时的正应力即为屈服应力。
定义6:应变:材料因外力作用引起的形状和尺寸的相对改变。
定义7:载荷:单位长度或面积的物体所受的承载力。
定义8:挠度:弯曲变形时横截面形心沿与轴线垂直方向的线位移。
定义9:弯矩:垂直于横截面的内力系的合力偶矩。
定义10:剪力:由于物理特性为了恢复因为力矩而产生的变形而产生的内部作用力。
定义11:简支:在水平方向可以移动,但垂直方向不可以移动。
定义12:自由:在水平和垂直方向都可以移动。
本发明是一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,该方法具体步骤如下:
步骤一:将多层印制电路板镀通孔结构简化为轴对称的梁结构,包括基板、镀层、内部焊盘和外部焊盘四部分,基于轴对称的梁结构建立初步的假设条件。
步骤二:把内部和外部焊盘结构看做环形圆板并受到均布载荷,其中外部焊盘外部载荷为零。假设影响镀通孔变形的印制电路板部分是一个空心圆柱,内径等于孔径,外径等于焊盘直径,并假设内径简支和外径自由。
步骤三:基于内部和外部焊盘均布载荷的假设条件列写出内部和外部焊盘满足的力学线性非齐次常微分方程,求解挠度的通解表达式,其中通解表达式包括四个待定系数A,B,C和D。
步骤四:基于内径简支和外径自由的条件列写出四个边界条件,利用边界条件求解待定系数A,B,C和D表达式,然后结合位移连续条件列写出载荷与挠度、承载力和热应变的关系。
步骤五:结合边界条件确定应力最大处待定系数的具体值,然后根据弯矩计算径向应力和环向应力,根据载荷与挠度、承载力和热应变的关系计算轴向应力,根据米塞斯等效应力计算公式计算等效应力。
步骤六:根据镀层材料的线弹性和线塑性应力-应变关系,计算多层印制电路板镀通孔弹性和塑性范围内的应变解析表达式,建立出基于梁结构的多层印制电路板镀通孔应力-应变模型。
其中,在步骤一中所述的“将多层印制电路板镀通孔结构简化为轴对称的梁结构”,其简化方法为将整个镀通孔看做一个空心圆柱,共包括外部焊盘、内部焊盘、镀层和基板四部分,其中内部焊盘结构是由内表面和无功能焊盘等效而得,外部焊盘与内部焊盘直径相等,各基板厚度相等。
其中,在步骤一中所述的“基于轴对称的梁结构建立初步的假设条件”,其建立的假设条件为:(1)各基板层厚度相等,板层材料为FR-4环氧玻纤布(这种材料以环氧树脂作为粘合剂,以玻纤布为增强材料而构成绝缘层);(2)镀层和焊盘材料为铜,且厚度相等,焊盘半径都相等;(3)结构中的温度分布是均匀的;(4)镀层材料遵循应力/应变图;(5)焊盘、镀层和基板材料是线弹性。
其中,在步骤三中所述的“基于内部和外部焊盘均布载荷的假设条件列写出内部和外部焊盘满足的力学线性非齐次常微分方程”,列写方法是根据圆形薄板的轴对称弯曲理论给出挠度、载荷与径向坐标的微分关系。
其中,在步骤三中所述的“求解挠度的通解表达式”,其求解步骤如下:(1)将线性非齐次常微分程的通解表示为线性齐次常微分方程通解和特解之和;(2)利用换原法得到线性齐次常微分方程的特征方程;(3)根据(2)获得的特征方程,利用拉普拉斯变换获得通解表达式;(4)利用四次积分获得特解表达式;(5)将线性齐次常微分方程通解与特解相加即获得挠度通解表达式
其中,在步骤四中所述的“基于内径简支和外径自由的条件列写出四个边界条件”,其列写的四个边界条件为:(1)因为内径简支,在r=r0处挠度为零;(2)因为内径简支,在r=r0处弯矩为零;(3)因为外径自由,在r=r1处弯矩为零;(4)因为外径自由,在r=r1处剪力为零。
其中,在步骤四中所述的“利用边界条件求解待定系数A,B,C和D表达式”,其求解步骤如下:(1)分别对步骤三获得的挠度通解表达式求一阶至三阶导,代入四个边界条件;(2)将四个线性方程表示为矩阵形式,从而获得对应的系数矩阵;(3)利用系数矩阵的行列式计算A,B,C和D的表达式
其中,在步骤五中所述的“结合边界条件确定应力最大处待定系数的具体值”,其确定方法为将应力最大处载荷大小和边界条件代入步骤四获得的待定系数表达式。
其中,在步骤五中所述的“根据弯矩计算径向应力和环向应力”,其计算步骤为:(1)根据挠度和弯曲刚度确定径向和环向弯矩大小;(2)根据径向和环向弯矩确定径向应力和环向应力
其中,在步骤五中所述的“根据载荷与挠度、承载力和热应变的关系计算轴向应力”,其计算方法为:将应力最大处载荷和挠度大小代入载荷与挠度、承载力和热应变的关系获得应力最大处两侧载荷大小,两侧载荷之差即为轴向应力。
其中,在步骤六中所述的“计算多层印制电路板镀通孔弹性和塑性范围内的应变解析表达式”,其计算方法:(1)在弹性范围内,应力和应变成正比,利用应力和弹性模量即可确定应变大小;(2)在塑性范围内,应力和应变的关系等效为以屈服应力为界,呈不同比例系数的正比关系,分别计算不同比例系数下对应的应变大小,求和即可确定总应变大小
