CN103775150B - 一种电水联产系统及方法 - Google Patents

一种电水联产系统及方法 Download PDF

Info

Publication number
CN103775150B
CN103775150B CN201410031259.2A CN201410031259A CN103775150B CN 103775150 B CN103775150 B CN 103775150B CN 201410031259 A CN201410031259 A CN 201410031259A CN 103775150 B CN103775150 B CN 103775150B
Authority
CN
China
Prior art keywords
water
energy
cogeneration
saturated vapour
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410031259.2A
Other languages
English (en)
Other versions
CN103775150A (zh
Inventor
牟大同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410031259.2A priority Critical patent/CN103775150B/zh
Publication of CN103775150A publication Critical patent/CN103775150A/zh
Priority to PCT/CN2015/070330 priority patent/WO2015109948A1/zh
Priority to JP2016530988A priority patent/JP6170628B2/ja
Priority to US15/039,866 priority patent/US9644500B2/en
Application granted granted Critical
Publication of CN103775150B publication Critical patent/CN103775150B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0058Use of waste energy from other processes or sources, e.g. combustion gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • C02F5/025Hot-water softening devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种电水联产系统及方法,所述方法包括:步骤1,通过乏汽加热盐水,使盐水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水并去除钙镁水垢;步骤2,通过乏汽高温蒸溜除垢水,生成饱和蒸汽并排出浓盐水;步骤3,将饱和蒸汽的热能转换为电能,再将饱和蒸汽释放热能后生成的凝结水分为两部分,一部分作为淡水输出;步骤4,加热另一部分凝结水,生成过热蒸汽并将过热蒸汽的热能转换为电能,再将过热蒸汽释放热能后生成的乏汽反馈用于加热盐水和反馈用于高温蒸溜除垢水。所述系统包括除垢器、混合式换热器、余热发电机和火力发电装置,其工作过程同所述方法一致。所述系统及方法实现了低成本和高效率的电水联产。

