CN103776399A - 基于流体力学原理的三坐标测头系统及三坐标测量方法 - Google Patents

基于流体力学原理的三坐标测头系统及三坐标测量方法 Download PDF

Info

Publication number
CN103776399A
CN103776399A CN201410012756.8A CN201410012756A CN103776399A CN 103776399 A CN103776399 A CN 103776399A CN 201410012756 A CN201410012756 A CN 201410012756A CN 103776399 A CN103776399 A CN 103776399A
Authority
CN
China
Prior art keywords
air
probe
gauge head
air probe
head system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410012756.8A
Other languages
English (en)
Inventor
于德弘
张旭超
庄健
王立忠
汪翔宇
张凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201410012756.8A priority Critical patent/CN103776399A/zh
Publication of CN103776399A publication Critical patent/CN103776399A/zh
Priority to PCT/CN2014/095454 priority patent/WO2015103931A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Abstract

本发明提供一种基于流体力学原理的三坐标测头系统及三坐标测量方法,测头系统包括气管以及与气管的一端相连的空气探针,气路中设置有用于检测所述气路不同两点空气压力的压力传感器,或者气路中设置有用于检测所述气路空气流量的流量传感器,本发明所述三坐标测头系统以及三坐标测量方法通过空气探针吸入或射出空气进行工作,利用空气探针以及气管构成的气路管道内部的空气静压会随空气探针到被探测物体表面距离的变化而变化这一特性进行反馈控制,使本发明克服了现有的机械式、电气式接触测头及光学非接触式测头的缺点,同时还具有结构简单,测量精度高,扫描速度快、适应性强等优点。