其中,在步骤六中所述的“建立出基于梁结构的多层印制电路板镀通孔应力-应变模型”,其建立方法为:步骤五获得的等效应力表达式和步骤六获得的弹塑性范围内的应变表达式即构成了多层印制电路板镀通孔应力-应变模型。
3、优点及功效:
本发明针对多层印制电路板镀通孔提出了一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,考虑了多层板结构和外部焊盘因素,给出了应力-应变分布情况以及最大应力-应变解析结果,可以用于快速评估多层印制电路板上镀通孔的寿命,具备一定的工程应用价值,展现了较好的工程应用前景。
附图说明:
图1多层印制电路板镀通孔的简化结构
图2第j层和第(j-1)层焊盘的载荷和挠度分布情况
图3本发明所述的方法流程图
图4镀层材料的线弹性和线塑性应力-应变关系
图1、图2和图4符号说明如下:
j:焊盘的层数
r0:孔半径
r1:焊盘半径
t:镀层和焊盘厚度
qj-1:第(j-2)和第(j-1)层焊盘间的基板载荷
qj:第(j-1)和第j层焊盘间的基板载荷
qj+1:第j和第(j+1)层焊盘间的基板载荷。
wj(r):第j层焊盘挠度函数
wj-1(r):第(j-1)层焊盘挠度函数
σ:应力
ε:应变
ECu:弹性范围内的镀层材料弹性模量
ECu’:塑性范围内的镀层材料塑性模量
SY:镀层材料的屈服应力
Su:镀层材料的屈服极限
具体实施方式
本发明所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其方法流程见图3所示,该方法的具体实施方式步骤如下:
具体实施步骤中涉及的参数较多,在此将参数符号和含义统一总结如下:
r为沿镀通孔径向的位置坐标;r0为孔半径;r1为焊盘半径;wj为j层焊盘挠度;Dj为j层焊盘刚度;qj为(j-1)和j层焊盘间的基板载荷;qj+1为j和(j+1)层焊盘间的基板载荷;A,B,C和D为引入的待定系数;ECu为铜材料的弹性模量;;ECu’为塑性范围内的镀层材料塑性模量;EE为基板材料的弹性模量;Δ(αT)为温差引起的应变,t为镀层厚度,Qj为镀层所承受的力;Mr为径向弯矩;Mθ为环向弯矩;D1为第一层焊盘刚度;u为铜材料的泊松比;Δε为等效应变;σvon为von Mises等效应力;SY为镀层材料的屈服应力。
步骤一:,将多层印制电路板镀通孔简化为如图1所示的结构,将整个镀通孔看做一个空心圆柱,共包括外部焊盘、内部焊盘、镀层和基板四部分,其中内部焊盘结构是由内表面和无功能焊盘等效而得,外部焊盘与内部焊盘直径相等,各基板厚度相等。基于结构建立初步的假设条件,假设条件如下文(1)至(5)。
(1)各基板层厚度相等,板层材料为FR-4环氧玻纤布(这种材料以环氧树脂作为粘合剂,以玻纤布为增强材料而构成绝缘层);
(2)镀层和焊盘材料为铜,且厚度相等,焊盘半径都相等;
(3)结构中的温度分布是均匀的;
(4)镀层材料遵循应力/应变图;
(5)焊盘、镀层和基板材料都是线弹性。
步骤二:把每层焊盘看做弹性环形薄板并受到均布载荷,其中外部焊盘外部载荷为零。假设影响PTH变形的PWB部分是一个空心圆柱,内径等于孔径,外径等于焊盘直径,并假设内径简支和外径自由。j层和(j-1)层焊盘的载荷和挠度分布情况如图2所示。
步骤三:基于假设和图2所示分布情况,利用根据圆形薄板的轴对称弯曲理论列写出焊盘满足的力学常微分方程为:
d d r ( r d d r ( 1 r d d r ( r d d r w j ) ) ) = r D j ( q j - q j + 1 ) - - - ( 1 )
式(1)为线性非齐次常微分方程,其通解可以表示为方程某一特解w*与相对应的齐次微分方程的通解之和的形式
令r=et,则t=lnr
d w d r = d w d t d t d r = d w d t · 1 r - - - ( 2 )
d 2 w dr 2 = d d r ( d w d r ) = 1 r d d t ( 1 r d w d t ) = 1 r d d t ( e - t d w d t ) = 1 r ( - e - t d w d t + e - t d 2 w dt 2 ) = 1 r 2 ( d 2 w dt 2 - d w d t ) - - - ( 3 )
d 3 w dr 3 = d d r ( d 2 w dr 2 ) = 1 r 3 ( d 3 w dt 3 - 3 d 2 w dt 2 + 2 d w d t ) - - - ( 4 )
d 4 w dr 4 = 1 r 4 ( d 4 w dt 4 - 6 d 3 w dt 3 + 11 d 2 w dt 2 - 6 d w d t ) - - - ( 5 )
代入得到:
d 4 w dt 4 - 4 d 3 w dt 3 + 4 d 2 w dt 2 = 0 - - - ( 6 )
其特征方程为λ4-4λ3+4λ2=0,其通解为w=At+Bte2t+Ce2t+D