Description

一种电水联产系统及方法
技术领域
本发明涉及火力发电技术和盐水淡化技术,尤其涉及一种电水联产系统及方法。
背景技术
如图1所示,在现有火力发电技术中,燃料在锅炉中燃烧将水加热为过热蒸汽,过热蒸汽驱动汽轮机带动发电机发电,过热蒸汽释放热势能做功后成为乏汽,乏汽传至凝汽器中释放热能后生成凝结水,凝结水经低压加热器加热、除氧器除氧和高压加热器加热后传至锅炉,并再次被锅炉加热为过热蒸汽用于做功,从而形成汽水循环而持续发电,该过程中燃料的化学能约40%转为电能,9%成为生产损耗,6%成为锅炉排烟热损失、45%成为凝汽器向环境排放乏汽的热能而形成的冷端热损失,这些热损失造成了大量能源浪费。另外,该过程中还需要不断向除氧器补充通过化学除盐而制取的锅炉补给水,成本高且设备复杂。
现有盐水淡化技术主要包括蒸馏法、电渗析法和反渗透法,这些方法能耗大且成本高,并且在蒸馏法中,为了避免设备结垢不能采用高温蒸馏法,而只能采用低温多效法、多级闪蒸法等低温蒸馏法,产水效率低。
因此,本发明针对上述火力发电和盐水淡化中存在的问题,提出了一种电水联产系统及方法。
发明内容
本发明所要解决的技术问题是提供一种电水联产系统及方法,以提高火力发电和盐水水淡化的效率。
本发明为了解决上述技术问题的技术方案如下:
一种电水联产系统,包括除垢器、混合式换热器、余热发电机和火力发电装置;
所述除垢器,其用于通过乏汽加热盐水,使盐水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水并将除垢水传至所述混合式换热器,并去除钙镁水垢;
所述混合式换热器,其用于通过乏汽高温蒸溜除垢水,生成饱和蒸汽和浓盐水,并将饱和蒸汽传至所述余热发电机,且排出浓盐水;
所述余热发电机,其用于将饱和蒸汽的热能转换为电能,再将饱和蒸汽释放热能后生成的凝结水分为两部分,一部分传至所述火力发电装置,另一部分作为淡水输出;
所述火力发电装置,其用于加热凝结水生成过热蒸汽,并将过热蒸汽的热能转换为电能,再将过热蒸汽释放热能后生成的乏汽分别传至所述除垢器和混合式换热器。
采用上述系统的有益效果是:利用高温除垢和高温蒸馏提高了盐水淡化的效率,并降低了盐水淡化的能耗和成本,利用余热发电提高了火力发电的热效率,并降低了火力发电的用水、能耗和成本。
在上述技术方案的基础上,所述电水联产系统还可以做如下改进:
进一步,所述除垢器为压力容器,其令乏汽与盐水混合,并进行传热和传质,使盐水升温至120℃或120℃以上,从而使盐水中的钙镁化合物快速结晶析出为钙镁水垢。
采用上述进一步方案的有益效果是:通过高温除垢使后续高温蒸馏中避免了结垢。
进一步,所述除垢器采用超声波法、干冰微粒喷射法、高压水射流法、机械法和/或化学法去除钙镁水垢。
采用上述进一步方案的有益效果是:保证了除垢器正常运行。
进一步,所述混合式换热器令乏汽与除垢水混合,并进行传热和传质,从而高温蒸溜除垢水。
采用上述进一步方案的有益效果是:混合式换热和高温蒸馏,提高了盐水淡化的效率。
进一步,所述余热发电机将饱和蒸汽的热能转换为电能具体包括:所述余热发电机中有制冷剂或低熔点金属,制冷剂或低熔点金属吸收饱和蒸汽的热能后膨胀、挥发和/或暴沸而形成势能,所述余热发电机先将该势能转换为机械能,再将机械能转换为电能。
采用上述进一步方案的有益效果是:根据已有的将热能转换为机械能的技术(参见美国专利No.2,402,463),将乏汽的热能高效转换为机械能,再转换为电能,实现了高效率的余热发电。
进一步,所述电水联产系统中还能设置凝汽器,用于令饱和蒸汽释放热能后生成凝结水。
采用上述进一步方案的有益效果是:通过火力发电装置中的凝汽器令饱和蒸汽生成凝结水,成本低且效率高。
进一步,所述盐水包括海水、苦咸水、微咸水、劣质水、工业废水和/或生活污水;
进一步,所述除垢器采用压力反应釜;所述混合式换热器采用冷却塔、气体洗涤塔/喷淋室、喷射式热交换器或混合式冷凝器;所述火力发电装置包括低压加热器、除氧器、高压加热器、锅炉、汽轮机和发电机,其采用本领域常用火力发电装置即可,如图1所示,即示意有一种火力发电装置结构。
进一步,所述电水联产系统制取的淡水能用作所述火力发电装置的锅炉补给水。
采用上述进一步方案的有益效果是:与化学除盐制取锅炉补给水相比,成本低且水质更好。