Description

基于流体力学原理的三坐标测头系统及三坐标测量方法
技术领域
本发明属于测量技术领域,具体涉及一种基于流体力学原理的三坐标测头系统及三坐标测量方法。
背景技术
三坐标测量机(Coordinate Measuring Machining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。它的出现,一方面是由于自动机床、数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。1960年,英国FERRANTI公司研制成功世界上第一台三坐标测量机,到20世纪60年代末,已有近十个国家的三十多家公司在生产CMM,不过这一时期的CMM尚处于初级阶段。进入20世纪80年代后,以ZEISS、LEITZ、DEA、LK、三丰、SIP、FERRANTI、MOORE等为代表的众多公司不断推出新产品,使得CMM的发展速度加快。现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。目前,CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备。
三坐标测量机是用测头来拾取信号的,因而测头的性能直接影响测量精度和测量效率,没有先进的测头就无法充分发挥测量机的功能。在三坐标测量机上使用的测头,按结构原理可分为机械式、光学式和电气式等;而按测量方法又可分为接触式和非接触式两类。
1.机械接触式测头
机械接触式测头为刚性测头,根据其触测部位的形状,可以分为圆锥形测头、圆柱形测头、球形测头、半圆形测头、点测头、V型块测头等。这类测头的形状简单,制造容易,但是测量力的大小取决于操作者的经验和技能,因此测量精度差、效率低。目前除少数手动测量机还采用此种测头外,绝大多数测量机已不再使用这类测头。
2.电气接触式测头
电气接触式测头目前已为绝大部分坐标测量机所采用,按其工作原理可分为动态测头和静态测头。
3.光学非接触式测头
在多数情况下,光学测头与被测物体没有机械接触,这种非接触式测量具有一些突出优点,主要体现在:1)由于不存在测量力,因而适合于测量各种软的和薄的工件;2)由于是非接触测量,可以对工件表面进行快速扫描测量;3)多数光学测头具有比较大的量程,这是一般接触式测头难以达到的;4)可以探测工件上一般机械测头难以探测到的部位。近年来,光学测头发展较快,目前在坐标测量机上应用的光学测头的种类也较多,如三角法测头、激光聚集测头、光纤测头、体视式三维测头、接触式光栅测头等。
虽然光学测头的出现在一定程度克服了机械式和电气式测头的缺点,但自身仍存在一些不足,特别是在被测物体表面光学特性不均匀情况下,需要对表面进行处理,这就改变了被测物原始表面,使得测量精度降低,而且增加了工作量。
发明内容
本发明的目的在于提供一种基于流体力学原理的三坐标测头系统及三坐标测量方法。
为达到上述目的,本发明采用了以下技术方案。
一种基于流体力学原理的三坐标测头系统,该三坐标测头系统包括气管以及与气管的一端相连的空气探针,所述气管与空气探针形成的气路中设置有用于检测所述气路不同两点空气压力的压力传感器,或者所述气管与空气探针形成的气路中设置有用于检测所述气路空气流量的流量传感器。
所述三坐标测头系统还包括计算机以及压力室,所述压力传感器或者流量传感器与计算机相连,所述气管的另一端以及计算机分别与压力室相连。
所述空气探针为管状,空气探针的一端设置有用于吸入空气或排出空气的微孔,空气探针的另一端与气管相连。
所述空气探针设置于三坐标空间内对应的任意一维坐标方向上,可在对应方向上受控移动,例如在龙门桥式三坐标测量仪的Z轴方向上。
上述基于流体力学原理的三坐标测头系统的三坐标测量方法,包括以下步骤:
利用压差作用使空气探针的尖端从外界不断吸入空气或向外界不断排出空气,同时,使空气探针的尖端受控向被测物体表面上一点靠近;在空气探针的尖端靠近被测物体表面的过程中利用计算机获取所述气路不同两点空气压力的差值△P,当△P由恒定值变小时,使空气探针的尖端停止靠近被测物体表面,并根据空气探针的尖端在停止时刻对应的△P计算空气探针的尖端与被测物体表面对应点的距离,或者,在空气探针的尖端靠近被测物体表面的过程中利用计算机获取所述气路的空气流量,当空气流量由恒定值变小时,使空气探针的尖端停止靠近被测物体表面,并根据空气探针的尖端在停止时刻对应的空气流量计算空气探针的尖端与被测物体表面对应点的距离。
使空气探针沿水平方向移动,移动过程中使空气探针根据△P或者所述空气流量的变化进行高度调整,当△P或者空气流量变小时,使空气探针向上移动,当△P或者空气流量变大时,使空气探针向下移动,从而实现空气探针对被测物体表面连续的定距扫描。
本发明的有益效果体现在:
本发明所述三坐标测头系统以及三坐标测量方法通过空气探针吸入或射出空气进行工作,利用空气探针以及气管构成的气路管道内部的空气静压会随空气探针到被探测物体表面距离的变化而变化这一特性进行距离测量和反馈控制,使本发明所述三坐标测头系统以及三坐标测量方法克服了现有的机械式、电气式接触测头及光学非接触式测头的缺点,同时还具有结构简单,测量精度高,扫描速度快、适应性强等优点。
附图说明
图1是本发明实施例的三坐标测量系统的整体结构示意图;
图2是图1所示的三坐标测量系统的测头系统结构示意图;
图3为△P-d仿真结果曲线;
图4为△P-d实际实验结果曲线;
图中:1为测量台,2为龙门立柱,3为横梁,4为中央滑架,5为Z轴,6为测头,7为被测物,8为气管,9为压力室,10为计算机,61为空气探针,62为第一空气压力传感器,63为第二空气压力传感器,64为微孔,91为空气泵。
具体实施方式
下面结合附图和实施例对本发明作详细说明。
本发明提出一种基于流体力学原理的三坐标测量方法,并设计了一种三坐标测头系统,从而能在准确测量的基础上,实现非接触的快速连续扫描,且对被测物材料、物理特性以及表面特性没有特殊要求。采用本发明的测头系统可用于各种三坐标测量仪,为了简要说明,以龙门桥式三坐标测量仪为例进行说明。
三坐标测量系统为最为常见的龙门桥式结构,如图1所示。该三坐标测量系统包括测量台1,龙门立柱2,横梁3,中央滑架4,Z轴5,测头6,气管8以及压力室9,其中,横梁3由龙门立柱2支撑,横梁3下方为测量台1,被测物7置于测量台1上,中央滑架4设置于横梁3上,Z轴5与中央滑架4相连,测头6设置于Z轴5上,压力室9通过气管8与测头6连接,为测头6提供稳定的压力环境。压力室9包含一个空气泵91,空气泵91测量控制单元与计算机10相连进行通讯,将压力室内压力数据传送给计算机,计算机同时也发送控制信号给空气泵91以控制压力室9压力。测头6以及测量台1也都与计算机10相连并进行通讯,以采集压力和坐标信息,并控制测头的运动。
下面重点说明测头的结构和工作原理,测头6的结构如图2所示,包括空气探针61,第一空气压力传感器62和第二空气压力传感器63。空气探针61通过气管8与压力室9连接,为空气探针61提供稳定压力。空气探针61尖端设置有微孔64,工作时由于压差作用会不断吸入空气或排出空气(可根据被测物的特点选择工作方式)。第一空气压力传感器62嵌于空气探针61的内壁靠近微孔处,而第二空气压力传感器63则嵌于远离微孔处,分别用来采集两处的空气静压力,并发送给计算机10。由流体力学原理可知两处的压差△P=fLρV2/2D,其中L为压力测量点的距离,V为流体的平均流速,D为管道直径。所以为了能够在流速和管道直径一定的情况下增大压差(有利于提高测量灵敏度),需要增大L,即将两个空气压力传感器相互远离。
下面具体说明测头6的工作原理:测量仪工作时,空气探针61会逐渐靠近被测物7表面,当空气探针61尖端离被测物7表面的距离远大于空气探针61尖端微孔半径时,空气探针61的进气或排气阻力没有变化,而第一空气压力传感器62和第二空气压力传感器63处的空气压力差值△P与空气探针61尖端距离被测物7表面距离d没有任何关系,△P始终会稳定在一个恒定的数值;而当空气探针受控向下运动,其尖端离被测物7表面距离与其尖端微孔半径相当时,根据流体力学原理,空气探针61的进气或排气阻力会增大,第一空气压力传感器62和第二空气压力传感器63处的空气压力差值△P会发生明显变化。根据流体力学原理及仿真数据结果,当空气探针61尖端离被测物7表面越近,第一空气压力传感器62和第二空气压力传感器63测量的空气压力的差值△P越小。根据这一特点,计算机就可以通过第一空气压力传感器62和第二空气压力传感器63的信号差值变化来取得和控制空气探针61尖端离被测物7表面的距离,根据取得的距离数据结合X,Y,Z轴的空间移动距离从而获得被测物表面对应点的空间坐标值,进而测量出被测物7的外形数据。由于本方法采用非接触式原理,所以在实际使用中可以实现快速扫描式测量,从而克服接触式测头跳跃工作模式测量速度慢的缺点。根据测头工作原理可知其测量精度与空气探针61尖端微孔的大小直接相关,所以可以根据精度要求及被测物尺寸选择合适的空气探针61尺寸,从而实现测量速度与精度兼顾。
采用空气流量传感器时,测量到的空气流量与上述△P相关,因此,可以采用流量传感器替换上述两个空气压力传感器完成测量。
本发明所提出的方法和设计的测头系统已经使用大型计算流体力学软件进行过严格的仿真计算,并且进行了实验验证,参见图3和图4,在相同条件下(压力室压力为-0.7MPa,气管内径为2.5mm,微孔直径为0.4mm),仿真结果和实验结果均表明,当d足够小时,△P与d存在函数关系。
本发明所述测头系统比传统测头系统具有先天的优点,不但结构简单,测量精度高,适应性强,而且可以实现空气探针在被测物表面的定高扫描,从而大大提高测量效率。