则w=Aln r+Br2ln r+Cr2+D (7)
求解获得挠度wj满足的通解表达式为:
wj(r)=Aln r+Br2ln r+Cr2+D+w* (8)
式中,A,B,C和D为引入的待定系数;w*为方程的特解,满足下式:
w * = 1 D j ∫ 1 r ∫ r ∫ 1 r ∫ ( q j - q j + 1 ) rdr 4 - - - ( 9 )
可以求得:
w * = ( q j - q j + 1 ) r 4 64 D j - - - ( 10 )
即可获得挠度wj的通解表达式为:
w j ( r ) = A ln r + Br 2 ln r + Cr 2 + D + ( q j - q j + 1 ) r 4 64 D j - - - ( 11 )
步骤四:根据内径简支和外径自由的假设条件列写出四个边界条件如下式所示:
wj(r0)=0 (12)
d 2 dr 2 w j ( r 0 ) + u r 0 d d r w j ( r 0 ) = 0 - - - ( 13 )
d 2 dr 2 w j ( r 1 ) + u r 1 d d r w j ( r 1 ) = 0 - - - ( 14 )
r 1 2 d 3 dr 3 w j ( r 1 ) + r 1 d 2 dr 2 w j ( r 1 ) - w j ( r 1 ) = 0 - - - ( 15 )
式(12)和(13)为因为内径简支而列写出的在r=r0处挠度为零和弯矩为零的边界条件,式(14)和(15)为因为外径自由而列写出的在r=r1处弯矩为零和剪力为零的边界条件。
分别对式(9)求一阶和三阶导代入式(12)~(15)可得到待定系数A、B、C、D的线性方程组,利用线性方程组的系数矩阵即可求得四个系数的表达式,求解过程如式(16)~(28)。四个线性方程组用矩阵形式可以表示为:
ln r 0 r 0 2 ln r 0 r 0 2 1 1 r 0 2 ( u - 1 ) 2 ln r 0 + 3 + 2 u ln r 0 + u 2 + 2 u 0 1 r 1 2 ( u - 1 ) 2 ln r 1 + 3 + 2 u ln r 1 + u 2 + 2 u 0 - 3 r 1 - ln r 1 2 r 1 ln r 1 + 5 r 1 - r 1 2 ln r 1 2 r 1 - r 1 2 - 1 A B C D = ( q j - q j + 1 ) r 0 4 64 D j ( q j - q j + 1 ) ( 3 r 0 2 + ur 0 2 ) 16 D j ( q j - q j + 1 ) ( 3 r 1 2 + ur 1 2 ) 16 D j ( q j - q j + 1 ) ( 12 r 1 3 - r 1 4 ) 64 D j - - - ( 16 )
为方便求解记做:
a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 c 1 c 2 c 3 c 4 d 1 d 2 d 3 d 4 A B C D = a 0 b 0 c 0 d 0 - - - ( 17 )
其中,
a 0 = ( q j - q j + 1 ) r 0 4 64 D j , b 0 = ( q j - q j + 1 ) ( 3 r 0 2 + ur 0 2 ) 16 D j , c 0 = ( q j - q j + 1 ) ( 3 r 1 2 + ur 1 2 ) 16 D j , d 0 = ( q j - q j + 1 ) ( 12 r 1 3 - r 1 4 ) 64 D j - - - ( 18 )
a 1 = ln r 0 , a 2 = r 0 2 ln r 0 , a 3 = r 0 2 , a 4 = 1 - - - ( 19 )
b 1 = 1 r 0 2 ( u - 1 ) , b 2 = ( 2 ln r 0 + 3 + 2 u ln r 0 + u ) , b 3 = ( 2 + 2 u ) , b 4 = 0 - - - ( 20 )
c 1 = 1 r 1 2 ( u - 1 ) , c 2 = ( 2 ln r 1 + 3 + 2 u ln r 1 + u ) , c 3 = ( 2 + 2 u ) , c 4 = 0 - - - ( 21 )
d 1 = - 3 r 1 - ln r 1 , d 2 = ( 2 r 1 ln r 1 + 5 r 1 ) - r 1 2 ln r 1 , d 3 = 2 r 1 - r 1 2 , d 4 = - 1 - - - ( 22 )
A,B,C和D通过矩阵行列式求解,求解过程如下:
A = Δ 1 Δ 0 , B = Δ 2 Δ 0 , C = Δ 3 Δ 0 , D = Δ 4 Δ 0 - - - ( 23 )