对应上述电水联产系统,本发明的技术方案还提供了一种电水联产方法,包括如下步骤:
步骤1,通过乏汽加热盐水,使盐水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水,并去除钙镁水垢;
步骤2,通过乏汽高温蒸溜除垢水,生成饱和蒸汽和浓盐水,并排出浓盐水;
步骤3,将饱和蒸汽的热能转换为电能,再将饱和蒸汽释放热能后生成的凝结水分为两部分,其中一部分作为淡水输出;
步骤4,加热另一部分凝结水,生成过热蒸汽,并将过热蒸汽的热能转换为电能,再将过热蒸汽释放热能后生成的乏汽反馈给步骤1用于加热盐水和反馈给步骤2用于高温蒸溜除垢水。
采用上述方法的有益效果是:利用高温除垢和高温蒸馏提高了盐水淡化的效率并降低了盐水淡化的能耗和成本,利用余热发电提高了火力发电的热效率并降低了火力发电的用水、能耗和成本。
在上述技术方案的基础上,所述电水联产方法还可以做如下改进:
进一步,所述步骤1中采用压力容器令乏汽与盐水混合,并进行传热和传质,使盐水升温至120℃或120℃以上,从而使盐水中的钙镁化合物快速结晶析出为钙镁水垢。
采用上述进一步方案的有益效果是:通过高温除垢使后续高温蒸馏中避免了结垢。
进一步,所述步骤1中采用超声波法、干冰微粒喷射法、高压水射流法、机械法和/或化学法去除钙镁水垢。
采用上述进一步方案的有益效果是:保证了除垢器正常运行。
进一步,所述步骤2中采用混合式换热器令乏汽与除垢水混合,并进行传热和传质,从而高温蒸溜除垢水。
采用上述进一步方案的有益效果是:混合式换热和高温蒸馏,提高了盐水淡化的效率。
进一步,所述步骤3中将饱和蒸汽的热能转换为电能具体包括:采用制冷剂或低熔点金属吸收饱和蒸汽的热能,制冷剂或低熔点金属吸收饱和蒸汽的热能后膨胀、挥发和/或暴沸而形成势能,先将该势能转换为机械能,再将机械能转换为电能。
采用上述进一步方案的有益效果是:根据已有的将热能转换为机械能的技术(参见美国专利No.2,402,463),将乏汽的热能高效转换为机械能,再转换为电能,实现了高效率的余热发电。
进一步,所述电水联产方法中还能设置凝汽器,用于令饱和蒸汽释放热能后生成凝结水。
采用上述进一步方案的有益效果是:通过火力发电装置中的凝汽器令饱和蒸汽生成凝结水,成本低且效率高。
进一步,所述电水联产方法中还能采用热网回水代替盐水,并将获得的部分除垢水作为热网供水输出。
采用上述进一步方案的有益效果是:实现了低成本和高效率热电联产。
进一步,所述电水联产方法中还能采用工业余热或低谷电加热的空气代替乏汽。
本发明技术方案的有益效果是:本发明提供的系统及方法,实现了低成本和高效率的电水联产。
附图说明
图1为现有火力发电技术的结构示意图;
图2为本发明实施例一中所述电水联产系统的结构示意图;
图3为本发明实施例二中所述热电联产系统的结构示意图;
图4为本发明实施例三中所述热电联产系统的结构示意图;
图5为本发明实施例四中所述热电联产系统的结构示意图;
图6为本发明实施例五中所述热电水联产系统的结构示意图。
附图标记为:
10、除垢器,20、混合式换热器,30、余热发电机,40、火力发电装置,401、低压加热器,402、除氧器,403、高压加热器,404、锅炉,405、汽轮机,406、发电机。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例一提供了一种电水联产方法及电水联产系统,所述电水联产方法包括如下步骤:
步骤1,通过乏汽加热盐水,使盐水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水,并去除钙镁水垢;
步骤2,通过乏汽高温蒸溜除垢水,生成饱和蒸汽和浓盐水,并排出浓盐水;
步骤3,将饱和蒸汽的热能转换为电能,再将饱和蒸汽释放热能后生成的凝结水分为两部分,其中一部分作为淡水输出;
步骤4,加热另一部分凝结水,生成过热蒸汽,并将过热蒸汽的热能转换为电能,再将过热蒸汽释放热能后生成的乏汽反馈给步骤1用于加热盐水和反馈给步骤2用于高温蒸溜除垢水。