Claims (6)

1.一种基于流体力学原理的三坐标测头系统,其特征在于:该三坐标测头系统包括气管(8)以及与气管(8)的一端相连的空气探针(61),所述气管(8)与空气探针(61)形成的气路中设置有用于检测所述气路不同两点空气压力的压力传感器,或者所述气管(8)与空气探针(61)形成的气路中设置有用于检测所述气路空气流量的流量传感器。
2.根据权利要求1所述一种基于流体力学原理的三坐标测头系统,其特征在于:所述三坐标测头系统还包括计算机(10)以及压力室(9),所述压力传感器或者流量传感器与计算机(10)相连,所述气管(8)的另一端以及计算机(10)分别与压力室(9)相连。
3.根据权利要求1所述一种基于流体力学原理的三坐标测头系统,其特征在于:所述空气探针(61)为管状,空气探针(61)的一端设置有用于吸入空气或排出空气的微孔(64),空气探针(61)的另一端与气管(8)相连。
4.根据权利要求1所述一种基于流体力学原理的三坐标测头系统,其特征在于:所述空气探针(61)设置于三坐标空间内对应的任意一维坐标方向上。
5.一种如权利要求1所述基于流体力学原理的三坐标测头系统的三坐标测量方法,其特征在于:包括以下步骤:
利用压差作用使空气探针(61)的尖端从外界不断吸入空气或向外界不断排出空气,同时,使空气探针(61)的尖端受控向被测物体表面上一点靠近;在空气探针(61)的尖端靠近被测物体表面的过程中利用计算机获取所述气路不同两点空气压力的差值△P,当△P由恒定值变小时,使空气探针(61)的尖端停止靠近被测物体表面,并根据空气探针(61)的尖端在停止时刻对应的△P计算空气探针(61)的尖端与被测物体表面对应点的距离,或者,在空气探针(61)的尖端靠近被测物体表面的过程中利用计算机获取所述气路的空气流量,当空气流量由恒定值变小时,使空气探针(61)的尖端停止靠近被测物体表面,并根据空气探针(61)的尖端在停止时刻对应的空气流量计算空气探针(61)的尖端与被测物体表面对应点的距离。
6.根据权利要求5所述一种基于流体力学原理的三坐标测头系统的三坐标测量方法,其特征在于:使空气探针(61)沿水平方向移动,移动过程中使空气探针(61)根据△P或者所述空气流量的变化进行高度调整,当△P或者空气流量变小时,使空气探针(61)向上移动,当△P或者空气流量变大时,使空气探针(61)向下移动,从而实现空气探针对被测物体表面连续的定距扫描。
CN201410012756.8A 2014-01-10 2014-01-10 基于流体力学原理的三坐标测头系统及三坐标测量方法 Pending CN103776399A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410012756.8A CN103776399A (zh) 2014-01-10 2014-01-10 基于流体力学原理的三坐标测头系统及三坐标测量方法
PCT/CN2014/095454 WO2015103931A1 (zh) 2014-01-10 2014-12-30 基于流体力学原理的三坐标测头系统及三坐标测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410012756.8A CN103776399A (zh) 2014-01-10 2014-01-10 基于流体力学原理的三坐标测头系统及三坐标测量方法

Publications (1)

Publication Number Publication Date
CN103776399A true CN103776399A (zh) 2014-05-07

Family

ID=50568926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410012756.8A Pending CN103776399A (zh) 2014-01-10 2014-01-10 基于流体力学原理的三坐标测头系统及三坐标测量方法

Country Status (2)