Δ 0 = a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 c 1 c 2 c 3 c 4 d 1 d 2 d 3 d 4 Δ 1 = a 0 a 2 a 3 a 4 b 0 b 2 b 3 b 4 c 0 c 2 c 3 c 4 d 0 d 2 d 3 d 4 Δ 2 = a 1 a 0 a 3 a 4 b 1 b 0 b 3 b 4 c 1 c 0 c 3 c 4 d 1 d 0 d 3 d 4
Δ 3 = a 1 a 2 a 0 a 4 b 1 b 2 b 0 b 4 c 1 c 2 c 0 c 4 d 1 d 2 d 0 d 4 Δ 4 = a 1 a 2 a 3 a 0 b 1 b 2 b 3 b 0 c 1 c 2 c 3 c 0 d 1 d 2 d 3 d 0 - - - ( 24 )
求得四个系数如下所示:
A = - 1 ( 1 - μ ) ( 1 r 0 2 - r 1 2 ) [ - ( 3 + u ) ( q j - q j + 1 ) ( r 0 2 - r 1 2 ) 16 D j + ( 1 + μ ) ( q j - q j + 1 ) r 1 2 ln r 0 r 1 4 D j ] - - - ( 25 )
B = - ( q j - q j + 1 ) r 1 2 8 D j - - - ( 26 )
C = 1 2 ( 1 + μ ) { ( 3 + μ ) ( q j - q j + 1 ) ( r 0 2 - 2 r 1 2 ) 16 - ( 1 + μ ) ( q j - q j + 1 ) r 1 2 lnr 0 4 + 1 ( 1 - r 0 2 r 1 2 ) [ - ( 3 + μ ) ( q j - q j + 1 ) ( r 0 2 - r 1 2 ) 16 ( 1 + μ ) ( q j - q j + 1 ) r 1 2 ln r 0 r 1 4 ] } - - - ( 27 )
D = - ( q j - q j + 1 ) r 0 4 64 D j - A ln r 0 - Br 0 2 ln r 0 - Cr 0 2 - - - ( 28 )
结合位移连续条件列写出载荷与挠度、承载力和热应变的关系如下所示:
q j = E C u ( Δ ( α T ) + w j - 1 ( r ) - w j ( r ) t - Q j E E · π ( r 1 2 - r 0 2 ) · t ) - - - ( 29 )
其中
Qj=qj·2π·r0·t (30)
步骤五:结合边界条件确定外部焊盘与镀层结合处应力最大,针对此处给出最大应力解析结果。将应力最大处载荷大小和边界条件代入步骤四获得的待定系数具体值。在步骤四获得的载荷与挠度、承载力和热应变的关系基础上,确定轴向应力;根据弯矩计算径向应力和环向应力;根据米塞斯等效应力计算公式计算等效应力,从而获得最大应力解析表达式。求解过程如下所示。
由边界条件确定:q1=0,w1(r0)=w2(r0)=0
代入式(31)可得:
q 2 = E C u Δ α T 1 + E C u 2 r 0 t E E ( r 1 2 - r 0 2 ) - - - ( 31 )
从而可以确定待定系数的具体值如下所示:
A = - 1 ( 1 - μ ) ( 1 r 0 2 - r 1 2 ) [ E C u Δ α T ( 3 + u ) ( r 0 2 - r 1 2 ) 16 D 1 [ 1 + E C u 2 r 0 t E E ( r 1 2 - r 0 2 ) ] - E C u Δ α T ( 1 + u ) r 1 2 ln r 0 r 1 4 D 1 [ 1 + E C u 2 r 0 t E E ( r 1 2 - r 0 2 ) ] ] - - - ( 32 )
B = E C u ΔαTr 1 2 8 [ 1 + E C u 2 r 0 t E E ( r 1 2 - r 0 2 ) ] D 1 - - - ( 33 )
C = 1 2 ( 1 + μ ) · E C u Δ α T 1 + E C u 2 r 0 t E E ( r 1 2 - r 0 2 ) { - ( 3 + μ ) ( r 0 2 - 2 r 1 2 ) 16 + ( 1 + μ ) r 1 2 lnr 0 4 + 1 ( 1 - r 0 2 r 1 2 ) [ ( 3 + μ ) ( r 0 2 - r 1 2 ) 16 - ( 1 + μ ) r 1 2 ln r 0 r 1 4 ] } - - - ( 34 )
径向和环向的弯矩方程为:
M r ( r 0 ) = ( M x ) θ = 0 = - D 1 [ d 2 w ( r ) dr 2 + u r d w ( t ) d r ] | r = r 0 = - D 1 [ A r 0 2 ( 1 - u ) + u B ln r 0 r 0 + B ( 1 + u ) r 0 + 2 C ( 1 + u ) ] - - - ( 35 )