另外,步骤1中采用压力容器令乏汽与盐水混合,并进行传热和传质,使盐水升温至120℃或120℃以上,从而使盐水中的钙镁化合物快速结晶析出为钙镁水垢;步骤1中采用超声波法、干冰微粒喷射法、高压水射流法、机械法和/或化学法去除钙镁水垢;步骤2中采用混合式换热器令乏汽与除垢水混合,并进行传热和传质,从而高温蒸溜除垢水;步骤3中将饱和蒸汽的热能转换为电能具体包括:采用制冷剂或低熔点金属吸收饱和蒸汽的热能,制冷剂或低熔点金属吸收饱和蒸汽的热能后膨胀、挥发和/或暴沸而形成势能,先将该势能转换为机械能,再将机械能转换为电能。
对应地,如图2所示,所述电水联产系统包括除垢器10、混合式换热器20、余热发电机30和火力发电装置40;
除垢器10,其用于令乏汽与盐水混合,并进行传热和传质,使盐水升温至120℃或120℃以上,从而使盐水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水并将除垢水传至混合式换热器20,并采用超声波法、干冰微粒喷射法、高压水射流法、机械法和/或化学法去除钙镁水垢;
混合式换热器20,其用于令乏汽与除垢水混合,并进行传热和传质,从而高温蒸溜除垢水,生成饱和蒸汽和浓盐水,并将饱和蒸汽传至余热发电机30,且排出浓盐水;
余热发电机30,其含有制冷剂或低熔点金属,用于令制冷剂或低熔点金属吸收饱和蒸汽的热能后膨胀、挥发和/或暴沸而形成势能,将该势能转换为机械能再将机械能转换为电能,并将饱和蒸汽释放热能后生成的凝结水分为两部分,一部分传至火力发电装置40的低压加热器401,另一部分作为淡水输出;
火力发电装置40包括低压加热器401、除氧器402、高压加热器403、锅炉404、汽轮机405和发电机406,其工作过程为:燃料在锅炉404中燃烧将水加热为过热蒸汽,过热蒸汽驱动汽轮机405带动发电机406发电,过热蒸汽释放热势能做功后成为乏汽,乏汽通过除垢器10、混合式换热器20和余热发电机30释放热能后生成凝结水,凝结水经低压加热器401加热、除氧器402除氧和高压加热器403加热后传至锅炉404,并再次被锅炉404加热为过热蒸汽用于做功,从而形成汽水循环而持续发电。
如图3所示,实施例二提供了一种热电联产系统,包括除垢器、混合式换热器、余热发电机和火力发电装置,其中混合式换热器、余热发电机和火力发电装置的结构和功能均与实施例一相同;
除垢器,其用于令乏汽与热网回水混合,并进行传热和传质,使热网回水升温至120℃或120℃以上,从而使热网回水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水,将除垢水分为两部分,一部分作为热网供水输出,另一部分传至混合式换热器,并采用超声波法、干冰微粒喷射法、高压水射流法、机械法和/或化学法去除钙镁水垢。
如图4所示,实施例三提供了一种热电联产系统,包括除垢器、混合式换热器和火力发电装置,其中除垢器的结构和功能与实施例二相同,混合式换热器的功能也与实施例二相同,但其将饱和蒸汽传至火力发电装置的凝汽器;
火力发电装置包括低压加热器、除氧器、高压加热器、锅炉、汽轮机、发电机和凝汽器,其工作过程为:燃料在锅炉中燃烧将水加热为过热蒸汽,过热蒸汽驱动汽轮机带动发电机发电,过热蒸汽释放热势能做功后成为乏汽,将乏汽分为两部分,一部分乏汽通过除垢器和混合式换热器释放热能后生成饱和蒸汽,另一部分乏汽传至凝汽器,凝汽器令乏汽和饱和蒸汽释放热能后生成凝结水,凝结水传至低压加热器用于发电。
如图5所示,实施例四提供了一种热电联产系统,包括除垢器和火力发电装置,其中除垢器的功能与实施例二相同,但其将除垢水分为两部分,一部分除垢水作为热网供水输出,另一部分除垢水传至火力发电装置的低压加热器,火力发电装置的功能也与实施例二相同,但其低压加热器将除垢水用于发电。
如图6所示,实施例五提供了一种热电水联产系统,包括除垢器、混合式换热器和火力发电装置,其中除垢器的功能与实施例三相同,但其采用盐水代替热网回水,混合式换热器的功能也与实施例三相同,但其将饱和蒸汽分为两部分,一部分饱和蒸汽传至火力发电装置的凝汽器,另一部分饱和蒸汽用于加热热网回水,火力发电装置的功能也与实施例三相同,但其将部分凝结水作为淡水输出。
另外,无需供热时,混合式换热器将其生成的全部饱和蒸汽传至凝汽器,用于电水联产。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种电水联产系统,其特征在于,包括除垢器、混合式换热器、余热发电机和火力发电装置;