Country Link
CN (1) CN103776399A (zh)
WO (1) WO2015103931A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103931A1 (zh) * 2014-01-10 2015-07-16 西安交通大学 基于流体力学原理的三坐标测头系统及三坐标测量方法
CN104913750A (zh) * 2015-06-11 2015-09-16 湖北汽车工业学院 一种汽车车轮检测机气垫式测头机构
CN113175902A (zh) * 2021-04-19 2021-07-27 西安交通大学 一种用于微小孔径的气动测量装置与方法
CN116026261A (zh) * 2023-03-30 2023-04-28 钛玛科(北京)工业科技有限公司 一种利用压差变化测量片材膜材厚度的方法及装置
CN117451622A (zh) * 2023-10-31 2024-01-26 中石化工建设有限公司 一种管线内表面管材焊缝检测装置
CN117451622B (zh) * 2023-10-31 2024-06-07 中石化工建设有限公司 一种管线内表面管材焊缝检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113392553B (zh) * 2021-06-15 2022-10-11 上海理工大学 适用于三坐标测量机星型测头转动过程的碰撞检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427881C (zh) * 2002-12-19 2008-10-22 Asml控股股份有限公司 高分辨率气量计式接近传感器
CN101946155A (zh) * 2008-02-20 2011-01-12 Asml控股股份有限公司 与真空环境相适应的气体压力计
CN101952685A (zh) * 2008-01-25 2011-01-19 马波斯有限公司 用于对工件进行几何测量的装置和方法
JP2012058213A (ja) * 2010-09-13 2012-03-22 Tokai Kiyouhan Kk エアマイクロメータ
WO2013063104A1 (en) * 2011-10-25 2013-05-02 Nikon Corporation Air gauges comprising dual-range differential pressure sensor
CN103159024A (zh) * 2011-12-12 2013-06-19 先进装配系统有限责任两合公司 以气动方式确定元件相对于元件拾取装置的高度位置
CN203687902U (zh) * 2014-01-10 2014-07-02 西安交通大学 基于流体力学原理的三坐标测头系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2003389A (en) * 2008-11-04 2010-05-06 Asml Holding Nv Reverse flow gas gauge proximity sensor.
CN103776399A (zh) * 2014-01-10 2014-05-07 西安交通大学 基于流体力学原理的三坐标测头系统及三坐标测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427881C (zh) * 2002-12-19 2008-10-22 Asml控股股份有限公司 高分辨率气量计式接近传感器
CN101952685A (zh) * 2008-01-25 2011-01-19 马波斯有限公司 用于对工件进行几何测量的装置和方法
CN101946155A (zh) * 2008-02-20 2011-01-12 Asml控股股份有限公司 与真空环境相适应的气体压力计
JP2012058213A (ja) * 2010-09-13 2012-03-22 Tokai Kiyouhan Kk エアマイクロメータ
WO2013063104A1 (en) * 2011-10-25 2013-05-02 Nikon Corporation Air gauges comprising dual-range differential pressure sensor
CN103159024A (zh) * 2011-12-12 2013-06-19 先进装配系统有限责任两合公司 以气动方式确定元件相对于元件拾取装置的高度位置
CN203687902U (zh) * 2014-01-10 2014-07-02 西安交通大学 基于流体力学原理的三坐标测头系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103931A1 (zh) * 2014-01-10 2015-07-16 西安交通大学 基于流体力学原理的三坐标测头系统及三坐标测量方法
CN104913750A (zh) * 2015-06-11 2015-09-16 湖北汽车工业学院 一种汽车车轮检测机气垫式测头机构
CN104913750B (zh) * 2015-06-11 2018-04-24 湖北汽车工业学院 一种汽车车轮检测机气垫式测头机构
CN113175902A (zh) * 2021-04-19 2021-07-27 西安交通大学 一种用于微小孔径的气动测量装置与方法
CN113175902B (zh) * 2021-04-19 2023-05-30 西安交通大学 一种用于微小孔径的气动测量装置与方法
CN116026261A (zh) * 2023-03-30 2023-04-28 钛玛科(北京)工业科技有限公司 一种利用压差变化测量片材膜材厚度的方法及装置
CN117451622A (zh) * 2023-10-31 2024-01-26 中石化工建设有限公司 一种管线内表面管材焊缝检测装置
CN117451622B (zh) * 2023-10-31 2024-06-07 中石化工建设有限公司 一种管线内表面管材焊缝检测装置

Also Published As

Publication number Publication date
WO2015103931A1 (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
CN102785128B (zh) 面向数控车床的零件加工精度在线检测系统及检测方法
CN103776399A (zh) 基于流体力学原理的三坐标测头系统及三坐标测量方法
CN201221938Y (zh) 大型圆柱工件非接触智能离线检测仪器
CN103759641B (zh) 基于四芯光纤光栅的三维微尺度测量装置及方法
CN202101656U (zh) 双测头结构
CN105571461A (zh) 一种精密锥孔精度测量方法
CN103115593A (zh) 扫描测头标定方法
CN105698661A (zh) 微纳米三坐标测量机接触式扫描探头
CN103759652B (zh) 基于双光纤光栅的二维微尺度测量装置及方法
CN203687902U (zh) 基于流体力学原理的三坐标测头系统
CN109253710B (zh) 一种revo测头a轴零位误差标定方法
CN101187538A (zh) 螺纹量规的检测方法
CN103759643B (zh) 基于双芯光纤光栅的二维微尺度测量装置及方法
CN104457578A (zh) 一种气浮高精度检测工装
CN205209415U (zh) 一种精密锥孔精度测量装置
CN102814707B (zh) 一种触发式传感器触发行程的测定装置及方法
CN102873586A (zh) 数控加工工件曲率半径快速在线测量装置
CN205403689U (zh) 微纳米三坐标测量机接触式扫描探头
CN103551924A (zh) 三向切削力测量装置
CN103759653B (zh) 基于五芯光纤光栅的三维微尺度测量装置及方法
CN202656009U (zh) 面向数控车床的零件加工精度在线检测系统
CN201037760Y (zh) 一种窝测量工具
CN203337100U (zh) 结晶器振动台的三维位移检测装置
CN102095366A (zh) 一种大梯度非球面的轮廓测量方法
CN101566458A (zh) 叶片型面间隙专用检测仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140507

RJ01 Rejection of invention patent application after publication