M θ ( r 0 ) = ( M y ) θ = 0 = - D 1 [ 1 r d w d r + u d 2 w dr 2 ] | r = r 0 = - D 1 [ A ( 1 - u ) r 0 2 + B ln r 0 r 0 + B ( 1 + u ) r 0 + 2 C ( 1 + u ) ] - - - ( 36 )
其中
D 1 = E C u t 3 12 ( 1 - u 2 ) - - - ( 37 )
径向正应力σr和环向正应力σθ分别与Mr、Mθ成正比,表达式如(38)和(39)所示。
σ r ( r 0 ) = 6 M r ( r 0 ) t 2 = - E C u t 2 ( 1 - u 2 ) [ A r 0 2 ( 1 - u ) + u B ln r 0 r 0 + B ( 1 + u ) r 0 + 2 C ( 1 + u ) ] - - - ( 38 )
σ θ ( r 0 ) = 6 M θ ( r 0 ) t 2 = - E C u t 2 ( 1 - u 2 ) [ A ( 1 - u ) r 0 2 + B ln r 0 r 0 + B ( 1 + u ) r 0 + 2 C ( 1 + u ) ] - - - ( 39 )
轴向正应力为:
σ z ( r 0 ) = - q 2 = - E C u Δ α T 1 + E C u · 2 r 0 r E E ( r 0 2 - r 0 2 ) - - - ( 40 )
利用von Mises等效应力作为失效判据,von Mises等效应力为:
σ v o n = 1 2 [ ( σ r - σ θ ) 2 + ( σ z - σ θ ) 2 + ( σ r - σ z ) 2 ] - - - ( 41 )
步骤六:建立应力和应变之间的关系,用于评估镀通孔寿命。根据图4所示的应力应变关系图,可知在弹性范围内,应力和应变成正比,利用应力和弹性模量即可确定应变大小;在塑性范围内,应力和应变的关系等效为以屈服应力为界,呈不同比例系数的正比关系,分别计算不同比例系数下对应的应变大小,求和即可确定总应变大小
多层板镀通孔弹性和塑性范围内的应变解析表达式为:
&Delta; &epsiv; = &sigma; v o n E C u &sigma; v o n < S Y S Y E C u + &sigma; v o n - S Y E Cu &prime; &sigma; v o n > S Y - - - ( 42 )
其中σvon为步骤四(41)式获得的von Mises等效应力;
步骤五获得的式(41)和步骤六获得的式(42)构成了多层印制电路板镀通孔应力-应变模型。

Claims (9)

1.一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:该方法具体步骤如下:
步骤一:将多层印制电路板镀通孔结构简化为轴对称的梁结构,包括基板、镀层、内部焊盘和外部焊盘四部分,基于轴对称的梁结构建立初步的假设条件;
其中,步骤一中建立的假设条件为:(1)各基板层厚度相等,板层材料为FR-4环氧玻纤布;(2)镀层和焊盘材料为铜,且厚度相等,焊盘半径都相等;(3)结构中的温度分布是均匀的;(4)镀层材料遵循应力/应变图;(5)焊盘、镀层和基板材料是线弹性;
步骤二:把内部和外部焊盘结构看做环形圆板并受到均布载荷,其中外部焊盘外部载荷为零;设影响镀通孔变形的印制电路板部分是一个空心圆柱,内径等于孔径,外径等于焊盘直径,并设内径简支和外径自由;
步骤三:基于内部和外部焊盘均布载荷的假设条件列写出内部和外部焊盘满足的力学线性非齐次常微分方程,求解挠度的通解表达式,其中通解表达式包括四个待定系数A,B,C和D;
其中,力学常微分方程为:
d d r ( r d d r ( 1 r d d r ( r d d r w j ) ) ) = r D j ( q j - q j + 1 ) - - - ( 1 )
其中,r为沿镀通孔径向的位置坐标;wj为j层焊盘挠度;Dj为j层焊盘刚度;qj为(j-1)和j层焊盘间的基板载荷;qj+1为j和(j+1)层焊盘间的基板载荷;
步骤四:基于内径简支和外径自由的条件列写出四个边界条件,利用边界条件求解待定系数A,B,C和D表达式,然后结合位移连续条件列写出载荷与挠度、承载力和热应变的关系;
其中,四个边界条件为:(1)因为内径简支,在r=r0处挠度为零;(2)因为内径简支,在r=r0处弯矩为零;(3)因为外径自由,在r=r1处弯矩为零;(4)因为外径自由,在r=r1处剪力为零;如下式所示:
wj(r0)=0 (12)
d 2 dr 2 w j ( r 0 ) + u r 0 d d r w j ( r 0 ) = 0 - - - ( 13 )