所述除垢器,其用于通过乏汽加热盐水,使盐水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水并将除垢水传至所述混合式换热器,并去除钙镁水垢;所述除垢器为压力容器,其令乏汽与盐水混合,并进行传热和传质,使盐水升温至120℃以上,从而使盐水中的钙镁化合物快速结晶析出为钙镁水垢;
所述混合式换热器,其用于通过乏汽高温蒸馏除垢水,生成饱和蒸汽和浓盐水,并将饱和蒸汽传至所述余热发电机,且排出浓盐水;
所述余热发电机,其用于将饱和蒸汽的热能转换为电能,再将饱和蒸汽释放热能后生成的凝结水分为两部分,一部分传至所述火力发电装置,另一部分作为淡水输出;
所述火力发电装置,其用于加热凝结水生成过热蒸汽,并将过热蒸汽的热能转换为电能,再将过热蒸汽释放热能后生成的乏汽分别传至所述除垢器和混合式换热器。
2.根据权利要求1所述的电水联产系统,其特征在于,所述除垢器采用超声波法、干冰微粒喷射法、高压水射流法、机械法或化学法去除钙镁水垢。
3.根据权利要求1所述的电水联产系统,其特征在于,所述余热发电机将饱和蒸汽的热能转换为电能具体包括:所述余热发电机中有制冷剂或低熔点金属,制冷剂或低熔点金属吸收饱和蒸汽的热能后膨胀、挥发和/或暴沸而形成势能,所述余热发电机先将该势能转换为机械能,再将机械能转换为电能。
4.根据权利要求1所述的电水联产系统,其特征在于,所述电水联产系统中还设置凝汽器,用于令饱和蒸汽释放热能后生成凝结水。
5.一种电水联产方法,其特征在于,包括如下步骤:
步骤1,通过乏汽加热盐水,使盐水中的钙镁化合物快速结晶析出为钙镁水垢,再通过过滤获得除垢水,并去除钙镁水垢;采用压力容器令乏汽与盐水混合,并进行传热和传质,使盐水升温至120℃以上,从而使盐水中的钙镁化合物快速结晶析出为钙镁水垢;
步骤2,通过乏汽高温蒸馏除垢水,生成饱和蒸汽和浓盐水,并排出浓盐水;
步骤3,将饱和蒸汽的热能转换为电能,再将饱和蒸汽释放热能后生成的凝结水分为两部分,其中一部分作为淡水输出;
步骤4,加热另一部分凝结水,生成过热蒸汽,并将过热蒸汽的热能转换为电能,再将过热蒸汽释放热能后生成的乏汽反馈给步骤1用于加热盐水和反馈给步骤2用于高温蒸馏除垢水。
6.根据权利要求5所述的电水联产方法,其特征在于,所述步骤1中采用超声波法、干冰微粒喷射法、高压水射流法、机械法或化学法去除钙镁水垢。
7.根据权利要求5所述的电水联产方法,其特征在于,所述步骤3中将饱和蒸汽的热能转换为电能具体包括:采用制冷剂或低熔点金属吸收饱和蒸汽的热能,制冷剂或低熔点金属吸收饱和蒸汽的热能后膨胀、挥发和/或暴沸而形成势能,先将该势能转换为机械能,再将机械能转换为电能。
8.根据权利要求5所述的电水联产方法,其特征在于,所述电水联产方法中还设置凝汽器,用于令饱和蒸汽释放热能后生成凝结水。
9.根据权利要求5至8中任一所述的电水联产方法,其特征在于,所述电水联产方法中还采用热网回水代替盐水,并将获得的部分除垢水作为热网供水输出。
CN201410031259.2A 2014-01-22 2014-01-22 一种电水联产系统及方法 Expired - Fee Related CN103775150B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201410031259.2A CN103775150B (zh) 2014-01-22 2014-01-22 一种电水联产系统及方法
PCT/CN2015/070330 WO2015109948A1 (zh) 2014-01-22 2015-01-08 一种电水联产系统及方法
JP2016530988A JP6170628B2 (ja) 2014-01-22 2015-01-08 電気・水コジェネレーションシステム及び方法
US15/039,866 US9644500B2 (en) 2014-01-22 2015-01-08 Electricity-water co-generation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410031259.2A CN103775150B (zh) 2014-01-22 2014-01-22 一种电水联产系统及方法