d 2 dr 2 w j ( r 1 ) + u r 1 d d r w j ( r 1 ) = 0 - - - ( 14 )
r 1 2 d 3 dr 3 w j ( r 1 ) + r 1 d 2 dr 2 w j ( r 1 ) - w j ( r 1 ) = 0 - - - ( 15 )
其中,r0为孔半径;r1为焊盘半径;u为铜材料的泊松比;
步骤五:结合边界条件确定应力最大处待定系数的具体值,然后根据弯矩计算径向应力和环向应力,根据载荷与挠度、承载力和热应变的关系计算轴向应力,根据米塞斯等效应力计算公式计算等效应力;
步骤六:根据镀层材料的线弹性和线塑性应力-应变关系,计算多层印制电路板镀通孔弹性和塑性范围内的应变解析表达式,建立出基于梁结构的多层印制电路板镀通孔应力-应变模型。
2.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤一中所述的“将多层印制电路板镀通孔结构简化为轴对称的梁结构”,其简化方法为将整个镀通孔看做一个空心圆柱,共包括外部焊盘、内部焊盘、镀层和基板四部分,其中内部焊盘结构是由内表面和无功能焊盘等效而得,外部焊盘与内部焊盘直径相等,各基板厚度相等。
3.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤三中所述的“求解挠度的通解表达式”,其求解步骤如下:(1)将线性非齐次常微分程的通解表示为线性齐次常微分方程通解和特解之和;(2)利用换原法得到线性齐次常微分方程的特征方程;(3)根据(2)获得的特征方程,利用拉普拉斯变换获得通解表达式;(4)利用四次积分获得特解表达式;(5)将线性齐次常微分方程通解与特解相加即获得挠度通解表达式。
4.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤四中所述的“利用边界条件求解待定系数A,B,C和D表达式”,其求解步骤如下:(1)分别对步骤三获得的挠度通解表达式求一阶至三阶导,代入四个边界条件;(2)将四个线性方程表示为矩阵形式,从而获得对应的系数矩阵;(3)利用系数矩阵的行列式计算A,B,C和D的表达式。
5.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤五中所述的“结合边界条件确定应力最大处待定系数的具体值”,其确定方法为将应力最大处载荷大小和边界条件代入步骤四获得的待定系数表达式。
6.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤五中所述的“根据弯矩计算径向应力和环向应力”,其计算步骤为:(1)根据挠度和弯曲刚度确定径向和环向弯矩大小;(2)根据径向和环向弯矩确定径向应力和环向应力。
7.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤五中所述的“根据载荷与挠度、承载力和热应变的关系计算轴向应力”,其计算方法为:将应力最大处载荷和挠度大小代入载荷与挠度、承载力和热应变的关系获得应力最大处两侧载荷大小,两侧载荷之差即为轴向应力。
8.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤六中所述的“计算多层印制电路板镀通孔弹性和塑性范围内的应变解析表达式”,其计算方法:(1)在弹性范围内,应力和应变成正比,利用应力和弹性模量即可确定应变大小;(2)在塑性范围内,应力和应变的关系等效为以屈服应力为界,呈不同比例系数的正比关系,分别计算不同比例系数下对应的应变大小,求和即可确定总应变大小。
9.根据权利要求1所述的一种基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法,其特征在于:步骤六中所述的“建立出基于梁结构的多层印制电路板镀通孔应力-应变模型”,其建立方法为:步骤五获得的等效应力表达式和步骤六获得的弹塑性范围内的应变表达式即构成了多层印制电路板镀通孔应力-应变模型。
CN201410031176.3A 2014-01-23 2014-01-23 基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法 Active CN103778293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410031176.3A CN103778293B (zh) 2014-01-23 2014-01-23 基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410031176.3A CN103778293B (zh) 2014-01-23 2014-01-23 基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法

Publications (2)

Publication Number Publication Date
CN103778293A CN103778293A (zh) 2014-05-07
CN103778293B true CN103778293B (zh) 2016-08-17

Family

ID=50570523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410031176.3A Active CN103778293B (zh) 2014-01-23 2014-01-23 基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法

Country Status (1)

Country Link
CN (1) CN103778293B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106596B (zh) * 2017-12-26 2020-11-06 上海创功通讯技术有限公司 电子元件抗应变能力的检测装置
CN108416139B (zh) * 2018-03-06 2021-09-14 武汉凌云建筑装饰工程有限公司 大板幅穿孔铝板等效计算方法
CN112948959B (zh) * 2020-11-24 2021-12-21 合肥工业大学 一种固体火箭发动机壳体应力计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501664B1 (en) * 2000-06-30 2002-12-31 Intel Corporation Decoupling structure and method for printed circuit board component
CN101435184A (zh) * 2008-12-05 2009-05-20 广州大学 一种主动加固大跨度混凝土箱梁桥腹板的方法
CN103268371A (zh) * 2013-04-26 2013-08-28 重庆交通大学 一种基于影响矩阵的桥梁实时荷载识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501664B1 (en) * 2000-06-30 2002-12-31 Intel Corporation Decoupling structure and method for printed circuit board component
CN101435184A (zh) * 2008-12-05 2009-05-20 广州大学 一种主动加固大跨度混凝土箱梁桥腹板的方法
CN103268371A (zh) * 2013-04-26 2013-08-28 重庆交通大学 一种基于影响矩阵的桥梁实时荷载识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李春洋.印制电路板有限元分析及其优化设计.《中国优秀博硕士学位论文全文数据库 (硕士) 信息科技辑》.2006,(第11期), *
许杨剑.球栅阵列尺寸封装的有限元法模拟及焊点的寿命预测分析.《中国优秀博硕士学位论文全文数据库 (硕士) 信息科技辑》.2004,(第3期),第I135-129页. *

Also Published As

Publication number Publication date
CN103778293A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
Wan et al. A highly sensitive flexible capacitive tactile sensor with sparse and high‐aspect‐ratio microstructures
CN103424214B (zh) 柔性电容式触觉传感器及其柔性电容单元的制备方法
Wang et al. Recent progress in aircraft smart skin for structural health monitoring
Li et al. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics
Zhai et al. Stretchable, sensitive strain sensors with a wide workable range and low detection limit for wearable electronic skins