Publications (2)

Publication Number Publication Date
CN103775150A CN103775150A (zh) 2014-05-07
CN103775150B true CN103775150B (zh) 2016-03-02

Family

ID=50567836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410031259.2A Expired - Fee Related CN103775150B (zh) 2014-01-22 2014-01-22 一种电水联产系统及方法

Country Status (4)

Country Link
US (1) US9644500B2 (zh)
JP (1) JP6170628B2 (zh)
CN (1) CN103775150B (zh)
WO (1) WO2015109948A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995027B1 (en) * 2011-04-26 2021-05-04 Mansour S. Bader Exchanging thermal and liquid wastes for distillate and hot de-scaled brine
US10968129B1 (en) * 2011-04-26 2021-04-06 Mansour S. Bader Minimizing wastes: method for de-oiling, de-scaling and distilling source water
CN103775150B (zh) * 2014-01-22 2016-03-02 牟大同 一种电水联产系统及方法
CN107058763A (zh) * 2017-05-27 2017-08-18 郑州大学 一种回收镁冶炼中镁蒸气结晶余热利用装置
US10022646B1 (en) * 2017-10-16 2018-07-17 King Saud University Solar cooling and water salination system
US10696566B2 (en) * 2018-04-05 2020-06-30 Shawn Erick Lange Power generating and water purifying system
CN108439692A (zh) * 2018-05-31 2018-08-24 安徽中疆环境科技有限公司 一种水环境治理用的水体净化装置
CN109538430B (zh) * 2018-12-29 2024-03-22 河钢股份有限公司 一种利用浓盐水进行发电的装置和方法
CN112979032A (zh) * 2021-02-26 2021-06-18 永州市德润光电科技有限公司 一种锅炉蒸汽用水软化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476653A (en) * 1967-02-01 1969-11-04 George D Doland Multistage distillation unit for water and power plant system
US4445325A (en) * 1980-05-28 1984-05-01 Kraftwerk Union Aktiengesellschaft Installation for generating superheated process steam from salt-containing raw water
CN101157486A (zh) * 2006-10-02 2008-04-09 乔治洛德方法研究和开发液化空气有限公司 联合生产电、蒸汽和脱盐水的方法和设备
CN101956581A (zh) * 2010-04-30 2011-01-26 冼泰来 利用自然水温发电、供热、供水、供蒸馏水工艺流程

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697385A (en) * 1970-10-06 1972-10-10 Aerojet General Co Flash distillation apparatus and method
JPS52119738A (en) * 1976-03-31 1977-10-07 Toshiba Corp Motive power station equipment
US4083781A (en) * 1976-07-12 1978-04-11 Stone & Webster Engineering Corporation Desalination process system and by-product recovery
US4141825A (en) * 1977-10-31 1979-02-27 Stone & Webster Engineering Corporation Desalination process system and by-product recovery
US5346592A (en) * 1993-08-11 1994-09-13 Madani Anas A Combined water purification and power of generating plant
US5925223A (en) * 1993-11-05 1999-07-20 Simpson; Gary D. Process for improving thermal efficiency while producing power and desalinating water
JPH07251162A (ja) * 1994-01-31 1995-10-03 Kikai Kagaku Kenkyusho:Kk 廃液の処理方法
US6946081B2 (en) * 2001-12-31 2005-09-20 Poseidon Resources Corporation Desalination system
US7037430B2 (en) * 2002-04-10 2006-05-02 Efficient Production Technologies, Inc. System and method for desalination of brackish water from an underground water supply
JP4018667B2 (ja) * 2004-05-25 2007-12-05 住友重機械工業株式会社 塩類含有処理水の脱塩方法及びその装置
US20070175333A1 (en) * 2006-02-02 2007-08-02 Siemens Power Generation, Inc. System for recovering water from flue gas
US20120160753A1 (en) * 2008-12-30 2012-06-28 Nishith Vora Water desalination plant and system for the production of pure water and salt
WO2011102848A1 (en) * 2010-02-17 2011-08-25 Katana Energy Llc Zero discharge water desalination plant with minerals extraction integrated with natural gas combined cycle power generation
US20130269347A1 (en) * 2012-04-12 2013-10-17 General Electric Company Combined power and water production system and method
CN103089349B (zh) * 2013-01-27 2015-02-04 南京瑞柯徕姆环保科技有限公司 一种分布式工业锅炉冷热电三联供装置
CN103409590B (zh) * 2013-08-20 2015-08-05 陕西钢铁集团有限公司 一种利用中压饱和过热蒸汽的发电系统
CN103775150B (zh) 2014-01-22 2016-03-02 牟大同 一种电水联产系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476653A (en) * 1967-02-01 1969-11-04 George D Doland Multistage distillation unit for water and power plant system
US4445325A (en) * 1980-05-28 1984-05-01 Kraftwerk Union Aktiengesellschaft Installation for generating superheated process steam from salt-containing raw water
CN101157486A (zh) * 2006-10-02 2008-04-09 乔治洛德方法研究和开发液化空气有限公司 联合生产电、蒸汽和脱盐水的方法和设备
CN101956581A (zh) * 2010-04-30 2011-01-26 冼泰来 利用自然水温发电、供热、供水、供蒸馏水工艺流程

Also Published As

Publication number Publication date
US9644500B2 (en) 2017-05-09
WO2015109948A1 (zh) 2015-07-30
CN103775150A (zh) 2014-05-07
US20160376933A1 (en) 2016-12-29
JP6170628B2 (ja) 2017-07-26
JP2017503103A (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
CN103775150B (zh) 一种电水联产系统及方法
EP1921281B1 (en) Seawater desalinating apparatus using blowdown water of heat recovery steam generator
ES2527995T3 (es) Procedimiento de desalinización accionado por calor residual
CN102786108B (zh) 一种盐水脱盐方法及系统
CN102336448B (zh) 盐水处理系统及方法
KR101109534B1 (ko) 태양에너지와 소수력 발전을 이용한 해수담수화 시스템
CN103974903B (zh) 活性炭制造系统
CN202208652U (zh) 盐水处理系统
CN203845838U (zh) 热泵型海水淡化装置
KR101613201B1 (ko) 가스복합발전플랜트의 담수화 시스템
CN102583857A (zh) 一种沿海及岛屿火电厂电淡水联产装置
CN102616875A (zh) 利用电站温排水余热进行海水淡化的方法
CN103663587B (zh) 海岛柴油发电站余热电水联产装置及方法
RU2013116445A (ru) Система для совместной выработки электроэнергии и воды (варианты) и способ получения электроэнергии и воды в такой системе
KR200462803Y1 (ko) 태양열 집열장치를 이용한 열원 발전장치
Saad et al. Performance analysis of a vacuum desalination system
KR20090101347A (ko) 혼합 증기를 생성하기 위한 방법
RU2303145C1 (ru) Тепловая электрическая станция
CN203547812U (zh) 一种水电联产系统
CN204312146U (zh) 一种汽轮机乏汽自然冷却系统及塔式太阳能热发电系统
RU2552481C1 (ru) Способ работы тепловой электрической станции
CN103626245A (zh) 高效热泵型海水淡化装置
RU2334882C1 (ru) Способ работы тепловой электрической станции
CN203333331U (zh) 一种海水淡化的同时进行冷热电联产的系统
RU2461723C1 (ru) Тепловая электрическая станция

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160302

Termination date: 20180122