Reddy et al. Bending analysis of laminated composite plates using finite element method
CN103778293B (zh) 基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法
Cicek et al. Seamless monolithic design for foam based, flexible, parallel plate capacitive sensors
Sheikh et al. An appropriate FE model for through-thickness variation of displacement and potential in thin/moderately thick smart laminates
Naik et al. An accurate computational model for thermal analysis of laminated composite and sandwich plates
Milazzo et al. Investigation of buckling characteristics of cracked variable stiffness composite plates by an eXtended Ritz approach
Annamdas et al. Embedded piezoelectric ceramic transducers in sandwiched beams
Zhou et al. Deformation sensing and electrical compensation of smart skin antenna structure with optimal fiber Bragg grating strain sensor placements
Liu et al. Experimentally and numerically validated analytical solutions to nonbuckling piezoelectric serpentine ribbons
CN105183958A (zh) 一种复合材料层合结构三维振动分析方法
Yamashita et al. Development of flexible piezoelectric strain sensor array
Yoon et al. Stretchable, bifacial Si-organic hybrid solar cells by vertical array of Si micropillars embedded into elastomeric substrates
Wan et al. Flexible intelligent sensing system for plane complex strain monitoring
Zhang et al. Analysis of laminated plates and shells using B-spline wavelet on interval finite element
Tu et al. Research on actuation performance of macro fiber composites based on third order shear deformation theory
Haldar et al. Semi-analytical investigations on bistable cross-ply laminates with MFC actuators
Rossetti et al. Design and characterization of polymeric pressure sensors for wireless wind sail monitoring
Chaudhuri Analysis of laminated shear-flexible angle-ply plates
Dong et al. Structure-preserving low-order modeling approach of laminated composite plates integrated with macro-fiber composite transducers for dynamic applications
Akhras et al. Three-dimensional stability analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant